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Abstract

Modeling of resting state functional magnetic resonance imaging (rs-fMRI)

data using network models is of increasing interest. It is often desirable to

group nodes into clusters to interpret the communication patterns between

nodes. In this study we consider three different nonparametric Bayesian

models for node clustering in complex networks. In particular, we test their

ability to predict unseen data and their ability to reproduce clustering across

datasets. The three generative models considered are the Infinite Relational
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Model (IRM), Bayesian Community Detection (BCD), and the Infinite Di-

agonal Model (IDM). The models define probabilities of generating links

within and between clusters and the difference between the models lie in the

restrictions they impose upon the between-cluster link probabilities. IRM

is the most flexible model with no restrictions on the probabilities of links

between clusters. BCD restricts the between-cluster link probabilities to be

strictly lower than within-cluster link probabilities to conform to the com-

munity structure typically seen in social networks. IDM only models a single

between-cluster link probability, which can be interpreted as a background

noise probability. These probabilistic models are compared against three

other approaches for node clustering, namely Infomap, Louvain modularity,

and hierarchical clustering. Using 3 different datasets comprising healthy

volunteers’ rs-fMRI we found that the BCD model was in general the most

predictive and reproducible model. This suggests that rs-fMRI data exhibits

community structure and furthermore points to the significance of modeling

heterogeneous between-cluster link probabilities.

Keywords: complex network, graph theory, infinite relational model,

Bayesian community detection, resting state fMRI

Highlights

1. Three nonparametric Bayesian models for node clustering are used to

model rs-fMRI.

2. Models’ predictability and reproducibility are extensively evaluated using

resampling.

3. The community structure model shows better predictability and repro-
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ducibility.

4. This finding suggests that rs-fMRI graphs exhibit community structure.

5. Modeling between-cluster link probabilities adds important information.

1. Introduction1

Analysis of resting state functional magnetic resonance imaging (rs-fMRI)2

has emerged as a powerful research tool to study whole-brain functional con-3

nectivity. Since rs-fMRI provides information about intrinsic fluctuations in4

functional connectivity within and among brain networks, many conventional5

analysis schemes applied in task-related fMRI studies are irrelevant. Hence,6

a number of new techniques have been developed based on identification of7

stable spatio-temporal multivariate structure in the brain wide set of blood8

oxygen level dependent (BOLD) time series.9

Using correlation methods or flexible multivariate techniques like inde-10

pendent component analysis (ICA) it has been shown that the BOLD sig-11

nals of distant brain regions are coordinated suggesting interaction as they12

form so-called resting-state networks. The number and precise definition of13

these networks are controversial but several networks are broadly accepted,14

including the default mode network, motor network, visual network, fronto-15

parietal, dorsal attention network (Damoiseaux et al., 2006). In addition to16

signals reflecting neuronal activity, the BOLD signal may be contaminated17

by physiological noise stemming from respiratory and cardiac cycles and head18

motion (Birn et al., 2006; Power et al., 2014).19

Complex network analysis is a very active research field (Barabási, 2003)20
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that has already found application in neuroimaging and in modeling resting21

state connectivity (Bullmore and Bassett, 2011; Sporns, 2011). The basic22

object is the ’network graph’. When applied to neuroimage analysis the23

network graph is formed by brain regions represented as nodes. Nodes are24

connected by a link if brain regions are co-activated above a certain threshold.25

