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ABSTRACT

Due to applications in areas such as diagnostics and envi-
ronmental safety, detection of molecules at very low con-
centrations has attracted recent attention. A powerful tool
for this is Surface Enhanced Raman Spectroscopy (SERS)
where substrates form localized areas of electromagnetic "hot
spots" where the signal-to-noise (SNR) ratio is greatly am-
plified. However, at low concentrations hot spots with target
molecules bound are rare. Furthermore, traditional detection
relies on having uncontaminated sensor readings which is
unrealistic in a real world detection setting. In this paper,
we propose a Bayesian Non-negative Matrix Factorization
(NMF) approach to identify locations of target molecules.
The proposed method is able to successfully analyze the
spectra and extract the target spectrum. A visualization of the
loadings of the basis vector is created and the results show a
clear SNR enhancement. Compared to traditional data pro-
cessing, the NMF approach enables a more reproducible and
sensitive sensor.

Index Terms— Biosensing, 17β-Estradiol, Non-negative
Matrix Factorization (NMF), Surface Enhanced Raman Spec-
troscopy (SERS), Unsupervised Learning.

1. INTRODUCTION

Detection of biological and chemical species at very low con-
centrations have attracted a lot of attention from physicists,
chemists and engineers in the past years due to its direct
applications in e.g. diagnostics [1], prognostics [2] and envi-
ronmental safety [3]. Surface Enhanced Raman Spectroscopy
(SERS) [4, 5] is capable of single molecule detection [6–8],
which makes it a powerful tool for biochemical analysis.
SERS enables measurements of weak Raman signals through
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strong localized enhancement of electromagnetic fields ob-
served in nano gaps (hot spots) between metal surfaces [9].
The SERS setup is illustrated on fig. 1.

One concern regarding SERS is the statistical behavior of
the electromagnetic hot spot distribution [10]. Not only is it
required to find a hot spot, but there also need to be molecules
captured in a hot spot, something that is increasingly unlikely
as the concentration of the target molecules decreases. To
overcome this problem spectra from a larger area of a sub-
strate is captured, a procedure often refereed to as Raman
Mapping [11]. This increases the likelihood that spectra from
hot spots containing molecules are recorded. Fig. 2 shows a
typical Raman map and a typical Raman spectrum. In Raman
spectroscopy the presence of peaks coupled with their loca-
tion is used to determine what types of molecules are present
of the surface, if any.

Traditional analysis of Raman maps consists of choosing
one or two Raman shifts where the dominant peaks for the
molecule of interest are present [11]. The intensities at these
Raman shifts due to the presence of molecules are considered
to be heavy tail distributed whereas Raman maps for blank
substrates are considered to be normal distributed [7, 12].

Fig. 2 shows the traditional approach to data collected
over an area of a Raman substrate. The area on fig. 2 is col-
lected over a 30 µm × 30 µm area with a resolution of 1 µm.
The Raman map visualizes the recorded intensities at a spe-
cific Raman shift. Areas with high intensities are recorded
and it is these areas that are denoted as hot spots containing
molecules.

Non-negative Matrix Factorization (NMF) [13, 14] is a
popular unsupervised learning method used for discovery of
meaningful patterns in data. It has been applied in a large
range of areas, from image processing [14], decomposing sig-
nals from gas sensors [15] to reducing the noise in wind sig-
nals [16]. NMF has also proven as a successful tool for de-
composing Raman spectra gathered using ordinary Raman
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A. B. C.

Fig. 1. A. The DXR™ Raman Microscope used to collect data. B. A side-view up of a Raman substrate depicting the nanopil-
lars, courtesy of Kaiyu Wu, DTU. C. Illustration of the principle behind the SERS substrates. The two left pillars have molecules
on them but in order to get the improved SNR the molecule needs to be captured in the hot spot as shown on the right. This is
achieved by leaning the pillars through solvent evaporation.
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Fig. 2. Illustration of an uncontaminated SERS measurement using a Raman map at 1166 cm-1 (left) and an example spectrum
for Estradiol Glow (right). Hot spots containing molecules are readily identified on the Raman map as the red areas. On the
spectrum the peaks at 1166 cm-1 and 1580 cm-1 are considered the major discriminative.

spectroscopy [17, 18].
In this paper, we propose a variant of NMF that is partic-

ularly suitable for handing SERS spectra. For Raman maps
a great deal of the data are empty spectra or spectra contami-
nated with other compounds. We show that NMF can demix
data from Raman maps and identify spectra that can be con-
sidered true in a physical sense. These results can then be
used to identify the presence of target molecules by setting a
threshold on the loadings matrix in the NMF model.

