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Abstract—Diffusion magnetic resonance imaging enables mea-
suring the structural connectivity of the human brain at a
high spatial resolution. Local noisy connectivity estimates can
be derived using tractography approaches and statistical models
are necessary to quantify the brain’s salient structural organi-
zation. However, statistically modeling these massive structural
connectivity datasets is a computational challenging task. We
develop a high-performance inference procedure for the infinite
relational model (a prominent non-parametric Bayesian model
for clustering networks into structurally similar groups) that
defines structural units at the resolution of statistical support.
We apply the model to a network of structural brain connectivity
in full image resolution with more than one hundred thousand
regions (voxels in the gray-white matter boundary) and around
one hundred million connections. The derived clustering identifies
in the order of one thousand salient structural units and we find
that the identified units provide better predictive performance
than predicting using the full graph or two commonly used
atlases. Extracting structural units of brain connectivity at the
full image resolution can aid in understanding the underlying
connectivity patterns, and the proposed method for large scale
data driven generation of structural units provides a promising
framework that can exploit the increasing spatial resolution of
neuro-imaging technologies.

I. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is an im-
portant non-invasive technique for studying the brain’s struc-
tural organization. By tracking the diffusion of mainly water
molecules that align with the orientation of the fibers in the
brain, local estimates of fiber orientation can be obtained.
These estimates are aggregated by tractography to derive
maps of structural connectivity between cortical gray matter
regions [5]. For the current dMRI technology these maps in
full image resolution constitute complex networks of structural
connectivity in the order of one hundred thousand regions and
one hundred million links (see Fig. 1).

While the quantified fiber orientation within small regions
of the brain as well as the subsequently derived local connec-
tivity estimates are very noisy, these estimates can be aggre-
gated to derive networks of whole brain connectivity within
larger regions of structural units. These structural units have
traditionally been based on automatic subdivision of the human
brain into a fixed number of pre-specified neuroanatomical re-
gions of interests (ROIs) [13], [7]. The Destrieux atlas [13], [8]
currently has around 150 ROIs whereas the Desikan-Killiany
atlas [7] has 68 ROIs. While these ROIs can be arbitrarily
subdivided to provide additional regions [14] they are not
explicitly based on the evidence obtained by the structural
connectivity data and may therefore not optimally reflect the
latent connectivity patterns of structural connectivity. Rather
than fixing the structural units to a predefined atlas, we set
out to learn the number of structural units and their spatial
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Fig. 1. Complex network of structural brain connectivity with 167 635 nodes
and around one hundred million links obtained using 5000 streamlines per
seed voxel. Left: Link density in each pair of the 68 regions of interest in the
Desikan-Killiany atlas. Right: Links between the first 200 regions.

representations from the raw high resolution networks obtained
using tractography. To accomplish this we develop a large
scale implementation of a prominent statistical network model,
the infinite relational model (IRM) [17], [24]. The IRM is
able to infer structurally consistent units at a resolution which
is determined based on statistical evidence. While structural
connectivity graphs have previously been clustered based on
IRM [3] as well as other tools such as modularity [14], this
is to the best of our knowledge the first attempt at modelling
structural connectivity at the full image resolution of current
dMRI technology.

This paper examines the capabilities of a large scale imple-
mentation of the IRM to identify structure in high-resolution
structural brain connectivity graphs. We study to what extend
we can perform inference on such large scale networks and
whether it is feasible to reliably detect the structural units in
a data driven manner using our implementation. In particular,
we investigate: i) What is the statistically salient resolution of
structural connectivity graphs, i.e., how many clusters are used
to represent high resolution structural connectivity data? ii)
How reliable can these salient structures be detected, i.e. how
consistent are the structural units with respect to initialization
and convergence of the sampler as well as the number of
streamlines? iii) Are the derived structural units better at
predicting connectivity than existing atlases, i.e. how well does
the connectivity patterns derived from the structural units of
one graph predict the connectivity of another graph obtained
from another set of whole brain diffusion weighted images
from the same subject?978-1-4799-4149-0/14/$31.00 c©2014 IEEE