In rs-fMRI co-activation is often measured simply by calculating correlation26

between time series.27

Network structure can be studied at many levels, from local motifs to28

global features like scale free link distributions signifying long-range coordi-29

nation (van den Heuvel et al., 2008). Likewise, dense connections between30

high degree nodes is referred to as ’rich club organization’ (van den Heuvel31

and Sporns, 2011). At the intermediate level we may identify clusters of32

highly linked nodes, i.e., high within-cluster link density and low link den-33

sity to nodes in other clusters. By analogy to social networks such groups34

are referred to as communities. The presence of community structure in a35

network can be quantified by the global modularity index (Newman, 2006).36

Modularity can also be used to identify communities, i.e., by clustering nodes37

such that the modularity index is maximized (Newman, 2006; Lehmann and38

Hansen, 2007). Bassett et al. (2011) showed that ’flexibility’, a measure for39

the number of cluster-assignment changes for nodes in a modularity opti-40

mized node-partition across time, is predictive for the amount of learning in41

a motor task in a subsequent session. Stevens et al. (2012) showed that mod-42

ularity predicts visual working memory capacity, and Meunier et al. (2009)43

found that modularity is reduced during normal aging. Likewise, evidence44

is emerging that global modularity can be used as a bio-marker. For in-45
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stance patients with childhood-onset schizophrenia have reduced modularity46

of their resting state networks (Alexander-Bloch et al., 2010). However, fo-47

cusing on modularity as the single summary of a complex network may be48

overly simplistic as the modularity measure does not account for variability49

in the inter-linking relations between functional clusters. Hence, modularity50

driven clustering might not reveal all salient aspects of community structure51

in a network. Indeed, modularity has been criticized for its lack of flexibility52

as a measure of community structure (Fortunato and Barthélemy, 2007).53

A better understanding of this important mid-level structure in brain net-54

works requires methods that can capture more informative representations55

of community structure. For this we turn to a family of expressive generative56

network models. Relational Models are statistical generalizations of graph57

clustering that consider not only the within-cluster density but also take58

the specific relations between clusters into consideration. The Infinite Rela-59

tional Model (IRM) (Kemp et al., 2006; Xu et al., 2006) is a non-parametric60

generalization of the stochastic block model (Nowicki and Snijders, 2001),61

for inference of such generalized group structure in complex networks. As62

the IRM representation considers both linking within and between groups,63

a highly inter-linked group of nodes could in fact be clustered in different64

groups if they link in different ways to other clusters, i.e., the IRM can infer65

more general group structures beyond the conventional community structure.66

An additional feature of the IRM type of model is that it conveniently allows67

for analysis of multi-graph networks, which for neuroimaging data could be68

graphs from multiple sessions or subjects. For multi subject analysis one69

could look for a common node clustering structure over subjects but allow70
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individual subject cluster linking densities (Mørup et al., 2010) or test the71

hypothesis that both clustering and link structure are shared between all72

subjects (Andersen et al., 2012b).73

A constrained variant of the IRM representing the community structure74

of graphs in the sense of grouping highly connected node sets was proposed75

recently by Mørup and Schmidt (2012). The Bayesian Community Detection76

(BCD) scheme restricts the between-cluster link densities to be strictly lower77

than within-cluster link densities, thus constraining the more general IRM to78

conform with the notion of a community in a social network. Another con-79

straint is introduced by the so-called Infinite Diagonal Model (IDM) (Mørup80

and Schmidt, 2012; Schmidt and Mørup, 2013). The IDM allows for differ-81

ential within-cluster link densities but models only a single between-cluster82

density and as such the variability in the link densities between clusters is83

neglected when inferring the clustering structure. Since the between-cluster84

link density is shared across clusters, it can be thought of as a background-85

noise density.86

It should be noted that certain metrical properties can be expected when87

basing the graph on simple time series correlation, thereby assuming station-88

arity. If a node A is highly correlated with node B, and B is highly correlated89

with C, then there is a lower limit on the correlation between nodes A and90

C which can be inferred by the triangle inequality (Zalesky et al., 2012).91

This bound will support the formation of community structure, as in so-92

cial relations: ’Friends of friends are friends’, however, we also note that by93

thresholding the correlation, the impact on the community structure of these94

geometrical constraints is non-trivial.95
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Spatial grouping of brain regions by similarity of BOLD time series as96

