
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2013, SOUTHAMPTON, UK

LARGE SCALE INFERENCE IN THE INFINITE RELATIONAL MODEL:
GIBBS SAMPLING IS NOT ENOUGH.

Kristoffer Jon Albers, Andreas Leon Aagard Moth, Morten Mørup, Mikkel N. Schmidt

Section for Cognitive Systems
DTU Compute

Technical University of Denmark

ABSTRACT
The stochastic block-model and its non-parametric exten-
sion, the Infinite Relational Model (IRM), have become key
tools for discovering group-structure in complex networks.
Identifying these groups is a combinatorial inference prob-
lem which is usually solved by Gibbs sampling. However,
whether Gibbs sampling suffices and can be scaled to the
modeling of large scale real world complex networks has
not been examined sufficiently. In this paper we evaluate
the performance and mixing ability of Gibbs sampling in the
Infinite Relational Model (IRM) by implementing a high per-
formance Gibbs sampler. We find that Gibbs sampling can be
computationally scaled to handle millions of nodes and bil-
lions of links. Investigating the behavior of the Gibbs sampler
for different sizes of networks we find that the mixing ability
decreases drastically with the network size, clearly indicating
a need for better sampling strategies.

Index Terms— Infinite Relational Model, Markov Chain
Monte Carlo, Gibbs sampling, large scale network modelling,
Bayesian inference.

1. INTRODUCTION

In our every day lives, we constantly interact with systems
that can be described and examined as complex networks, in-
cluding both natural and human systems. Among the human
created systems, we encounter supply chains, power grids and
internet communication, while in the natural world many bio-
mechanical and behavioral systems can be described as com-
plex networks, such as neural interaction in the brain and so-
cial relations between people. Hence complex networks are
a very integrated part of the world and the way humans act
and adapt. Being able to comprehend and develop theoreti-
cal models to describe these complex networks is an emerg-
ing and intriguing science, where we need to combine experi-
ences and knowledge from many different research areas [1].

Some approaches to model complex networks use Bayesian
statistical modelling in order to account for interactions in

This work was supported by the Lundbeck Foundation.

the network. One of these approaches are the stochastic
block-models [2] including the Infinite Relational Model
(IRM) [3, 4]. In this paper we use IRM combined with Gibbs
sampling, which is often the workhorse of Bayesian infer-
ence, see also [5, 6, 7, 8, 9]. We have chosen IRM as it has
become a very prominent network model.

Statistical analysis of large scale networks is an active
field of research. In [6] large scale MCMC was developed
for the stochastic relational model to allow efficient compu-
tation on a bipartite network with ∼500 thousand nodes and
∼100 million links. In [7] GPU resources were utilized to per-
form bipartite co-clustering by the IRM model. These studies
were conducted on graphs in the order of ∼8 million nodes
and ∼500 million links. Although, these works have given
valuable insight to the robustness and scalability of the mod-
els, they leave room for further investigation into larger and
more complex networks. Furthermore, inference in bipartite
networks is inherently easier to parallelize than the modeling
of unipartite networks where the interaction between entities
no longer decouples.

In this paper we go an order of magnitude beyond cur-
rent modeling limitations for the size of the networks and we
consider the more challenging case of unipartite networks.
We have developed and implemented a program able to per-
form fast IRM analysis on unipartite networks with millions
of nodes and billions of links. We test how IRM scales by
running our program on different sized graphs based on the
modeling of a single large social network with ∼65.5 million
nodes and ∼1.8 billion links including subsamples thereof.
The network represents user relations on the social network
Friendster and is maintained by the Stanford Network Anal-
ysis Platform (SNAP) (http://snap.stanford.edu/data/com-
Friendster.html). We further investigate how IRM performs
when run for millions of Gibbs sweeps on a relatively small
network of structural brain connectivity [10] containing
∼1000 nodes.

