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ABSTRACT

Development of sensors and systems for detection of chem-
ical compounds is an important challenge with applications
in areas such as anti-terrorism, demining, and environmen-
tal monitoring. A newly developed colorimetric sensor array
is able to detect explosives and volatile organic compounds;
however, each sensor reading consists of hundreds of pixel
values, and methods for combining these readings from mul-
tiple sensors must be developed to make a classification sys-
tem. In this work we examine two distance based classifica-
tion methods,K-Nearest Neighbor (KNN) and Gaussian pro-
cess (GP) classification, which both rely on a suitable distance
metric. We evaluate a range of different distance measures
and propose a method for sensor fusion in the GP classifier.
Our results indicate that the best choice of distance measure
depends on the sensor and the chemical of interest.

Index Terms— Hausdorff distance, Hellinger distance,
chemo–selective compounds, feature extraction,K–nearest
neighbor classification, Gaussian Process Classification

1. INTRODUCTION

The development of rapid, reliable, and portable solutionsfor
detection of chemical compounds is an important challenge
with many possible applications including screening luggage
and packages for explosives, detecting land mines, and mon-
itoring the environment for hazardous compounds. In recent
years a number of methods have been developed based on
different technologies such as gas chromatography, Raman
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spectrometry, mass spectrometry, ion mobility spectrometry
and colorimetric sensors.

Colorimetric sensors can be used to detect a wide range of
organic compounds in gas as well liquid phase [1–6]. We have
developed a novel colorimetric sensor array that is useful for
identifying a wide range of explosives [7, 8] as well as other
compounds such as amines, cyanides, alcohols, arenes, ke-
tones, aldehydes and acids. A colorimetric sensor containsa
chemo-selective compound: A dye which changes color when
exposed to a target analyte. The sensor is read by capturing
a digital image of the dye before and after exposure. Typi-
cally, the mean color change is used for detection; however,
in earlier work we have shown that accuracy can be improved
by considering the complete distribution of color change for
different image pixels [9]. Furthermore, the sensor array com-
prises several colorimetric sensors, and detection could likely
be improved further by combining information from multiple
sensors.

In this paper, we present a new method for analyzing of
the output of a colorimetric sensor array using the complete
distribution of color changes. To classify a given analyte,
we compare aK-Nearest Neighbor (KNN) approach with a
Gaussian process (GP) classifier. Both of these approaches
rely on a measure of similarity between sensor readings—the
KNN through a suitable distance measure and the GP through
a covariance function. We motivate and compare several mea-
sures of similarity, demonstrating that a proper choice of sim-
ilarty measure can significantly improve classification accu-
racy using a single dye. Finally, we propose a method for
fusing information from several sensors leading to superior
performance compared to using single dyes.
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2. METHODS

In this section we describe the colorimetric sensor data and
the proposed classification approach.

2.1. Notation

N = 253 Number of observations
L = 3 Number of channels (RGB)
M = 31 Number of dyes
Npix = [49, 1009] Pixels per dye
xl,n 1×Npix vector of pixel values
Xn = [x⊤

1,nx
⊤

2,nx
⊤

3,n]
⊤ 3×Npix matrix with pixel values

X = {xn‖n = 1 : N} a set of inputs
Y = {yn; xn|n = 1 : N} a set of labels for the given inputs
Q the set of distance measures

2.2. Colorimetric sensor data

The colorimetric sensor array consists of a number of chemo–
selective compounds immobilized onto silica gel resultingin
circular spots (Fig. 1A). Each individual spot was approxi-
mately 3 mm in diameter with the total size of the sensor array
of approximately 2.5 cm× 4.0 cm.

The dataset used in this paper has been discussed in detail
in earlier work [10] but is summarized here for completeness.
The sensor array has been exposed to analytes belonging to
various chemical families – 9 families in total, making it a
multi-class dataset. The chemical families are: acids (45),
alcohols (27), amines (42), arenes (14), environment (28),ex-
plosives (56), inorganic explosives (14), ketones (13) andthi-
ols (14). The number in the parenthesis denotes the number
of examples measured for the class in question.

