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ABSTRACT

The infinite relational model (IRM) is a Bayesian
nonparametric stochastic block model; a generative
model for random networks parameterized for uni-
partite undirected networks by a partition of the node
set and symmetric matrix of inter-partion link proba-
bilities. The prior for the node clusters is the Chinese
restaurant process, and the link probabilities are, in the
most simple setting, modeled as iid. with a common
symmetric Beta prior. More advanced priors such as
separate asymmetric Beta priors for links within and
between clusters have also been proposed. In this pa-
per we investigate the importance of these priors for
discovering latent clusters and for predicting links. We
compare fixed symmetric priors and fixed asymmetric
priors based on the empirical distribution of links with
a Bayesian hierarchical approach where the parameters
of the priors are inferred from data. On synthetic data,
we show that the hierarchical Bayesian approach can
infer the prior distributions used to generate the data.
On real network data we demonstrate that using asym-
metric priors significantly improves predictive perfor-
mance and heavily influences the number of extracted
partitions.

Index Terms— Infinite relational model, hyper-
parameter inference, link-prediction, Bayesian non-
parametrics.

1. INTRODUCTION

Many systems, both naturally occurring and engi-
neered, can be described as complex networks. These
include biological systems such as functional and struc-
tural brain connectivity, social and economic behaviour
as well as infrastructure such as power grids, commu-
nication and transport networks.

Network science is concerned with developing theo-
retical and practical methods for modelling and quanti-
fying hidden structure in complex networks, and plays
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a prominent role in acquisition of knowledge within
many different research areas. One way to extract in-
formation from a complex network is to cluster the net-
work into groups of nodes that have similar structural
connectivity patterns.

The most prominent statistical tool for clustering
network data is the stochastic block model [1, 2], which
is a probabilistic generative model for random net-
works. It models a network using a latent clustering of
the network nodes. The probabilities of links between
two nodes depend only on their cluster assignments
and a link probability parameter which is defined for
each pair of clusters. In the infinite relational model
(IRM) [3, 4] the prior for the cluster structure is the
Chinese restaurant process: A stochastic process which
defines a distribution over partitions. The CRP provides
a nonparametric Bayesian mechanism for learning the
number of clusters that best fit the observed network.

The prior for the link probability parameters are, in
the most simple setting, chosen as a symmetic Beta dis-
tribution. Without any further information available, a
vague symmetric prior such as a Beta( 1

2 , 1
2 ) (arcsine) or

Beta(1, 1) (uniform) distribution is suited. If more prior
information is available, such as beliefs about the over-
all link density of the network or belief that the link den-
sities within and between clusters are different, using a
more elaborate prior is relevant.

In this paper we investigate how different prior con-
structions in the IRM influence the learned clustering
structure as well as the predictive performance of the
fitted model. In particular, we demonstrate that using
an asymmetric informative prior leads to superior pre-
dictive performance compared to other constructions.

2. METHOD

2.1. Review of the infinite relational model

Let A be the adjacency matrix of a simple graph. In-
cluding separate parameters for the Beta priors for
links within and between clusters, the infinite relational
model (IRM) is [3] is given by the following generative
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process:

z ∼ CRP(α) Clusters (1)

η`` ∼ Beta(β+
w, β−w) Link probabilities within (2)

η`m ∼ Beta(β+
b , β−b ) — between (3)

Aij ∼ Bernoulli(ηzi ,zj) Observed links (4)

The prior for the clustering is a Chinese Restaurant Pro-
cess (CRP), which allows the model to automatically in-
fer an appropriate number of clusters from data. The
probability of observing a link between two nodes i and
j follows a Bernoulli distribution, where the parame-
ter ηzi ,zj depends on the cluster assignments of the two
nodes. In our setup, the link probabilities η`m within
and between clusters follow separate Beta distributions.

We investigate the following different prior con-
structions: A joint symmetric prior with only one pa-
rameter, β = β+

w = β−w = β+
b = β−b as proposed

in [3], a joint asymmetric prior with two parameters,
β = {β+

w = β+
b , β−w = β−b } as used for block modeling

in [5], and separate asymmetric priors for link probabil-
ities within and between clusters with four parameters
β = {β+

w, β−w, β+
b , β−b }.

Because the Beta prior is conjugate to the Bernoulli
likelihood, the link probabilities (η`m-parameters) can
be marginalized analytically, revealing the following
joint distribution

P(A, z|α, β) = CRP(z|α)∏
`

B(N+
`` + β+

w, N−`` + β−w)

B(β+
w, β−w)

∏
`<m

B(N+
`m + β+

b , N−`m + β−b )

B(β+
b , β−b )

.6 (5)

Here N+
`m and N−`m are the number of links and non-

links between cluster ` and m, and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

is the Beta function. We can then further place priors on
the parameters β in a Bayesian hierarchical manner. In
the following we employ improper flat priors, such that
the joint distribution can be written as P(A, z, β|α) ∝
P(A, z|α, β).

