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ABSTRACT

Raman spectroscopy is a well-known analytical technique
for identifying and analyzing chemical species. Since Ra-
man scattering is a weak effect, surface-enhanced Raman
spectroscopy (SERS) is often employed to amplify the sig-
nal. SERS signal surface mapping is a common method
for detecting trace amounts of target molecules. Since the
method produce large amounts of data and, in the case of
very low concentrations, low signal-to-noise (SNR) ratio,
ability to extract relevant spectral features is crucial. We pro-
pose a pseudo-Voigt model as a constrained source separation
model, that is able to directly and reliably identify the Raman
modes, with overall performance similar to the state of the
art non-negative matrix factorization approach. However, the
model provides better interpretation and is a step towards
enabling the use of SERS in detection of trace amounts of
molecules in real-life settings.

Index Terms— Raman Spectroscopy, Non-negative ma-
trix factorization (NMF), Bayesian Modeling, Pseudo-Voigt,
Multivariate Curve Resolution (MCR)

1. INTRODUCTION

An important physical phenomenon that can be utilized for
chemical analysis via molecular “fingerprinting” is the so-
called Raman scattering. A key issue with Raman scattering
is that it is a very weak process, i.e., only 0.1% or less inci-
dent photons on a sample are inelastically (or Raman) scat-
tered while the rest remain elastically (or Rayleigh) scattered.
One straightforward method to amplify the Raman scattering
signal is using corrugated, nanosized noble metal surfaces,
and the effect is known as surface-enhanced Raman scatter-
ing. SERS was discovered in 1973 [1] and explained by Jean-
maire & Van Duyne in 1977 [2]. The “new” chapter for SERS
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begun in the late 1990s when researchers showed that in some
cases a strong surface enhancement can even enable single
molecule detection [3].

Today surface-enhanced Raman scattering (SERS) is one
of the most relevant and rapidly advancing spectroscopy
methods for label-free and sensitive detection of target
molecules [4]. A good illustration is a record low attomo-
lar detection of TNT and DNT explosives that few methods
if any can match [5]. Another advantage is that Raman in-
strumentation for SERS-based analysis is becoming better,
cheaper, and portable [6].

A number of challenges in using the SERS technique for
quantitative molecular detection in complex bioassays still re-
main [7]. One path for quantitative SERS is using SERS
tags and it usually requires development of a reliable quan-
tification methodology based on an ensemble of SERS spec-
tra, e.g. SERS signal mapping [8]. Mapping of SERS sig-
nals is necessary because of generally poor reproducibility
and uniformity of SERS substrates, which produces signifi-
cant Raman signal variations. Typically, underlying reasons
for SERS signal variations are fabrication driven, i.e., it is
very difficult to control accurately nanoparticle morphology
and especially inter-particle separation at <10 nm distances
which affect significantly electromagnetic enhancement (the
so-called “hot spots”) [9]. Hence, SERS intensities vary be-
tween hot spots with even smallest differences in morphology
and junction dimensions.

Another issue is that target molecules are deposited or
adsorbed at random locations on the SERS substrate surface
area. Since the coverage is non uniform, significant SERS in-
tensity variations over the substrate area are expected. At ex-
tremely low analyte concentrations (<nM) the probability to
find target molecule exactly at the hot spot is extremely low,
i.e., most hot spots are unoccupied and only few are expected
to produce measurable SERS signals [10]. And finally, each
SERS substrate type coupled with a target molecule display
unique characteristics in terms of surface coverage, electro-
magnetic enhancement factors, distribution of hot spots, etc.



Therefore, the statistical interpretation of SERS signals is a
crucial problem that needs to be addressed more rigorously.

When analyzing complex Raman spectra it is important to
resolve overlapping line shapes [11]. While the true lineshape
of a vibrational mode can be approximated by a Lorentzian
function, the measured lineshape is often the convolution of a
Lorentzian and a Gaussian function [12] due to the instrument
distortion. Therefore, to accurately determine line widths and
peak positions, Raman spectra are fitted using a Voigt func-
tion, which is a convolution of a Lorentzian with a Gaussian
line shape.

Herein, we developed a method to automatically analyze
large-area Raman or SERS signal maps for more reliable
and reproducible identification of Raman modes (analyte
molecules). The model is compared to the current state of the
art approaches of extracting spectra, which are multivariate
factor models with non-negativity constraints.