2. MATERIALS AND METHODS

2.1. Surface Enhanced Raman Spectroscopy

SERS has been widely studied for its use in biosensors
[11, 19–22]. By creating localized electromagnetic hot spots
enhancement factors up to 1012 [9] have been demonstrated
compared to traditional Raman spectroscopy. SERS has ul-
tra high sensitivity combined with specific information of

molecular vibrations, which yields a very powerful tool for
biosensing. We use silver coated silicon nanopillars as a
SERS substrate [23] that have previously shown the capabil-
ity for biosensing [11].

2.1.1. Detection of 17β-Estradiol

Increasing health risks posed by endocrine-disrupting chem-
icals (EDCs) have been a growing concern for the public
in later years. EDCs are compounds or molecules found in
the environment, food and consumer products that affects
hormone synthesis and control in humans and animals. Evi-
dence have been presented that points out the severe impact
EDCs have on reproduction capability (both male and fe-
male), metabolism, obesity and various types of cancer [3].
The female hormone 17β-Estradiol (E2) is an EDC and its
presence in the environment is being watched closely by the
European Commission [24].

In this work we have focused our attention towards a la-
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Fig. 3. An example of a Raman map that has been locally contaminated (Red and Green spectra). The map shows the relative
intensities of the 1166 cm-1 Raman shift. The distribution of intensities are heavy-tailed but not only due to presence of EG but
also due to other contaminants.

beled version of E2 due to the low Raman activity of pure E2.
Jena Bioscience GmbH have developed a fluorescent labeled
version called Estradiol Glow (EG) which has shown to yield
strong and reproducible SERS spectra.

2.1.2. Data acquisition

Each SERS mapping was acquired with Thermo Scientific
DXR Raman Microscope (fig. 1) using a 785 nm excita-
tion laser. A laser powered at 0.5 mW power was used in
conjunction with a 50x optical objective which yields an ap-
proximately 1 µm diameter laser spot size. The acquisition
time was 1 s and each spot was sampled twice before a 6th

order polynomial baseline correction was performed. Each
map consisted of spectra gathered in larger squares (up to 104

points) with a 1x1 µm grid. High concentration solutions con-
sists of 1 µM EG and low concentrations consists of 10 nM
EG.

2.2. Bayesian Non-negative Matrix Factorization

The non-negative matrix factorization model can be stated as
X = SL + E, where X ∈ RS×N is the data matrix that
contain the entire Raman map. X is factorized into two ma-
trices, the spectra matrix S ∈ RD×S

+ and the loadings matrix
L ∈ RS×N

+ , that contain only non-negative real elements.
The residual matrix is denoted as E ∈ RS×N and models the
measurement noise.

A Raman spectrum consists of one or more spectral com-
ponents (unless there are no molecules present, in which case
there is only noise). We would like the matrix S to con-
tain spectra that are easily interpretable, and each vector in S
should contain as “distinct” information as possible. Further,
a recorded spectrum is typically a combination of only a few

basis spectra hence the rows in loading matrix L should favor
sparse solutions. This calls for a model where both S and L
have sparse priors. Following [25], we consider exponential
priors on the elements in S and L

p(S) =

D∏
d=1

S∏
s=1

E (Sd,s;α) (1)

and similarly for L we have

p(L) =

S∏
s=1

N∏
n=1

E (Ls,n;β) (2)

where E(x;λ) = λ exp(−λx)u(x) is the exponential proba-
bility density function, and u(x) is the unit step function. We
assume that the product of SL is able to model the data such
that E is only measurement noise. We model the residuals in
E as i.i.d. normal distributed with zero mean and variance σ2.
Thus, the likelihood function can be written as

p(X|θ) =
D∏

d=1

N∏
n=1

N
(
Xd,n; (SL)d,n , σ

2
)