2.2. Inference using Markov chain Monte Carlo

To solve the clustering problem, we condition on the ob-
served network to find the posterior distribution of the
clustering by, P(z|A, α). To infer the clustering we em-
ploy two different transition kernels: Gibbs sampling
and split-merge sampling. In Gibbs sampling, we loop
over each node in the network: For each node we eval-
uate the posterior distribution when assigning the node
to each of the existing clusters or a new empty cluster,
conditioned on all the other node assignments z\i. The

node is then reassigned based on the probability distri-
bution of possible node assignments. The probability of
assigning node i to cluster m is then given by:

P(zi = m|A, z\i, α, β) =
P(zi = m, A, z\i|α, β)

∑
`

P(zi = `, A, z\i|α, β)
, (6)

where ` in the sum ranges over all existing groups and
a new empty group.

In split-merge sampling [6], two nodes in the net-
work are selected uniformly at random. If the nodes
are in the same cluster it is proposed to be split, other-
wise the clusters of the two nodes are proposed to be
merged. The proposals are accepted or rejected based
on the Metropolis-Hastings acceptance probability:

P(z*|z) = min
[

1,
P(z*, A|α, β+, β−)q(z|z*)
P(z, A|α, β+, β−)q(z*|z)

]
, (7)

where q() is the transition probability and z* is the pro-
posed clustering. To generate the proposed split state,
the two selected nodes are placed in separate clusters
and the remaining nodes in the cluster are allocated ran-
domly between the two. A number of rounds of Gibbs
sampling is performed (restricted to the nodes in the
two clusters), and the final proposal and its transition
probability is then given by the final Gibbs round. For
a split configuration, q() is given by the product of the
individual transition probabilities of repartitioning each
node from the launch state to the split configuration. As
there is only one way of merging two clusters, the tran-
sition probability for merging clusters is always one.

To infer the parameters of the prior, β, we use a
Metropolis-Hastings procedure: We sample each pa-
rameter in turn using a Gaussian proposal distribution
centered on the current value and with variance σ2 = 1.

2.3. Data and experiments

As a generative model, IRM can be used to generate
synthetic data. We use this to investigate how well
IRM with the different prior configurations is capable
of inferring the underlying true parameters and clus-
tering on a synthetic network. We further investigate
IRM with the various prior configurations on three real
world network data of various sizes and from different
domains. These networks are presented in table 1.

We consider the following three prior constructions:
Prior Parameter(s)

Joint symmetric [3] One: β=β+
w=β−w=β+

b =β−b .
Joint asymmetric [5] Two: β+=β+

w=β+
b ,

β−=β−w=β−b .
Separate asymmetric Four: β+

w, β−w, β+
b , β−b .



Network Nodes Links Link ratio Nonlink ratio Description

J L a+ =
L
P

a− =
P− L

P

USAir 332 2123 0.0387 0.9613 Traffic network of airlines [7], binarized as in [8].
Hagmann 998 37, 926 0.0762 0.9238 Average of five brain connectivity networks in [9].
Facebook 4, 039 88, 234 0.0108 0.9892 Social circles from Facebook [10, 11].

Table 1: Topology for the examined networks. P denotes the total possible links, computed as P = J(J − 1)/2.

We compare sampling for these constructions using the
following fixed symmetric, uninformed priors:

β+ = β− = { 0.05 , 0.5 , 1 , 5 },
and using fixed values based on the link- and nonlink-
ratio found empirically in the network data (shown in
table 1):

β+ = c · a+ , β− = c · a− , for c = {0.1, 1, 2, 10}.
We use the following MCMC sampling procedure for
1000 iterations, where the first 750 iterations are dis-
carded as burn in. Each iteration consists of: One Gibbs
sweep over all nodes followed by 10 split-merge pro-
posals, each with three restricted Gibbs sweeps. When
sampling the hyper-parameters, 10 proposals for each
of the sampled parameters are then performed in each
iteration. We consider the concentration parameter α of
the CRP fixed at log(J), where J is the number of nodes
in the network. For sampling the β parameters we use
a Gaussian distribution with variance 1.

To compare the clustering found by IRM with the
ground truth of synthetic data, we use normalized mu-
tual information, NMI(z, z’) = 2I(z,z’)

H(z)+H(z’) , where H(z) is
the entropy of the clustering z.