2.2.1. Data acquisition

The sensors were scanned using an ordinary flatbed scanner
immediately after immobilization of dyes and then again af-
ter exposure of target analytes. The images are then aligned
pixel, the dye locations are identified and finally pixel extrac-
tion is performed [10, 11]. The pixels are extracted by fitting
a circular disc to the entire dye. Due to the nature of the sen-
sor often a distinct ring near the perimeter of the dyes appears
(the coffee stain effect) and this area of the dyes is deemed
unreliable (Fig. 1B). In order to accommodate for this effect
a smaller area of a dye is used for feature extraction, corre-
sponding to 2/3 of radius of the fitted circular disc. Based
on the pixel values features can be calculated, e.g. using the
mean value, or distances between measurements.

2.3. Classification Methods

2.3.1. K-Nearest Neighbor

The KNN is a simple yet effective classification technique [12]
which works as follows. When testing a data point belonging
to an unknown class, the distances to all points with known
class labels are calculated. The classes of the closestK
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Fig. 1. An example of a specific dye of colorimetric sensor
array exposed to the explosive analyte RDX. A: the sensor
before exposure. B: the difference image. C: histogram of
difference of the blue channel.

points are then identified and the unknown point is classified
using majority voting. In order to carry out both model selec-
tion and estimation of the generalization error, double-cross
validation usingleave-one-outis performed.

2.3.2. Gaussian Process Classification

From the instance based KNN classifier we now turn to a
different but equally powerful classification framework based
on a non-parametric Bayesian approach. The core of any
probabilistic classification methods is a likelihood function
modeling the likelihood of observing a specific outcome
y ∈ {−1,+1}. Here we consider the cumulative Gaussian
(known as a probit model) defined as

p (yn|f (Xn)) =

yn·f(Xn)
∫

−∞

N (t|0, 1) dt = Φ(yn · f (Xn))

parameterized by a given a functional value,f(Xn). Hence,
the model or free parameter is the functional value,f(Xn),
and by taking a Bayesian approach, we can directly consider



the posterior over the function defined by the finite set of ran-
dom variables,f = [f(X1), f(X2), ..., f(XN )]⊤, i.e.,

p (f |Y,X ) =
p (Y|f) p (f |X )

∫

p (Y|f) p (f |X ) df
=

p (Y|f ) p (f |X )

p (Y|X )

The natural prior for,f(·), is a Gaussian Process (GP)
and we denote a function drawn from a GP asf (X) ∼
GP

(

0, k(·, ·)
θc

)

with a zero mean function, andk(·, ·)θc
re-

ferring to the covariance function with hyper-parametersθc,
defining the covariance between the random variablesf . The
GP can thus be considered a distribution over functions, i.e.,
p (f |X , θc).

Given the probit likelihood model, the posterior overf

needs to be approximated and we resort to Expectation Prop-
agation (EP) which provides a Gaussian approximation to
the posterior [13]. The hyper parameters are approximated
by point-estimates found by considering the marginal likeli-
hood/evidence which can be optimized in regards to the hyper
parameters by gradient methods. This possibility is a clear
advantage over non-Bayesian methods.

The predictions for a new inputX∗ is obtained by
first computing the predictive distribution,p(f∗|Y,X ,X∗),
which is Gaussian due to the EP approximation. The proba-
bility of a given outcomey∗ is computed byP (y|Y,X ,X∗) =
∫

p (y|f∗) p(f∗|Y,X ,X∗)df∗.

2.4. Distances and Covariance Functions

The two classification methods outlined above both require
some notion of similarity either in the form of a distance func-
tion/metric or in the form of a covariance function. In the
following we present and motivate a number of distance mea-
sures that can be used for measuring similarites between dyes.

2.4.1. Mean and “inner mean”

The traditional approach when using colorimetric sensors is
to calculate the mean value of the response by averaging the
color change over all pixels.

Since we have observed that pixel values in the outer edge
of the dyes are less reliable, we propose to estimate an opti-
mal radius and compute the mean in the central region within
this radius. Assuming that each dye should have a unique
color change and such that any variation is due to noise, a
reasonable assumption is to choose the radius that estimates
the mean most accurately. This is done by choosing

r̂ = arg min
r

1
√

Npix(r)
σ(r),

whereNpix(r) andσ(r) denote the number of pixels and the
standard deviation of pixel values within the central region
with radiusr. We denote this method “Inner Mean”.