2. RELATION TO PRIOR WORK

Blind source separation techniques such as NMF has been
used for spectral data on numerous occasions [13, 14, 15]. In
the field of general spectroscopy the method of Multivariate
Curve Resolution (MCR) using non-negativity constraints has
also been applied [16]. The NMF and MCR models are iden-
tical but the inference algorithms differ. MCR uses princi-
pal component analysis (PCA) as initialization and the model
is then estimated using alternating least squares. NMF can
also be learned in a number of ways, and was demonstrated
for extracting facial features by Lee and Seung [17]. In the
case of very low signal to noise ratios, blind source separa-
tion algorithms fail to recover meaningful and interpretable
spectral components. Solutions involve the application of ad-
ditional constraints on the search for basis vectors [18], or to
include some prelearned basis vectors in the model [14]. An-
other approach is to fit a power-law distribution at a certain
wavenumber [10, 8]. However, this method requires knowl-
edge of the exact location of the Raman mode, and in addition
assumes that the data is free from outliers. The multivari-
ate approach of NMF/MCR does not suffer from these down-
sides, so a combination of the two approaches might be ideal.
The proposed pseudo-Voigt model is such a combination.

3. METHODS

Let X denote the observed data: An array of positive real
numbers, where Xw,n is the measured amplitude at wave
number w in the observed spectrum n. We denote the number
of observed wavelengths by W and the number of observed
spectra by N .

We will compare two approaches for modeling such spec-
tra: 1) A non-negative matrix factorization approach in which
the spectra are modeled as scaled sums of K basis spectra
which are learned from the observed data, and 2) a related

approach where the basis spectra are constrained to have a
pseudo-Voigt shape.

3.1. Non-negative matrix factorization

The non-negative matrix factorization approach to modeling
spectroscopy data assumes that each observed spectrum can
be decomposed as a weighted sum of constituent basis spectra
[13, 14, 15]. Using a Normal observation noise model

Xw,n|S,A, τ ∼ N([SA]w,n, τ
−1), (1)

where τ is the noise precision, the data array is modeled as
product of two matrices, S and A, where the K columns of
S are the basis spectra, and each column of A contain their
amplitudes for a given observation spectrum.

Following [19], we assume a standard conjugate Gamma
prior for the noise precision,

τ ∼ Gamma(aτ0 , bτ0), (2)

with shape aτ0 and rate bτ0 . We use independent exponential
priors for both the spectra and their amplitudes,

Ak,n
i.i.d∼ Exp(A0), Sk,n

i.i.d∼ Exp(S0), (3)

with rates A0 and S0 respectively. These priors reflect the
constraints that the spectra and their amplitudes are non-
negative and corresponds to a Bayesian sparse NMF model.

3.2. Pseudo-Voigt spectral peak model

As in the NMF approach, we will assume an independent
Normal noise model,

Xw,n|Iw,n, τ ∼ N(Iw,n, τ
−1), (4)

with precision τ and mean Iw,n modeled as a sum of K
pseudo-Voigt shaped component plus a background compo-
nent,

Iw,n =

K∑
k=1

αk,nVw(ck, γk, ηk) + βnBw. (5)

Here, V is a pseudo-Voigt shaped component centered at
wave number w with parameters c, γ, and η; αk,n is a com-
ponent and observation specific amplitude; Bw is a common
background spectrum; and βn is a observation specific back-
ground amplitude. The pseudo-Voigt [20] profile is given
by

Vw(c, γ, η) = ηLw(c, γ) + (1− η)Gw(c, γ), (6)

where Lw = γπ−1

(w−c)2+γ2 and Gw = 1√
2πγ

exp
(
−(w−c)2

2γ2

)
.

As in the NMF approach, we assume a standard conju-
gate Gamma prior for the noise precision. As priors for the
pseudo-Voigt profile parameters we use the following:

ηk
i.i.d∼ Unif(0, 1), αk,n

i.i.d∼ Exp(α0), (7)

ck
i.i.d∼ N+(µc0 , τ

−1
c0 ), γk

i.i.d∼ N+(µγ0 , τ
−1
γ0 ), (8)



where N+ denotes the Normal distribution truncated to the
positive reals. Here ηk is given an vague uniform prior, αk,n
is exponential to reflect the anticipation that a few observed
spectra might contain “hot spots” with high amplitudes, and
the ck and γk parameters are given fairly flexible truncated
Normal priors, reflecting that the parameters must be positive
while making it possible to choose their hyperparameters to
reflect locations and widths of the spectral peaks, or in lack of
prior knowledge to set them as vague.

The prior for the background component is chosen as

βn
i.i.d∼ N+(µβ0

, τ−1β0
), Bw

i.i.d∼ N+(µB0
, τ−1B0

), (9)

allowing the hyperparameters to be chosen in accordance with
prior knowledge.