The contribution of this paper is to demonstrate that the
Gibbs sampler for the Infinite Relational Model can be scaled
up to the modelling of millions of nodes and billions of links.
Being able to sample with high computational performance

978-1-4673-1026-0/12/$31.00 c©2013 IEEE

we set out to test the limitations of the Gibbs sampler for the
IRM running millions of Gibbs iterations on networks of vari-
able sizes. In particular, we determine the network size be-
yond which the Gibbs sampler fails, i.e. is unable to properly
mix over the posterior distribution. Surprisingly, this seem to
already be an issue for networks of ∼1000 nodes.

2. METHOD

2.1. Infinite Relational Model

The purpose of the stochastic blockmodel is to split the ver-
tices in a graph into smaller subsets called blocks, such that
these blocks capture the overall clustering structure of the
graph [2]. The infinite relational model as proposed in [3]
and [4] is an extension to the stochastic blockmodel, by al-
lowing an unlimited number of clusters, determined by a Chi-
nese Restaurant Process (CRP). As a generative model, IRM
relies on the following generative process:

z ∼ CRP(α), groups (1)

ηlm ∼ Beta(β+, β−), interactions (2)
Aij ∼ Bernoulli(ηzizj), links. (3)

The clustering follows the Chinese Restaurant Process. The
probability of connection between nodes in two clusters l and
m follows the beta distribution, while the links between indi-
vidual nodes are based on the Bernoulli distribution. The hy-
perparameters α, β+ and β− are in the following represented
by h. By collapsing η we obtain the following joint likelihood
according to the generative process:

P (A, z|h) =

∫
P (A, z,η|h)dη

=
αKΓ(α)

∏
k Γ(nk)

Γ(J − α)

∏
l≤m

B(N+
lm + β+, N−lm + β−)

B(β+, β−)
(4)

where K is the number of clusters, J is the total number
of nodes, nk is the number of nodes in cluster k, while N+

lm

and N−lm are the number of links and non-links between clus-
ter l and m respectively. B(a, b) = Γ(a)Γ(b)

Γ(a+b) is the beta func-
tion. Inferring this posterior distribution is a computationally
hard problem. However, the problem can be addressed es-
timating the cluster assignment using Markov Chain Monte
Carlo (MCMC) inference by Gibbs sampling, as proposed as
Bayesian estimator for Stochastic Blockmodels in [2] and de-
scribed for IRM in [5, 3].

2.2. Markov Chain Monte Carlo

The idea behind MCMC is to iteratively change the model in
a way such that in the limit of infinitely many changes cor-
rect draws from the full posterior distribution are generated.

1 for each iteration
2 for each node i
3 calculate N+ and N−, n

ignoring i
4 calculate r for the node
5 calculate the probability

change of the model when
assigning i to each cluster

6 choose a cluster assignment
based on these probabilities

Fig. 1. Naive IRM Pseudo-code.

A special case of MCMC is Gibbs sampling where each pa-
rameter is changed one at a time by generating new values
from its posterior marginal distribution. For the IRM this cor-
responds to calculating the posterior marginal distribution of
assigning each node to each of the existing groups or to a new
empty group. This procedure is repeated, sweeping over all
parameters [5]. Assigning a node i to a cluster o, changes the
likelihood in equation (4) such that the first fraction (given by
the CRP), is multiplied by α if o is a new empty cluster and
by the number of nodes in cluster o ignoring node i (no\i)
otherwise. Furthermore, the product in equation (4) will be
multiplied with

∏
m

B(N
+\i
om + rim + β+, N

−\i
om + nm − rim + β−)

B(N
+\i
om + β+, N

−\i
om + β−)

, (5)

where rim is the total sum of links between node i and all
nodes in cluster m. Using Bayes theorem we can calculate
the probability of assigning a single node i to a cluster o as:

P (zi = l|A, z\i, h) =
P (A, z\i, zi = l|h)

K+1∑
o=1

P (A, z\i, zi = o|h)

. (6)

In order to ensure numeric stability at the level of machine
precision this posterior is calculated in the log domain. Thus,
the key operation necessary for the evaluation of this posterior
is the calculations of the logarithm of the beta function.