To compare the sampling procedures on real world
networks, we evaluate the predictive performance
based on the inferred clusterings. When sampling a real
world network, we exclude 10 percent of the links as
hold out data and measure the predictive performance
by evaluating the area under the receiver operating
characteristic curve (AUC) when predictions are made
for the hold out data [12]. For a given clustering, we
compute the expected probability of a link between two
clusters as:

〈η`m〉 =
N+
`m + β+

b
N+
`m + N−`m + β+

b + β−b
(8)

〈η``〉 =
N+
`` + β+

w

N+
`` + N−ll + β+

w + β−w
(9)

The expected probability of a link between two nodes
is considered the link probability between the two clus-
ters, the nodes belongs to: 〈Aij〉 = 〈ηzi ,zj〉. When ex-
amining the AUC, we compare averaging over the last

250 iterations of the MCMC sampling and using the es-
timate for the last iteration only.

For fixed asymmetric priors we use the a+ and a−

ratio based on the entire network. Instead of modelling
the hold out data as missing [13], we treat it as non-
existing links in the network [14, 15]. This is a more
conservative link prediction strategy that is more prone
to overfitting and can hence easier show whether IRM
will exhibit overfitting issues when sampling the hyper-
parameters.

Hyperparameters NMI NOCs

Fixed, symmetric
β+ = 0.05 , β− = 0.05 0.9502 ± 0.0083 20
β+ = 0.1 , β− = 0.1 0.9789 ± 0.0017 26
β+ = 0.5 , β− = 0.5 0.9502 ± 0.0083 20
β+ = 1 , β− = 1 0.9532 ± 0.0076 20
β+ = 5 , β− = 5 0.9502 ± 0.0083 20

Fixed, empiric
β+=0.1 · a+ , β−=0.1 · a− 0.9903 ± 0.0014 34
β+=1 · a+ , β−=1 · a− 0.9913 ± 0.0017 33
β+=2 · a+ , β−=2 · a− 0.9875 ± 0.0012 30
β+=10 · a+ , β−=10 · a− 0.9652 ± 0.0030 24

Fixed, ground truth
β+=0.1 , β−=1.5 0.9923 ± 0.0000 35

Inferred
β=β+

w=β−w=β+
b =β−b 0.9778 ± 0.0016 28

β+=β+
w=β+

b , β−=β−w=β−b 0.9921 ± 0.0005 35
β+

w, β−w, β+
b , β−b 0.9919 ± 0.0005 35

Table 2: Normalized Mutual Information (NMI) and
number of components (NOCs) found by sampling IRM
on a synthetic network with J = 500 nodes and 17.324
links, generated from an IRM with α = log(J), β+ =
β+

w = β+
b = 0.1 and β−= β−w = β−b = 1.5. The true clus-

tering contains 35 components. The results are based
on five random restarts each averaged over the last 250
iterations of the sampling procedure.
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Fig. 1: Number of components and AUC for the real world networks for the different prior constructions on β.
The sampling procedures were performed with 1000 sweeps for five restarts on five different hold out set for each
network. The number of components was averaged over the last 250 sweep. AUC is computed from the averaged
clustering over the last 250 sweeps. Errorbars indicate the standard deviation of the mean over five restarts, i.e.
std/
√

5.

Network Density Joint asymmetric Separate asymmetric

Mean cluster density
ρ = β+

β++β−
Mean cluster density

ρw = β+w
β+w+β−w

ρb =
β+b

β+b +β−bwithin between

USAir 0.0348 0.2100 0.1787 0.4556 0.1676 0.3819 0.1451
Hagmann 0.0686 0.0788 0.0780 0.8336 0.0689 0.8200 0.0674
Facebook 0.0097 0.0253 0.0231 0.4968 0.0202 0.4639 0.0197

Table 3: The inferred values of the hyperparameters compared to mean cluster densities of the inferred clustering
and the density of the training network. Results are averaged for the last 100 sweeps of the sampling procedures
for a single run.



3. RESULTS AND DISCUSSION

3.1. Synthetic data

Table 2 shows the average normalized mutual informa-
tion as well as average number of inferred components
when sampling with the different prior constructions
in a synthetic network generated from an IRM. The
network is generated with a joint assymetric prior for
β+ = 0.1, β− = 1.5 and the generated clustering con-
tains 35 components. When using a fixed symmetric
prior the model under-estimates the number of compo-
nents, while using fixed asymmetric priors allows the
model to better adapt to the network. The model can
correctly identify values for β that corresponds to a high
NMI if the hyperparameters are fixed appropriately.