3.3. Inference

The sparse NMF model is learned using a Gibbs sampler as
specified in [19]. Following the same approach, we develop a
similar algorithm for learning the pseudo-Voigt model. The
conditional distributions for the parameters with conjugate
priors (α, β, B and τ ) are sampled using Gibbs sampling.
First define Vw,k = V (w, ck, γk, ηk). The conditional dis-
tribution for the weights of the pseudo-Voigt functions is pro-
portional to the product a normal distribution and an exponen-
tial distribution and the resulting distribution is then a trun-
cated Normal distribution limited to positive values with cen-
ter and scale

(10a)αk,n|X,α\k,n,β,B, τ ∼ N+(µαk,n
, τ−1αk,n

)

(10b)τ−1αk,n
= τ

W∑
w=1

V 2
w,k

(10c)µαk,n
=

τ
W∑

w=1

Vw,k

(
Xw,n−bnBw−

K∑
k′ 6=k

ak′,nVw,k′

)
−α0

τ
W∑

w=1

V 2
w,k

The conditional distributions of the background signals are on
a similar account also truncated Normals,

(11a)βn|X,α,β\n,B, τ ∼ N+(µβn , τ
−1
βn

)

(11b)τ−1βn
= τβ0 + τ

W∑
w=1

B2
w

(11c)µβn
=

τ
W∑

w=1

Bw

(
Xw,n −

K∑
k=1

ak,nVw,k

)
+ τβ0

µβ0

τβ0
+ τ

W∑
w=1

B2
w

The conditional distribution of Bw is almost identical due to
symmetry in the likelihood. For the precision we get the stan-
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(a) Data generated by simulation.
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(b) Example spectrum with a SNR=2.7.

Fig. 1. Data generated by simulation. The blue line is an
example spectrum with added noise and the dotted red is the
true underlying spectrum.

dard result

(12a)τ |X,α,β,B ∼ Gamma(aτ , bτ )

(12b)aτ =
WN

2
+ aτ0

(12c)bτ = bτ0 +
1

2

W∑
w=1

N∑
n=1

(Xw,n − Iwn
)2

The pseudo-Voigt parameters are sampled using Metropolis
Hastings. Expanded derivations and implementation details
can be found in the supplementary material

4. RESULTS AND DISCUSSION

The algorithm is tested on simulated data where the true
parameters are known. The data is generated using a fixed
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Fig. 2. Spectrum as identified by the pseudo-Voigt model
(blue) and the NMF model (red) compared to the true under-
lying signal (dotted orange).
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Fig. 3. Background signal recovered by the pseudo-Voigt
model (blue) and the NMF model (red) compared to the true
underlying background signal (dotted orange).

pseudo-Voigt profile added to a randomly generated a smooth
background added to zero mean Gaussian distributed noise
with precision equal to one. We generated a map of 625 mea-
sured spectra at 300 wavenumbers. We created the weights
for the pseudo-Voigt profiles by simulating hot-spot behav-
ior. A single hotspot was randomly placed on a grid and the
weights of this hotspot were calculated using a 2-d Gaussian
curve. At the maximum peak location the SNR is 2.7. The
generated data is shown in Fig. 1.

The pseudo-Voigt model is able to recover the exact center
of the Raman peak, whereas NMF recovers a noisy spectrum
with the highest intensity located very close to the correct Ra-
man peak (Fig. 2). The most important attribute of a Raman
peak is the location of the center as it can be directly mapped
to a specific molecular binding, and thus it is essential to ex-
tract the center of a Raman mode reliably.
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Fig. 4. Intensities as identified by the pseudo-Voigt model
(blue) and the NMF model (red) compared to the true intensi-
ties (dotted orange).

Recovery of the background signal is displayed in Fig. 3
where the peak clearly interferes with the background signal
estimate. The pseudo-Voigt model overestimates the back-
ground signal in the region of the Raman peak whereas the
NMF model underestimates the background signal here. This
is further reflected in the recovery of the Raman peak intensi-
ties which are displayed in Fig. 4. The presence of a molecule
is in essence determined by setting a threshold on the inten-
sity. The threshold should ideally be inferred from data but
setting it to one gives similar performance for both methods.

In the presence of mixtures of peaks with overlap, the
posterior densities of both models become multimodal. De-
termining the hyperparameters is thus essential to obtain the
solution which makes physical sense. This can easily and
readily be achieved in the pseudo-Voigt model, as the experi-
menter can intuitively select potential areas of Raman peaks.
The algorithm had similar performance for mixtures (K = 3,
not shown) as for a single Raman peak, and was able to re-
cover the centers of Raman peaks.

5. CONCLUSION

The pseudo-Voigt approach works well for the simulated data,
demonstrating comparable performance to current state of the
art approaches such as NMF (and MCR). The advantage of
the pseudo-Voigt model is that the center of a Raman peak
is directly estimated as a model parameter. In addition, the
pseudo-Voigt model offers a degree of confidence that the re-
covered spectrum has a Voigt shape which means that a true
Raman peak has been recovered. Extracting the same infor-
mation from the spectrum recovered by the NMF model re-
quires additional post-processing.

Supplementary material including code and data can be
found at http://archive.compute.dtu.dk/p/1.
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