3. LARGE SCALE IMPLEMENTATION

To implement the Gibbs sampler efficiently such that it can
feasibly be run on large scale problems it is essential that
the algorithm is implemented using an efficient data structure
avoiding expensive memory access. In addition it is impor-
tant to implement the logarithm of the beta function in a cost
efficient manner.

Our starting point is the naive pseudo-code implementa-
tion of IRM using MCMC with Gibbs sampling given in Fig-
ure 1. The inner loop performs a Gibbs-sweep iteratively as-

1 Initialize N+, N− and n
2 for each iteration
3 for each node i
4 calculate r for the node
5 calculate the probability

change of the model when
assigning i to each cluster

6 choose a cluster based on these
probabilities

7 if i has changed cluster, update
N+, N− and n

Fig. 2. Optimized IRM Pseudo-code.

signing each node to a cluster. This is part of the Gibbs sam-
pler while the outer loop performs each Gibbs sweep contin-
uously sampling the model as part of the MCMC procedure.
To perform each Gibbs update the number of links, non-links,
nodes in each cluster, and connections r are computed after
which the probability of each group assignment is computed
and normalized following the conditional posterior given in
equation (6). From these probabilities a new cluster assign-
ment is chosen for the current node, and the procedure is con-
tinued for the next node.

In each iteration of the Gibbs-sweep, exactly 2 ×K val-
ues in N+ and N− are changed when a node is reassigned.
Instead of recomputing these values, they can be cached glob-
ally and simply updated in each iteration. The same holds true
for n, where only two values change. All r-vectors could also
be cached and updated between each iterations. However the
collective size of all r-vectors will be J×K, which means the
computer would need 24 GB for 65 million nodes and only
100 clusters, which might not be feasible. On the other hand,
N+, N− and n can easily be cached.

To avoid computing unnecessary changes to the data
structures, we only update N+ and N− after finding the
cluster the node is assigned to. If the node does not change
cluster, no updates are necessary. This affects the probability
calculation, as the node is not removed from N+, N− and
n before the probabilities are calculated. However, this only
affects the calculation for the assigned cluster and is very easy
to take into account. The product over cluster c in formula
(5) changes to

∏
m

B(N+
oc + β+, N−oc + β−)

B(N+
oc − ric + β+, N−oc − (nc − ric) + β−)

, (7)

while one is subtracted from nc whenever it is accessed. This
is mathematically equivalent to the original formulation but
working on this parametrization will result in a more efficient
memory access pattern. Furthermore, each term of the sum
can be computed in parallel. The calculation of r as well as
the updates of N+ and N− can also be parallelized. We im-
plement these parallelizations using the OpenMP API, result-

Fig. 3. Times a number of clusters were found in last 5M
Gibbs sweeps (sub-sampled every 1000th sweep). Color in-
dex indicates different runs.

ing in a more efficient ressource utilization. The pseudo-code
for using these optimizations is shown in figure 2.

Aside from optimizing the structure of the program, there
are also many other optimizations, which can greatly improve
the speed of the program. One of the most prominent speed
reductions come from cache misses, which occurs when data
is not accessed sequentially, but randomly in the memory. To
avoid cache misses, we store the entire matrix for N+ and
N− even though both matrices are symmetric. If only the
upper triangle of N+ and N− were saved, all data associated
with a cluster could not be stored in sequence.

Another improvement is pre-calculations. The program
computes the logarithm of the beta function, which is rather
slow. For a network with 65 million nodes, the range of the
input parameters are in the interval 1 to 65.000.0002 ∼ 4.2×
1015. We have optimized the computations of the logartihm
of the gamma function used in the computation of the log-
beta function by precalculating and caching the function for
the first ∼250M values and use Stirling’s approximation for
large values where it is correct with high precision.

4. RESULTS AND DISCUSSION

In order to evaluate how IRM performs, we have evaluated
both a medium sized network and a group of subsampled net-
works. These networks represents actual networks and hence
provides more realistic results, compared to synthetic data.