II. STATISTICAL MODEL AND INFERENCE

A. Infinite Relational Modelling
The Infinite Relational Model (IRM) [17], [24] is a non-

parametric extension of the stochastic block model [19] in
which vertices in a graph are grouped into homogenous
blocks according to their structural similarity. The IRM uses
the Chinese Restaurant Process (CRP) [2], [20] as prior for
the partitioning of vertices to groups thereby allowing for
an arbitrary number of groups. The IRM is defined by the
following generative process:

z ∼ CRP(α), groups, (1)
ηlm ∼ Beta(β+, β−), interactions, (2)

Aij ∼ Bernoulli(ηzizj ), links, (3)

where z is the group assignment, η is the probability of links
between each pair of groups, and A is the adjacency matrix of
the graph. As the beta prior on the elements of η is conjugate
to the Bernoulli likelihood these parameters can be analytically
integrated to form the joint distribution:

P (A, z|α, β+, β−) =

∫
P (A, z,η|α, β+, β−)dη (4)

=
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

∏
l≤m

B(N+
lm + β+, N−lm + β−)

B(β+, β−)
,

where K is the number of groups, J is the number of vertices,
nk is the number of vertices assigned to the k’th group, N+

lm
and N−lm are the number of links and non-links between group
l and m, and B(a, b) = Γ(a)Γ(b)

Γ(a+b) is the beta function.

B. Inference by Markov Chain Monte Carlo (MCMC)
To infer the posterior distribution, P (z|A, α, β+, β−), we

use an MCMC procedure combining Gibbs and split-merge
sampling [17]. In Gibbs sampling the posterior conditional
distribution of placing one vertex at a time in any of the
existing groups or in a new empty group is evaluated and
the vertex is assigned according to this distribution. The
probability of assigning a vertex i to group ` is given by:

P (zi = `|A, z\i, h) =
P (A, z\i, zi = `|h)

K+1∑
`′=1

P (A, z\i, zi = `′|h)

, (5)

where h = {β+, β−, α} denotes the hyperparameters.
Rather than considering the assignment of a single vertex

at a time split-merge sampling as presented in [15] attempts
to merge or split existing clusters. Here, two vertices i and
j are selected at random. If they are currently assigned to
two different groups zi 6= zj , it is proposed to merge the
two groups. Else it is proposed to split the single group in
two. The procedure makes use of Gibbs sampling restricted
to the nodes of the considered group(s) in order to define
an intermediate launch state as well as to define the final
split configuration and its transition probability q(z|z∗). For
a split configuration q(z|z∗) is derived as the product of
the individual transition probabilities of the vertices to move
from the launch state to the final split configuration. As a
merge transition is deterministic the transition from a split to
a merge configuration has probability 1. Proposals are rejected

or accepted according to the Metropolis-Hastings acceptance
probability:

α(z∗|z) = min

[
1,
P (A, z∗|β+, β−, α)q(z|z∗)
P (A, z|β+, β−, α)q(z∗|z)

]
. (6)

C. Large scale computation
To get the computational performance necessary for the

IRM to model structural connectivity in full image resolution
we used a dedicated implementation optimized towards fully
utilizing the memory structure and processor architecture of
modern computers (see [1] for details). As the restricted Gibbs
sweeps turns out to be the most computational demanding
part of the split-merge sampling procedure, the performance
of both sampling strategies benefits from most of the same
optimizations. We store data in appropriate structures such that
the sampling algorithms access data elements from sequential
memory. In this way the access pattern takes advantage of
the memory cache structure allowing for significantly faster
memory accesses. To further speed up the Gibbs sampler we
store and update the sufficient statistics, N+ and N−, instead
of recalculating them in every Gibbs sweep. To ensure numeric
stability within machine precision, the posterior in Eq. 5 is
calculated in the log domain. The key operation then becomes
calculating the logarithm of the beta function which relies on
the gamma-function, Γ(a), as:

logB(a, b) = log Γ(a) + log Γ(b)− log Γ(a+ b) (7)

As we only allow integer values for the hyperparameters, we
use a lookup table of precalculated values for log Γ(a) which
speeds up the evaluation of the posterior.