(3)

where θ = {S,L, σ2} denotes all parameters in the model
and N (x;µ, σ2) = (2πσ2)−1/2 exp(−(x − µ)2/(2σ2)) is
the normal probability density function. In order to apply the
Bayesian framework, a prior distribution on the noise σ2 is
also required. Here, an inverse gamma density with shape k
and scale θ is chosen

p(σ2) = G−1
(
σ2; k, θ

)
(4)

as it makes it more convenient to derive the posterior density
for the parameters.
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Fig. 4. Noise filtering using NMF. Left hand side is the loadings in L drawn as Raman maps and right hand side is the
corresponding basis vector in S

Using Bayes rule, the posterior for the parameters θ can
now be written as the product of eq. (1–4). This model has
been proposed in earlier work [25], where an effective Gibbs
sampler was derived which we use for inference.

In our experiments, we used a burn in period of 20 Gibbs
sweeps and then used 50 sweeps to generate 50 samples from
each component. The mean value from these samples were
used as the parameter estimates. Further, α and β were chosen
to 1 as we found this to yield a suitable sparsity. For the noise
σ2 we chose a flat improper prior, k = 0 and θ = 0, to let the
data dictate the inference regarding the noise.

2.2.1. Probing mode

For very low concentrations or even single molecule detection
the Raman spectrum of interest will only make up a minor
portion in the data. In order to cope with this scenario we have
the spectra of interest as fixed vectors in S as initial values

and then simply do not sample from these. This spectrum of
interest can for example be learned from high concentration
measurements.

3. RESULTS AND DISCUSSION

A typical "dirty" measurement is visualized on fig. 3. Utiliz-
ing the traditional data processing approach on this substrate
would lead to misleading results as some of the very high in-
tensities do not originate from EG. The large elevated area
on the red spectra is caused by fluorescence (another vibra-
tional phenomenon) that clearly interferes with Raman spec-
troscopy. It is probably seen because of insufficient washing
or cleaning of the substrate after treatment. Different salts
used in buffer solutions are auto-fluorescent, meaning that
they have a naturally high degree of fluorescence. Another
type of interference is seen in the green spectra, where clear
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Fig. 6. Demonstration of NMF at low concentrations. A. Raman map of 1166 cm-1. B. Loadings of the EG basis vector plotted
as Raman Map. C. The spectrum at a location that is identified as having EG present.
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Fig. 5. Illustration of the raw spectra that is identified to have
a loading of EG spectrum greater than two. The two main
EG Raman components are present if all spectra, and EG is
successfully identified.

peaks are easily distinguished. The spectra varies in shape
compared to the normally observed spectra (blue). This type
of interference is clearly caused by the Raman effect as seen
by the very distinct peaks. This can come from one of the
salts used in the buffer solution. As these are clearly located
in a hot spot their signature is greatly amplified as is the EG.

Using the proposed method on the data, two Raman spec-
tra are identified in S shown on figure fig. 4. Using the spec-
trum in S that is identified as an EG spectrum, the most dom-
inant area for 1166 cm-1 has been correctly removed. In
addition the mixed area (green spectrum on fig. 3) has been
demixed into two distinct components, the EG spectrum and
the contaminants. The loadings for the basis vector in S can
now be used to identify where EG is likely to be present.

Plotting the spectra that have a loading great than 3 (fig. 5)
shows that the method correctly identifies spots where EG is
present. At high concentrations the proposed method success-
fully identifies a Raman spectrum as one of the basis vectors
in S. The method is applied on the data shown in fig. 2, and
one basis vector readily corresponds to a spectrum for EG.

At low concentrations, the NMF is not able to automat-
ically identify the EG spectrum as one of the basis vectors.
This is likely because the molecule is giving a weak signal as
well as being a rare occurrence. Using the basis vector iden-
tified as EG (shown on fig. 4) as initial value in S and not
sampling from the column that contains that basis vector, we
are able to successfully identify areas with EG. An example is
shown on fig. 6. Clearly the SNR is magnitudes lower com-
pared to the high concentration situation that had a SNR of
about 30.