4.1. Large number of Gibbs sweeps

To evaluate how IRM performs for millions of Gibbs sweeps,
we considered the five graphs of structural brain connectivity
across 998 brain regions (nodes) [10] derived by tractography

Fig. 4. Log-likelihood for different Gibbs sweeps. Color in-
dex indicates different runs.

on diffusion spectrum imaging (we considered the non-zero
elements of the first scans averaged and symmetrized over the
five subjects). 10 different runs were performed on this graph
for 10M Gibbs sweeps each, with the hyperparameters β+ =
1, β− = 1 and α = 6.

The number of clusters found by the different runs is
shown in figure 3. This figure shows how often each run
contained a particular number of clusters during the last 5M
Gibbs sweeps. The runs do not converge to the same dis-
tribution of number of components, but ranges from 45 to
50 components. Furthermore, all runs except one appears to
have settled on a single number of clusters. This indicates a
poor mixing ability of the Gibbs sampler.

To evaluate, whether the sampler in fact performs poor
mixing, we have plotted the log-likelihood as a function of
the number of Gibbs sweeps, using equation (4), shown in
figure 4. From this plot we see that the runs do in fact not
mix, even after 10 million sweeps. To further investigate
this, we have looked at the normalized mutual information
(NMI) within and between runs, shown in figure 5. We used
NMI(z′, z′′) = 2I(z′,z′′)

H(z′)+H(z′′) , where I(z′, z′′) is the mutual
information between two groupings of the nodes z′ and z′′

and H(z′) is the entropy of z′. To evaluate the normalized
mutual information within runs, each run has been compared
to its configuration 1 million sweeps earlier. The first NMI
within runs is not visible on this plot, as it is extremely close
to 0 as each of the runs are more similar with themselves than
each other. Additionally the similarity between runs remains
consistent over time, indicating that the runs will not reach
consensus within reasonable time.

Fig. 5. Normalized Mutual Information between and within
the 10 runs.

4.2. Large networks

In order to investigate how the IRM model with Gibbs sam-
pling scales with the size of the network, we have grown sev-
eral graphs of increasing size, subsampled from the large 65M
node Friendster social network dataset available from SNAP.
These subsampled graphs contains 101, 102, 103, 104, 105, 106

and 107 nodes. Each subgraph is grown by initially including
the first node. Afterwards the nodes connected to the first
included node is added, then the nodes connected to the sec-
ond included node is added etc. until the specified number of
nodes has been selected. This procedure ensures that no node
is selected, which is not connected to any other node. Further-
more all minor networks are subsets of the larger networks.
Each network has been run 5 times, with the hyperparameters
β+ and β− set to 1, while α is set to blog(n)c, where n is the
number of nodes in the network.

To compare the runtime of the algorithm for the different
sized graphs, one run for each graph were computed on the
same computer for 5 hours to at most 1M Gibbs sweeps. All
other runs were run the exact same number of Gibbs sweeps.

The runtime of the algorithm as the network size increases
is shown in figure 6. The figure also shows the number of
Gibbs sweeps the test computer were able to perform within
the time limit. From this we see that the number of seconds
per Gibbs sweep is linearly bounded by the number of nodes.

Figure 7 shows the log-likelihood for the five runs on dif-
ferent sized networks. Comparing these runs we can see that
the Gibbs sampler mixes fairly well for less than 1000 nodes
after about 10k Gibbs sweep. However, for larger networks
the mixing ability of the Gibbs sampler decreases rapidly.

To further investigate this, we have looked at the normal-
ized mutual information between and within runs for different
sized networks, shown in figure 8. We see that the Gibbs sam-
pler mixes well for 10 and 100 nodes, however, the mixing

Fig. 6. Average time to perform Gibbs sweeps on the differ-
ent sized networks. For each run is given the number of Gibbs
sweeps performed.

ability decreases rapidly for larger networks as indicated by
runs being more similar to themselves than others. This cor-
roborates the results of the log-likelihood. Though IRM with
Gibbs sampling is able to mix very well for small networks,
it is not a sufficient inference procedure for larger networks.

5. CONCLUSION

In this article we have demonstrated how IRM with Gibbs
sampling behaves on large scale real world complex net-
works. To do this, we modelled and implemented an algo-
rithm, that allowed us to run the IRM on larger and more
complex networks, than to the best of our knowledge has
previously been done.

