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Abstract. Functional and structural magnetic resonance imaging have become
the most important noninvasive windows to the human brain. A major challenge
in the analysis of brain networks is to establish the similarities and dissimilarities
between functional and structural connectivity. We formulate a non-parametric
Bayesian network model which allows for joint modelling and integration of mul-
tiple networks. We demonstrate the model’s ability to detect vertices that share
structure across networks jointly in functional MRI (fMRI) and diffusion MRI
(dMRI) data. Using two fMRI and dMRI scans per subject, we establish signif-
icant structures that are consistently shared across subjects and data splits. This
provides an unsupervised approach for modeling of structure-function relations
in the brain and provides a general framework for multimodal integration.

1 Introduction

While the dominant paradigm in neuroimaging remains functional localization, there
is much current interest in understanding the mechanisms behind brain wide coordina-
tion in more complex human behaviors. Network representations and graph theoreti-
cal analyses offer new means to understand functional coordination both under normal
behaviors and pathology. Current brain imaging technology offers multiple views on
these networks and it has been suggested that structural information obtained via diffu-
sion MRI (dMRI) and information from functional MRI (fMRI) can be combined in a
synergistic way to produce a more complete picture, see e.g., [4, 7, 18, 10, 8, 12, 16].

Existing work on combining functional connectivity and structural connectivity is
based on comparing or correlating results obtained from each method independently
[13, 6]. This includes comparisons of descriptive measures of structural and functional
networks like the distribution of motifs or other global properties, such as the link
distribution, small world properties, or degree of modularity, for a recent review see
[16]. However, in order to fully benefit from the individual advantages of each modal-
ity thereby improving detection power and explicitly capture shared network structure,
models that are able to integrate both types on information in the same framework are
needed. This is indeed the aim of recent work on informing functional clustering by
measures of structural connectivity as derived from dMRI [3]. This so-called anatomi-
cally weighted functional clustering method (awFC) produces more strongly autocorre-
lated functional networks compared with conventional unweighted functional clustering
of time series.



Here, we set up an expressive generative model that can potentially learn the structure-
function relation locally. The new model is formulated in a new Bayesian non-parametric
multi-graph modeling framework that allows for arbitrary relations between a set of
modules also determined by data and most importantly directly models the potential
integration between structure and function at the node level. In particular, we propose
a non-parametric generative model that divides nodes into two types i) shared nodes
that exhibit the same clustering structure across modalities and ii) individual nodes
(not shared) that are clustered differently across modalities. This admits the analysis
of shared and individual structures in networks with multiple link types, i.e., graphs
defined by functional and structural connectivity respectively (see also Figure 1(a)) and
the investigation of the structure-function relationship in brain networks and provides a
general framework for multimodal integration.

To validate our approach we train and test on two separate sets of structural and
functional MRI graphs obtained for a total of 22 subjects. We compare with a model that
assumes there are no clusters shared between the functional and structural connectivity
graphs and a model that assumes clusters are fully shared between the functional and
structural connectivity graphs. In addition, we investigate if subjects are better modelled
by subject specific partitions of the brain regions compared to partitions that are the
same across subjects.

2 Methods

Consider a set of graphs
{
Gn,m

(
V,En,m

)
: n ∈ {1, . . . , N},m ∈ {1, . . . ,M}

}
, each

defined on the same set of vertices V = {v1, . . . , vK}. The set of graphs is indexed by
(n,m) where the former in the present context refers to whether the graph is derived
from functional or diffusion MRI (N = 2) and the latter refers to different subjects or
repetitions.

2.1 Generative model

We propose the following model for the set of graphs: For each vertex vi, a Bernoulli
variable Ji indicates whether its linking properties are shared across graphs, Ji = 0,
or are individual for each graph, Ji = 1. According to a Chinese restaurant process
(CRP), the set of shared vertices Vsh. = {vi : Ji = 0} is divided into a partition Z0

represented by {z(0)i }i∈Vsh.
where z(0)i is an index of the cluster to which vertex vi

belongs. For each n ∈ {1, . . . , N} the set of individual nodes Vin. = {vi : Ji = 1} is
divided into a partition Zn represented by {z(n)i }i∈Vin.

. For each graph in the set, a link
probability variable η(n,m)

µ,ν determines the probability of observing a link A(n,m)
i,j in the

graph Gn,m between two vertices vi and vj belonging to cluster µ and ν respectively.
The full generative model is described in Figure 1(b). The tunable parameters of the
model are ψ = {κ, `, α, γ, δ} and they were all set to unity in our experiments.