4. CONCLUSIONS

A Bayesian NMF approach was used to analyze SERS data.
The method was able to effectively decouple signals and at
high concentrations it was able to identify the EG base spec-
trum as one of the basis vectors. This allows for more accurate
and robust data analysis when the SERS substrate is contam-
inated by unknown molecules.

A further advantage of using NMF for SERS data is that
the method is interpretable in the sense that the basis vectors
identified can be related to the expected physical effects.

Possible future work is to use the loading matrix in a clas-
sifier in order to make an identification of the molecules that
have bound with the substrate. Further, using a Bayesian
framework allows for further definitions of the prior and a
parametric prior that is physically explainable can by incor-
porated.



5. REFERENCES

[1] Anjum Qureshi, Yasar Gurbuz, and Javed H. Niazi, “Biosen-
sors for cardiac biomarkers detection: A review,” Sensors and
Actuators B: Chemical, vol. 171-172, pp. 62–76, Aug. 2012.

[2] Maria Thunø, Betina Macho, and Jesper Eugen-Olsen, “su-
PAR: the molecular crystal ball.,” Disease markers, vol. 27,
no. 3, pp. 157–72, Jan. 2009.

[3] Evanthia Diamanti-Kandarakis, Jean-Pierre Bourguignon,
Linda C. Giudice, Russ Hauser, Gail S. Prins, Ana M.
Soto, R. Thomas Zoeller, and Andrea C. Gore, “Endocrine-
disrupting chemicals: an Endocrine Society scientific state-
ment.,” Endocrine reviews, vol. 30, no. 4, pp. 293–342, June
2009.

[4] M Fleischmann, P. J. Hendra, and A. J. McQuillan, “RA-
MAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER
ELECTRODE,” Chemical Physics Letters, vol. 26, no. 2, pp.
163–166, 1974.

[5] David L. Jeanmaire and Richard P. Van Duyne, “Surface raman
spectroelectrochemistry:: Part I. Heterocyclic, aromatic, and
aliphatic amines adsorbed on the anodized silver electrode,”
Journal of Electroanalytical Chemistry and Interfacial Elec-
trochemistry, vol. 84, no. 1, pp. 1–20, 1977.

[6] Kneipp Kneipp, Yang Wang, Harald Kneipp, Lev T. Perel-
man, Irving Itzkan, Ramachandra R. Dasari, and Michael S.
Feld, “Single molecule detection using surface-enhanced Ra-
man scattering (SERS),” Physical Review Letters, pp. 1667–
1670, 1997.

[7] Eric C. Le Ru, Matthias Meyer, and Pablo G. Etchegoin,
“Proof of single-molecule sensitivity in surface enhanced Ra-
man scattering (SERS) by means of a two-analyte technique,”
The journal of physical chemistry. B, vol. 110, no. 4, pp. 1944–
8, Feb. 2006.

[8] Zee H. Kim, “Single-molecule surface-enhanced Raman scat-
tering: Current status and future perspective,” Frontiers of
Physics, vol. 9, no. 1, pp. 25–30, May 2013.

[9] Eric C. Le Ru, Evan J. Blackie, Matthias Meyer, and Pablo G.
Etchegoin, “Surface Enhanced Raman Scattering Enhance-
ment Factors: A Comprehensive Study,” The Journal of Phys-
ical Chemistry C, vol. 111, no. 37, pp. 13794–13803, Sept.
2007.

[10] Pablo G. Etchegoin, Matthias Meyer, and Eric C. Le Ru,
“Statistics of single molecule SERS signals: is there a Pois-
son distribution of intensities?,” Physical chemistry chemical
physics : PCCP, vol. 9, no. 23, pp. 3006–10, 2007.

[11] Jaeyoung Yang, Mirko Palla, Filippo G. Bosco, Tomas Rindze-
vicius, Tommy S. Alstrø m, Michael S. Schmidt, Anja
Boisen, Jingyue Ju, and Qiao Lin, “Surface-enhanced Ra-
man spectroscopy based quantitative bioassay on aptamer-
functionalized nanopillars using large-area Raman mapping.,”
ACS nano, vol. 7, no. 6, pp. 5350–9, June 2013.