2.4.2. Hellinger Distance

As an alternative to computing the average color change,
we can consider the distribution of color change over the
dye. The Hellinger distance measures similarity between two
probability measuresfi(x) andfj(x) and is given by

dHe(fi, fj)
2 =

∫
(

√

fi(x) −
√

fj(x)

)2

dx

Using the Hellinger distance require us to choose how to rep-
resent the probability measures. We consider a nonparametric
and a parametric approach: The first is a Parzen window Ker-
nel density estimator

fi(x) =
1

ni

ni
∑

k=1

K(x− xik)

whereK(x) = 1/(2πσ2)d/2 exp(−||x||2/2σ2) and the ker-
nel width is set toσ = 1. The scond approach is a multivariate
normal distribution using a full covariance matrix

fi(x) =
1

(2π)d/2|Σi|d/2
exp

(

−
1

2
(µi − x)

⊤
Σi

−1
(µi − x)

)

whereµi is the mean andΣi the covariance matrix which is
estimated by maximum likelihood.

2.4.3. The Hausdorff Distance

The Hausdorff distance measures distance between two point
sets, and it is small if all points in each set is close to some
point in the other set. This could be useful for comparing dye
color changes that are not uniform over the dye. First define
the distance between two pointsa andb as the Euclidean dis-
tanced(a, b) = ‖a− b‖2. The distance between a pointa and
a setB is thend(a,B) = min

b∈B
d(a, b). The Hausdorff distance

is defined as

dHa(A,B) = max

{

max
a∈A

d(a,B),max
b∈B

d(b,A)

}

As an alternative approach one can use the modified Haus-
dorff distance which is more robust in the presence of noise
and outliers

dMH(A,B) = max

{

1

Na

∑

a∈A

d(a,B),
1

Na

∑

b∈B

d(b,A)

}

It should be noted that this distance is not a metric as the
triangle inequality is not fulfilled [14].

2.4.4. From Distances to Covariance Functions

Given a distance metricd2(i, j) we use the distance substi-
tution approach [15] based on a squared exponential kernel,



k (i, j) = σf
2 exp

(

− 1
σl

d2(i, j)
)

. We note that a valid

covariance function may be constructed directly for the
Hellinger distance by considering the inner product given
by the integral which is known as the Probability Product
Kernel [16]; however, to make a fair comparisons we treat
the Hellinger distance like the other distance measures. Note
also, that since the modified Hellinger distance is not a metric,
the distance substitution kernel is not positive definite [15].

The use of kernels provides a convenient way of integrat-
ing information from different sensors by combining different
kernels in a weighted sum. Thus, different dyes can be com-
bined by constructing the following kernel

k (Xi,Xj) = σ2
I+

M
∑

m=1

αmk
(

Xm
i ,Xm

j

)

where each kernel function is the distance substitution kernel
with one of the respective metrics. We generally consider the
conic sum such thatαi ∈ R+. We may also consider the
combination of all dyes and all metrics for that dye, i.e.,

k (Xi,Xj) = σ2
I+

M
∑

m=1

Q
∑

q=1

αm,qkq
(

Xm
i ,Xm

j

)

The main issue is the estimation of the individualα’s, how-
ever the Gaussian Process method has the option of learning
the weights using evidence optimization. The combination
of kernels is generally known as Multiple Kernel Learning
(MKL) where one often places further constraints on theα’s
in order to obtain a convex optimization problem (see [17] for
a recent review).

To fuse the difference dyes we employ a forward selec-
tion method using the following steps. 1) For a given dye,
perform a grid search of hyper parameters. 2) Optimize the
evidence using the optimal point found in the grid as initial
guess. 3) Performleave-one-outcross validation to get clas-
sification error. 4) Choose the dye that yields the lowest clas-
sification error.

2.5. Evaluation

We apply nearest neighbor classifiers to each dye for each fea-
ture extraction technique in a one vs all setting. From earlier
work [10] it was shown that the sensor is proficient in detect-
ing among others acids, alcohols, amines and explosives so
these are the classes we evaluate. The generalization erroris
estimiated using LOOCV [18]. This scheme result in a total
of 124 classifiers of each type per feature extraction method
(31 dyes× 4 classes).