III. DATA

To validate our proposed method, we used a dMRI data
set previously described in [23], [22]. The data was collected
at Danish Research Center for Magnetic Resonance and the
study was approved by the local ethics committee. One healthy
subject was scanned. The images were acquired on a Siemens
VERIO 3T scanner using a 32-channel head coil. Two high
resolution T1-weighted MRI images were acquired using a TR
of 1,900 ms, TE of 2.32 ms, a FA of 9◦, and 0.9mm3 isotropic
resolution. Two sets of whole brain diffusion weighted images
(DWI) were acquired in 61 non-collinear directions with a
b-value of b = 1500 s/mm2, and ten non-diffusion weighted
images (b = 0 s/mm2). For this the twice refocused spin echo
sequence with a TR of 11,440 ms and a TE of 89 ms. 61
axial slices with a resolution of 2.3 mm3 isotropic voxels and
Grappa = 2 were acquired [21]. A field map was acquired
using a double gradient echo sequence with a TR of 479
ms, TE1 of 4.92 ms, TE2 of 7.38 ms, and a resolution of
3mm3 isotropic voxels. The diffusion weighted images (DWI)
were pre-processed using SPM8 (www.fil.ion.ucl.ac.uk/spm).
To reduce motion artifacts and eddy current induced dis-
tortions an affine transformation between the DWIs based
on normalized mutual information was applied. The voxel
displacement map (VDM) was calculated based on the field
map resliced to DWI resolution using the field map toolbox of
SPM8 [16]. The VDM was applied to minimize geometric
distortions due to susceptibility artifacts. Finally the DWIs
were aligned and resliced with affine matrix to a T1 weighted
MRI using 7th degree B-spline interpolation [10]. The 61 non-
collinear diffusion weighting gradient directions were updated
using the same rotations and transformations as the resliced
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Fig. 2. Average voxel-wise coefficient of variation (CV) as function of
number of streamlines in the tractography. The CV and the SNR are based
on tractography results repeated five times for each number of streamlines.

images [18]. Segmentation of the white and gray matter was
performed based on the high resolution structural T1w images
using Freesurfer (surfer.nmr.mgh.harvard.edu) [6], [12], [11].
The Freesurfer reconstruction outputs, among others, the white
matter segmentation and the gray-white matter boundary. The
gray-white matter boundary for both hemispheres was con-
verted to volumes and transformed from Freesurfer conformed
space to native space. Likewise, the white matter segmentation
from the Freesurfer reconstruction was transformed to native
space. The diffusion parameters were estimated using FSL’s
BedpostX and probabilistic tractography was performed using
FSL’s Probtrackx2 with the omatrix3 option [4]. The trans-
formed white matter volume was used as seed in the trac-
tography and the transformed cortex labels as both target and
stop mask in the tractography. For all other options the default
settings were used. The cortex to cortex connectivity graph
were output from FSL’s probtrackx2 using the omatrix3 option.
We obtained four 167,635×167,635 connectivity graphs (i.e.,
scan and rescan for 1000 and 5000 streamlines per seed voxel).
Each link in the graphs took on the value of the number
of streamlines connecting the two voxels in the target mask
(gray/white matter boundary). The graphs were symmetrized
and binarized (i.e., for each graph the graph and its transpose
were added together and entries that were subsequently above
zero set to one).

IV. EXPERIMENTS AND RESULTS

A. Number of streamlines
To ensure that the network obtained by tractography is

robust, probabilistic tractography was performed with different
number of streamlines: Between 50 and 10,000 streamlines
per seed voxel were used. Each number of streamlines was
run five times. The voxel-wise coefficient of variation (CV)
between voxels within the seed mask in the images with equal
number of streamlines was calculated as CV = σ

µ , where σ
is the standard deviation and µ is the mean. The average CV
across all voxels was calculated [9] and is shown as function
of number of streamlines in Fig. 2. The number of streamlines
used in the subsequent experiments was selected on the basis
of the average CV: As the average CV seems to have reached a
stable level when using 1000 streamlines, and definitely when
using 5000 streamlines (Fig. 2) we compare these two values.