Sampling two or four parameters both correctly
identify the number of components. The inferred clus-
terings further seem to have a similar NMI, just as good
as found when using the ground truth hyperparameter
values for the generated network. Sampling the hyper-
parameters, on average gives the following values for
the three hyperparameter settings:

A: β = 0.106± 0.003

B: β+ = 0.096± 0.003 , β− = 1.628± 0.043

C: β+
b = 0.097± 0.004 , β−b = 1.718± 0.076

β+
w = 0.132± 0.005 , β−w = 1.437± 0.100.

Thus, hyperparameter values fairly close to those used
to generate the network are identified when sampling
two or four parameters.

3.2. Real world networks

Figure 1 shows the results with the various prior con-
figurations on the three real world networks. Ten per-
cent of the networks were omitted as holdout data for
computing the AUC. Supporting the findings from sam-
pling on synthetic data, the model performs better when
based on asymmetric priors. It identifies more com-
ponents with a higher AUC. While using fixed asym-
metric priors based on network topology can perform
well it requires an appropriate scale of the parameters
is chosen, which might depend on the particular net-
work. When sampling the asymmetric hyper param-
eters separately between and within components, the
model is capable of identifying more components re-
taining the same high AUC as sampling the parameters
as joint asymmetric.

Figure 2 shows the accumulative sizes of the inferred
clusterings when sampling with the different prior con-
figurations. The additional clusters found when using
asymmetric priors are not dominated by small or sin-
gleton clusters, suggesting that they contain relevant
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Fig. 2: Accumulative cluster sizes for five restarts for the
three sampling procedures on the same training data.
The results are based on the clustering inferred after the
last sweep of the sampling procedure.

structural information about the network. This fur-
ther strengthens the indication that IRM describes the
structural properties of the network on a more detailed
block-level without introducing additional overfitting
to the training data.

Sample β Sample β+
w, β−w, β+

b , β−b

Fig. 3: The progress of AUC for the USAir network. For
sweep i, the blue line shows AUC based on the average
clustering for sweep 750 to i (Bayesian average). The red
line shows AUC for the particular clustering at sweep i.
Results are averaged for five restarts on the same hold
out data.

Table 4 shows the average AUC computed when
basing the link probabilities on the final clustering ver-
sus on the average of the last 250 sweeps of the sam-
pling procedure. Using the Bayesian average performs
significantly better. The effect is further illustrated in
figure 3 for the USAir network.

Table 3 compares the inferred hyperparameters with
the network density and the link density of the inferred



Sampled AUC
parameters Sweep 1000 Averaged

U
SA

ir

β 0.9341 ± 0.005 0.9449 ± 0.002
β+, β− 0.9286 ± 0.007 0.9467 ± 0.003
β+

b , β−b , β+
w, β−w 0.9327 ± 0.004 0.9458 ± 0.004

H
ag

m
an

n β 0.9112 ± 0.001 0.9127 ± 0.001
β+, β− 0.9162 ± 0.001 0.9184 ± 0.001
β+

b , β−b , β+
w, β−w 0.9164 ± 0.001 0.9186 ± 0.001

Fa
ce

bo
ok β 0.9876 ± 0.000 0.9885 ± 0.000

β+, β− 0.9878 ± 0.000 0.9890 ± 0.000
β+

b , β−b , β+
w, β−w 0.9876 ± 0.000 0.9891 ± 0.000

Table 4: Comparing AUC, computed for the averaged
clustering of the last 250 sweeps and computed for the
last sweep. The results are the average for five different
runs using a single hold out data set.

clusterings. This clearly indicates that sampling the hy-
perparameters reflects learning block level cluster den-
sities, rather than simply reflecting the overall network
link density.

4. CONCLUSION

We have investigated the influence of various hyper-
parameter constructions in the infinite relational model
for clustering complex real world networks. We find
that the hyper-parameter construction significantly in-
fluences the number of inferred components as well
as the predictive performance of the model. We have
demonstrated that using informed asymmetric priors
can improve predictive performance compared to un-
informed symmetric priors, and that the approach pro-
posed in [3] assuming a symmetric prior β = β+ = β−

that is inferred was outperformed in link prediction by
inferred asymmetric priors, providing a more refined
block-structure. Separately sampling parameters for
within and between components allowed the model to
account for even more components without indications
of overfitting to the training data. For the examined
networks, sampling asymmetric hyper-parameters in
IRM performs on par with using joint assymetric priors
fixed to reflect the network density for an adequately
chosen scale c. However, we find that inferring the
hyper-parameters does not simply reflect the density
of the network, but reflects the average link densities
at the levels of the identified blocks which cannot be
estimated in advance from the network.
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