To judge the differences in classification performance we
use the McNemar significance test [19]. The McNemar is a
paired test which uses the the number of cases where two clas-
sifiers disagree about a decision. From this test we calculate
p–values for each comparison and use the multiple hypothesis

Chemical M P IM MH G eFDR n

Acids 1 3 4 8 4 0.11 20
Alcohols 0 1 4 0 5 0.15 10
Amines 1 0 1 0 0 1.27 2
Explosives 0 4 0 13 3 0.09 20

Table 1. Number of instances the best performing method
is significantly better than another method. The methods are
Mean, Parzen, Inner Mean, Mod. Hausdorff and Gaussian.

framework proposed by Storey [20]. Based on thep–values
we can calculate an expected false discovery rate (eFDR) for
our significant differences, that is, the expected quantityof
wrongly significant results amont all found significant results.

3. RESULTS AND DISCUSSION

Initially we employ 1NN and KNN and rank the dyes accord-
ing to their best performance. Fig. 2 top panels show the dye
ranking for KNN. The modified Hausdorff is the best per-
former for dye 19 and 30 where it is significantly better than
the single feature methods. Further the distribution methods
are generally better or on par compared to the single feature
methods.

Table 1 shows a summery of the McNemar significance
tests. The overall best distance is the modified Hausdorff
method although it is noteworthy that this method is not best
even once for alcohols whereas is is best for noumerous occa-
sions for acids and explosives. Looking into the dyes reveal
that the top dyes for acids largely overlap with the top dyes
for explosives whereas for alcohols one of the top dyes is dye
number 5. For this dye the Inner Mean is significantly bet-
ter than any of the other methods. It should be noted that the
majority of the differences is between one of the distribution
methods and the single feature method, i.e. of the 52 sig-
nificant results, only on 3 instances was the parzen window
worst and only 4 times where the Mod. Hausdorff method
worst. Considering we have a total of 6 false discoveries we
can only conclude that the distribution methods are signifi-
cantly better than the single feature methods. To explore the
effect of the methods deeper we fuse the dyes using GP.

Initially we want to establish the performance of GP in the
same setting as KNN. Fig. 2 show the classification perfor-
mance for GP when classifying explosives. Again the mod-
ified Hausdorff is the top performer for the first two dyes,
which is again dye 19 and 30. However for dye 28 and 24 the
modified Hausdorff coupled with GP yields an error of 21%
and 30% respectively. This might very well be an effect of
the fact that the modified Hausdorff is not a valid metric and
as such the corresponding kernel might not be psd [14, 15].
But as the case of KNN, the figure does not show a clear in-
dication of which method is superior although it seems that
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Fig. 2. Classification error for the different measures of similarity for GP and KNN. The top panels show the best performing
dyes for explosives and alchohols using KNN. The middle panels show the best performing dyes using GP. The bottom panels
shows the result of fusing the dyes together using GP.



modified Hausdorff is able to capture more information about
dye 19 and 30 than the the methods.

When fusing the dyes one by one using forward selection
we find no significant results between the methods (Fig. 2).
To get a significant result the performance must at least differ
2.4 percent points but already with one dye we are below that
margin.

4. CONCLUSIONS

We have proposed three new methods for representation of
sensory data in colorimetric sensor arrays, namely the Inner
Mean, Hellinger distance using a Gaussian distribution and
the Modified Hausdorff. Each method have it’s merits. The
Inner Mean seem to be particularly proficient for dye number
5 and 22 whereas the modified Hausdorff is especially strong
for dye number 19 and 30. This could indicate that the best
way to represent dye measurements depends on the dye in
question.

The modified Hausdorff method is strong for explosives,
and since the distance calculation is based on sets of pixels
and is parameterfree it can potentially work a lot better for
high dimensional data where the Hellinger distance method
might be insufficient.

Finally, we have demonstrated an methodology for fusing
the measurements from the different dyes. GP classification
effectively identifies which dyes should be included and gen-
erally including more dyes reduces the LOOCV error rate.
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