[12] Pablo G. Etchegoin, Matthias Meyer, Evan J. Blackie, and
Eric C. Le Ru, “Statistics of single-molecule surface enhanced
Raman scattering signals: fluctuation analysis with multiple
analyte techniques.,” Analytical chemistry, vol. 79, no. 21, pp.
8411–5, Nov. 2007.

[13] Pentti Paatero and Unto Tapper, “Positive matrix factorization:
A non-negative factor model with optimal utilization of error

estimates of data values,” Environmetrics, vol. 5, no. 2, pp.
111–126, 1994.

[14] Daniel D. Lee and H. Sebastian Seung, “Learning the parts
of objects by non-negative matrix factorization,” Nature, vol.
401, no. 6755, pp. 788–791, Oct. 1999.

[15] Tommy S. Alstrø m, Jan Larsen, Claus H. Nielsen, and Niels B.
Larsen, “Data-driven modeling of nano-nose gas sensor ar-
rays,” in Proceedings of SPIE, Ivan Kadar, Ed. SPIE, 2010,
vol. 7697, pp. 76970U–76970U–12.

[16] Mikkel N. Schmidt, Jan Larsen, and Fu-Tien Hsiao, “Wind
Noise Reduction using Non-Negative Sparse Coding,” in IEEE
Workshop on Machine Learning for Signal Processing. 2007,
pp. 431–436, IEEE.

[17] Stephan Niebling, Hannes Y Kuchelmeister, Carsten Schmuck,
and Sebastian Schlücker, “Quantitative, label-free and site-
specific monitoring of molecular recognition: a multivari-
ate resonance Raman approach.,” Chemical communications
(Cambridge, England), vol. 47, no. 1, pp. 568–70, Jan. 2011.

[18] Hualiang Li, Tülay Adal, Wei Wang, Darren Emge, and An-
drzej Cichocki, “Non-negative Matrix Factorization with Or-
thogonality Constraints and its Application to Raman Spec-
troscopy,” The Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology, vol. 48, no. 1-2, pp. 83–
97, Feb. 2007.

[19] S. Nie, S. Emory, “Probing Single Molecules and Single
Nanoparticles by Surface-Enhanced Raman Scattering,” Sci-
ence, vol. 275, no. 5303, pp. 1102–1106, Feb. 1997.

[20] Michael a Ochsenkühn and Colin J Campbell, “Probing
biomolecular interactions using surface enhanced Raman spec-
troscopy: label-free protein detection using a G-quadruplex
DNA aptamer.,” Chemical communications (Cambridge, Eng-
land), vol. 46, no. 16, pp. 2799–801, Apr. 2010.

[21] Cynthia V Pagba, Stephen M Lane, Hansang Cho, and Se-
bastian Wachsmann-Hogiu, “Direct detection of aptamer-
thrombin binding via surface-enhanced Raman spectroscopy.,”
Journal of biomedical optics, vol. 15, no. 4, pp. 047006, 2013.

[22] Teodora Ignat, Roberto Munoz, Kleps Irina, Isabel Obieta, Miu
Mihaela, Monica Simion, and Mircea Iovu, “Nanostructured
Au/Si substrate for organic molecule SERS detection,” Super-
lattices and Microstructures, vol. 46, no. 3, pp. 451–460, Sept.
2009.

[23] Michael Stenbaek Schmidt, Jörg Hübner, and Anja Boisen,
“Large area fabrication of leaning silicon nanopillars for sur-
face enhanced Raman spectroscopy.,” Advanced materials
(Deerfield Beach, Fla.), vol. 24, no. 10, pp. OP11–8, Mar.
2012.

[24] EU, “Environment and Water: proposal to reduce water pollu-
tion risks,” Tech. Rep. January, European Commission, 2012.

[25] Mikkel N. Schmidt, Ole Winther, and Lars K. Hansen,
“Bayesian Non-negative Matrix Factorization,” in Independent
Component Analysis and Signal Separation. 2009, vol. 5441
of Lecture Notes in Computer Science, pp. 540–547, Springer
Berlin Heidelberg.