The model posits a stochastic block structure which is identical across subjects /
repetitions (m) but only partially shared across network types (n). Since the degree of
shared block structure is variable, the model allows us to learn from data to what extent



(a) (b)

Fig. 1. (a) Schematic model description. Panel A shows the adjacency matrices for two network
types. The small black dots indicate edges. Grouping structures are indicated with colors to the
left and above the adjacency matrices and group link probabilities are indicated with the gray-
scaled background. In this example nodes belonging to the first two modules are shared across
network type while the remaining nodes show different grouping in the two networks. Panel B
gives a graphical layout of the networks where nodes are shown with filled circles and edges
as lines. The color indicate the same grouping structure as in panel A. (b) Proposed generative
model.

common block structure is present across different types of networks. We further con-
sider two special cases of this partially-shared block model: A fully-shared Ji = 1 ∀i
and a fully-unshared Ji = 0 ∀i model. In the fully-shared model a single partition-
ing of the nodes is shared between all graphs; however, the link probabilities remain
separate for each graph allowing the model to capture shared group structure despite
differences in link densities. The type of model has previously been considered in [14].
In the fully-unshared model each graph is assumed independent, and our model reduces
to N independent multi-graph infinite relational models (IRM) [11].

2.2 Data acquisition

We use fMRI and dMRI data obtained from 22 healthy volunteers.
Functional MRI: Resting state functional magnetic resonance imaging (rs-fMRI)

data was recorded for 20 min (482 volumes) per subject. The first two volumes were
discarded to account for T1 equilibrium effects, the remaining 480 volumes were re-
aligned to the time-series mean and spatially normalized to the MNI template using
SPM8. Nuisance effects related to residual movement or physiological effects were
removed. In order to enable the characterization of reproducibility and predictive like-
lihood, the fMRI data was blocked into 6 equally sized blocks each consisting of 80
non-overlapping volumes. For each subject the 6 blocks was randomly split into two
independent datasets each containing 3 blocks. For each of the two datasets the mean
signal in each of the 116 regions as defined in the AAL database [17] was extracted and
a [116× 116] correlation matrix was formed for each of the datasets for each subject.



Diffusion MRI: Each subject underwent two diffusion weighted imaging (DWI) ses-
sions. For each session diffusion along 61 directions were recorded with b = 1200s/mm2.
Additionally, 10 b = 0 images were obtained. To compensate for subject motion and
Eddy currents artifacts, the DWI volumes of each subject were aligned with the first
DWI volume (b-value=0) using an affine image transformation [5]. The displacements
of the affine transformations were combined with the displacement maps of SPM8’s
Fieldmap approach [9], and displacement maps correcting for the non-linearity of the
scanner gradients, resulting in a single resampling for each volume, achieved using cu-
bic interpolation. The rotational parts of the affine transformations are extracted and
gradient directions corrected using the Finite Strain approach [1]. FSL’s Bedpostx was
used to estimate voxelwise diffusion parameters for each subjects’ two DWI sessions.
Bedpostx uses Markov Chain Monte Carlo sampling to build distributions of the diffu-
sion parameters and allows for detection of crossing fibres. FSL’s probtrackx [2] was
used for probabilistic tractography. The AAL brain regions were normalized to each
subject’s native space and used for seeding and target regions. For each voxel a dis-
tribution of 5000 pathway samples was generated and the average count of pathways
to each region was used to generate the connectivity matrix C. In order to generate
un-directional graphs we average C̃ = 1

2 (C +C>).
Construction of graphs: The correlation matrix derived from fMRI and the averaged

pathway count matrix derived from dMRI were thresholded to form binary adjacency
matrices. The threshold was selected such that the resulting graph had a specific link
density. We experimented with graph densities between 0.5 % and 50 %.

3 Results and discussion

3.1 Analysis of fMRI and dMRI data

We consider two types of analysis of the data. A modeling where fMRI and dMRI are
modelled jointly for each subject individually (i.e.M = 1) as well as a population study
where all subjects are modelled in the same model (M = 22).

The result of the analysis of the individual subjects (i.e.,M = 1) is given in figure 2
where the mean and standard deviation of the fraction of shared vertices across fMRI
and dMRI, area under the receiver operating characteristic curve (AUC), predictive log-
likelihood (logLtest), number of clusters, and MI are given. Figure 2 show that the
logLtest and AUC scores in the partial-shared model is on par with the best performing
of the fully-unshared and fully-shared models. Furthermore, the modeling benefits the
most from partially sharing vertices at a graph density of 3% where about 60% of the
vertices in both data splits are shared, interestingly this is the suggested density level
for analysis proposed by [15]. Finally the number of components for the partial-shared
model and the mutual information falls between the fully-unshared and the fully-shared
models. The modeling of all subjects jointly (i.e., M = 22) gave similar results and are
therefore not included.