B. Model parameters, inference, and convergence
For each network we performed 10 separate runs, all with

the hyper parameters β+ = β− = 1 and α = blog(J)c, where
J is the total number of nodes. For each run, we performed 100
iterations of the following sampling procedure: Each iteration
began with a complete Gibbs sweep over all nodes. It was then
followed by the same number of split-merge operations as the
current number of clusters. In each split-merge operation we
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Fig. 3. Logarithm of the joint distribution for the MCMC inference procedure
for the network based on 5000 streamlines. A zoom of the last 50 iterations
is shown to the right.
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Fig. 4. Normalized Mutual Information (NMI) between 10 independent runs
of the IRM and two atlases for network based on 1000 and 5000 streamlines.

performed 10 restricted Gibbs sweeps. Each of these iterations
took several hours to compute. Fig. 3 shows the logarithm
of the joint distribution for the different runs. It is clear
that the MCMC sampler does not converge (which was also
not to be expected [1]), but even when the sampler does
not converge, the inferred grouping captures suboptimal but
relevant structures in the network. In the following we used
the inferred group structure after the last MCMC iteration.

C. Comparison and stability of estimated group structure
To compare the unsupervised groupings found by IRM

with the groupings provided by the two atlases, we use
the normalized mutual information (NMI) as a measure of
similarity between 0 and 1. For two groupings z and z′, we
use: NMI(z, z′) = 2·I(z,z′)

H(z)+H(z′) where I(z, z′) is the mutual
information between the groupings and H(z) is the entropy
of z. Fig. 4 shows NMI between all runs as well as between
the runs and the two atlases. It is evident that the inferred
groupings are very similar in the 10 runs as evidenced by the
relatively high NMI, both within and between the networks
based on 1000 and 5000 streamlines, respectively. Also, the
inferred grouping is somewhat similar to the two atlases with
an NMI score around 0.5-0.6.

D. Predictive performance
To assess how well the inferred structure fits the data,

we use a second structural connectivity network based on a
rescan of the same subject. Since any differences between the
two scans are due to noise in the processes of generating the
network, measuring how well we can predict the links in the
second graph can be used to quantify the utility of the inferred
structural units. To measure the predictive performance we
use the area under the receiver operating characteristic curve
(AUC) which allows us to compare predictions from the IRM
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Fig. 5. Performance as measured by the area under the receiver operating
characteristic curve (AUC) when predicting links in a network of structural
connectivity based on data from a second scan of the same subject.

model with predictions made using other existing atlases or
predicting directly from the raw network data. The results
in Fig. 5 show that the IRM model outperforms predictions
from the raw graph as well as both the Desikan-Killiany and
Destrieux atlases both for networks based on 1000 and 5000
streamlines. However, when inspecting the extracted structural
units (not shown) they were more diffuse compared to the
atlases which may hamper their interpretation. This may be
attributed both to the lack of convergence as well as lack of
spatial constraints in the modeling.

V. CONCLUSION

When analyzing whole brain structural connectivity in full
image resolution in the order of one thousand salient structural
units were identified by our large scale implementation of
the infinite relational model. The network based on 5000
streamlines had more structural units compared to the network
based on 1000 streamlines. However, the estimated group
structures were quite similar as quantified by NMI. Although
the MCMC sampler did not reach convergence the identified
groups were fairly robust to initialization while having some
similarity to the Destrieux and Desikan-Killiany atlases. No-
tably, the extracted structural units provided significantly better
predictive performances than predicting using the structural
connectivity graph itself or the two considered atlases.

The present paper is to the best of our knowledge the first
attempt at clustering structural connectivity in full resolution
and provides a promising tool for a more detailed account of
structural connectivity in general. In future work the influence
of image resolution and choice of hyper-parameters should be
investigated as should better sampling strategies.
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