We found that Gibbs sampling may not be sufficient for
networks of about 1000 nodes. Even after 10 million Gibbs
sweep for 10 distinct runs on the same network, the log-
likelihood did not mix for any of the runs. As the number
of nodes increased, this effect became even worse. By using
Gibbs sampling on grown networks of increasing size, we
found that the mixing ability of the Gibbs sampler decreases
drastically as the network size increases such that for about
1.000 nodes, the Gibbs sampler failed to properly mix over
the posterior distribution.

These findings clearly indicates a need to use other sam-
pling strategies or extend the Gibbs sampler with more com-
plex heuristics or procedures, including split-merge [11],
which has previously been utilized for IRM [12, 13, 8].

Care should be taken when using IRM with pure Gibbs
sampling on large networks as issues with convergence are
prominent.

Fig. 7. Log-likelihood for multiple runs on different sized
networks.

Fig. 8. Normalized Mutual Information for different sized
networks. (blue) between runs, (red) within runs.

6. REFERENCES

[1] K. Börner, S. Sanyal, and A. Vespignani, “Network sci-
ence,” Annual Review of Information Science & Tech-
nology, vol. 41, pp. 537–607, 2007.

[2] K. Nowicki and T. A. B. Snijders, “Estimation and pre-
diction for stochastic blockstructures,” The American
Statistical Association, vol. 96, no. 455, pp. 1077–1087,
2001.

[3] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada,
and N. Ueda, “Learning systems of concepts with an
infinite relational model,” Proceedings of the national
conference on artificial intelligence, vol. 21, no. 1, pp.
4–27, 2006.

[4] Z. Xu, V. Tresp, K. Yu, and H.-P. Kriegel, “Learning in-
finite hidden relational models,” IEEE Signal Process-
ing Magazine, 2006, in Proceedings of the 22nd Inter-
national Conference on Uncertainty in Artificial Intelli-
gence.

[5] M. N. Schmidt and M. Mørup, “Non-parametric
bayesian modeling of complex networks,” IEEE Sig-
nal Processing Magazine, vol. 30, no. 3, pp. 110–128,
2013.

[6] S. Zhu, K. Yu, and Y. Gong, “Stochastic relational mod-
els for large-scale dyadic data using mcmc,” Advances
in Neural Information Processing Systems 21 - Proceed-
ings of the 2008 Conference, pp. 1993–2000, 2009.

[7] T. J. Hansen, M. Mørup, and L. Kai Hansen, “Non-
parametric co-clustering of large scale sparse bipartite
networks on the gpu,” 2011 IEEE International Work-
shop on achine Learning for Signal Processing, 2011.

[8] K. Palla, D.A. Knowles, and Z. Ghahramani, “An infi-
nite latent attribute model for network data,” Proceed-
ings of the 29th International Conference on Machine
Learning, pp. 1607–1614, 2012.

[9] K.T. Miller, T.L. Griffiths, and M.I. Jordan, “Nonpara-
metric latent feature models for link prediction,” Ad-
vances in Neural Information Processing Systems 22,
pp. 1276–1284, 2009.

[10] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J.
Honey, V. J. Wedeen, and O. Sporns, “Mapping the
structural core of human cerebral cortex,” PLoS biol-
ogy, vol. 6, no. 7, pp. 1479–1493, 2008.

[11] S. Jain and R.M. Neal, “A split-merge markov chain
monte carlo procedure for the dirichlet process mix-
ture model,” Journal of Computational and Graphical
Statistics, vol. 13, no. 1, pp. 158182, 2004.

[12] M Mørup, K.H. Madsen, A.M. Dogonowski, H. Sieb-
ner, and L.K. Hansen, “Innite relational modeling of
functional connectivity in resting state fmri,” Neural In-
formation Processing Systems 23, 2010.

[13] K.W. Andersen, M. Mørup, H. Siebner, Madsen K.H,
and L.K. Hansen, “Identifying modular relations in
complex brain networks,” MLSP, 2012.