In figure 2(b) we also compare the AUC score of a model that considers each subject
individually (m = 1) with a model which models all subjects combined (m = 22)(black
lines). In general the all-subjects model lie well above the individual-model and thus
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Fig. 2. (a) fraction of shared nodes as function of graph density for the partially-shared model;
(b) AUC score; (c) predictive log likelihood; (d) number of clusters; (e) mutual information (MI)
between sessions.

indicate that models with the same node partition over subjects are better at predicting
network structure and thereby also indicates that it is a good assumption that the node-
partition can be shared across subjects.

In figure 3 the frequency that each vertex of the brain is shared across fMRI and
dMRI on average across all subjects for the individual analysis (i.e., M = 1) and pop-
ulation study (i.e., M = 22) are given for the two data splits. The same regions are
consistently shared across the two data splits as well as across the individual and pop-
ulation studies. Red signifies regions that are significantly shared and blue regions that
are significantly unshared across the subjects. The significance level is evaluated rela-
tive to a null model where vertices are randomly sampled as shared based on a Bernoulli
distribution with success defined by the subject specific fraction of vertices shared for
the individual study (M = 1) and for the estimated fraction of vertices shared across
subjects in the population study (i.e., M = 22) respectively. The significance level has
been corrected for multiple comparisons using the Dunn-Šidák correction. The regions
that are significantly shared primarily constitute cerebellum and frontal lobe whereas
regions that are significantly different in fMRI and dMRI are found in the parietal and
temporal lobes.

4 Conclusion

Integration of the different modalities of structural and functional connectivity data re-
mains a difficult challenge for computational neuroscience. We have proposed a frame-



Fig. 3. Frequency of shared vertices across fMRI and dMRI for session1 and session2 computed
for individual subjects (i.e. M = 1) (two first columns) and session1 and session2 computed for
the population study (i.e. M = 22) (two last columns). Red signifies regions that are significantly
shared and blue regions that are significantly unshared across the subjects.

work which allows for joint modelling of different network types and inference of ver-
tices which share structure.

The model was evaluated on fMRI and dMRI data derived from 22 subjects. Using
two scans of each data type per subject we demonstrated the inferred structure and pat-
terns of shared vertices could be recovered in a reliable way both across data splits and
within subjects, specifically we demonstrated (i) significant sharing in the cerebellum
and frontal cortex as well as significantly differences in parietal and temporal lopes (ii)
the model was on par with the best performing fully-shared and fully-unshared models
in link-prediction and the number of components and mutual information fell between
the fully-unshared and fully shared models. Finally, we observed that the model which
shares node partitions across subjects better predicts network structure than models with
individual subject node partitions.

Our model provides a principled unsupervised framework for establishing structure-
function relationship in brain networks. We believe this is a crucial property for models
of the relation between these data modalities and it may advance our understanding on
the relationship between the functional and structural organization of the brain in both
healthy and clinical populations.

References

1. D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee. Spatial transformations of diffusion
tensor magnetic resonance images. Medical Imaging, IEEE Transactions on.

2. T. E. J. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-Berg, R. G. Nunes, S. Clare,
P. M. Matthews, J. M. Brady, and S. M. Smith. Characterization and propagation of uncer-



tainty in diffusion-weighted MR imaging. Magnetic resonance in medicine: Official jour-
nal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in
Medicine, 50(5):1077–88, Nov. 2003.

3. F. D. Bowman, L. Zhang, G. Derado, and S. Chen. Determining Functional Connectivity
usying fMRI Data with Diffusion-Based Anatomical Weighting. NeuroImage, May 2012.

4. E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.

5. A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated
multi-modality image registration based on information theory. In Information processing in
medical imaging, volume 3, pages 264–274, 1995.

6. M. Filippi and F. Agosta. Structural and functional network connectivity breakdown
in Alzheimers disease studied with magnetic resonance imaging techniques. Journal of
Alzheimer’s disease : JAD, 24(3):455–74, Jan. 2011.

7. M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone. Graph theoretical analysis of structural
and functional connectivity MRI in normal and pathological brain networks. Magma (New
York, N.Y.), Mar. 2010.

8. C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hag-
mann. Predicting human resting-state functional connectivity from structural connectivity.
Proceedings of the National Academy of Sciences, 106(6):2035, 2009.

9. P. Jezzard and R. S. Balaban. Correction for geometric distortion in echo planar images from
bo field variations. Magn Reson Med, 34(1):65–73, 1995.

10. H. Johansen-Berg, T. E. J. Behrens, M. D. Robson, I. Drobnjak, M. F. S. Rushworth, J. M.
Brady, S. M. Smith, D. J. Higham, and P. M. Matthews. Changes in connectivity profiles de-
fine functionally distinct regions in human medial frontal cortex. Proceedings of the National
Academy of Sciences of the United States of America, 101(36):13335, 2004.

11. C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of
concepts with an infinite relational model. In Proceedings of the national conference on
artificial intelligence, volume 21, page 381, 2006.
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