pursued in the present work can be seen as complementary to classical ap-97

proaches to spatial grouping such as time series clustering (Goutte et al.,98

1999) and independent component analysis (ICA) (McKeown et al., 1998,99

2003). Compared with conventional clustering, the relational modeling ap-100

proach has the advantage that clusters are formed by considering the connec-101

tivity patterns both within and between clusters, and furthermore relational102

models avoid the formation of a group prototype, hence allow for more flexible103

group structures to be found (Kemp et al., 2006). The use of ICA is based104

on assumptions of independence either in spatial or temporal dimensions,105

which can be questioned in the resting state as it has been observed that106

components are negatively correlated in time and have extensive overlaps in107

space (Fox et al., 2005).108

In this study, we apply the above-mentioned community detection sche-109

mes to rs-fMRI data acquired in three cohorts of healthy volunteers and in-110

vestigate to which degree functional brain networks as measured by rs-fMRI111

exhibit community structure. The three Bayesian relational methods, i.e.112

IRM, BCD, and IDM, for inference of group structure in complex networks113

differ only in the way the link probabilities between clusters are modeled. The114

rich link structures of the relational models can be seen as a way of inferring115

functional integration at the inter-community level as discussed in (Hagmann116

et al., 2008; Sporns, 2013). We evaluate the performance of these models with117

respect to their ability to predict out-of-sample data (predictability) and the118

robustness of their clustering under re-sampling of data (reproducibility) us-119

ing the NPAIRS split-half framework (Strother et al., 2002). The evaluation120
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is carried out on three datasets from different sites and the models are eval-121

uated both within and between sites for several thresholds of the correlation122

matrices. In addition, we compare the three models with three other meth-123

ods for grouping nodes into clusters, namely Infomap, Louvain modularity,124

and hierarchical clustering. The work in this paper builds on work presented125

in (Andersen et al., 2012b).126

2. Methods127

For generality we investigate three rs-fMRI datasets. One dataset ac-128

quired locally at the Danish Research Centre for Magnetic Resonance (Copen-129

hagen) and two other rs-fMRI datasets publicly available in the FCON1000130

database (Biswal et al., 2010) (viz., the ’Beijing’ and the ’Leipzig’ datasets).131

2.1. Copenhagen data132

The Copenhagen dataset included 30 healthy controls with no history133

of neurological or psychiatric disease. At the day of scanning all subjects134

were asked to refrain from caffeine, cigarettes or alcohol intake at least six135

hours prior to the scanning session. All subjects gave written informed con-136

sent prior to scanning and the study was approved by the local scientific137

ethics committee of Copenhagen and Frederiksberg Communities (protocol138

no. KF01 - 131/03 with addendum). The Edinburgh handedness inventory139

(Oldfield, 1971) revealed that all participants except two were right handed.140

All MRI measurements were performed on a 3.0 Tesla Magnetom Trio141

scanner (Siemens, Erlangen, Germany). Each participant underwent an MRI142

session including a structural scan as well as a functional scan during rest143

both with full brain coverage. During the functional scan subjects were144
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instructed to rest with their eyes closed without falling asleep, and refrain145

from any voluntary motor or cognitive activity.146

The first scan during each session was the rs-fMRI functional scan which147

consisted of a T2* weighted echo planar imaging (EPI) sequence with a148

repetition time of 2490 ms, echo time 30 ms and flip angle 90 degrees. Over149

a period of 20 minutes we collected 480 brain volumes each consisting of 42150

axial slices with an isotropic resolution of 3 mm, field of view (FOV): 192x192151

mm. During scanning we monitored the subjects cardiac and respiratory152

cycles using an infrared pulse oximeter and a pneumatic thoracic belt. The153

structural scan was based on a magnetization prepared rapid gradient echo154

(MPRAGE) sequence with the following parameters: Repetition time (TR)155

= 1550 ms, echo time (TE) = 3.04 ms, inversion time (IT) = 800 ms; 192156

sagittal slices; 1 mm isotropic resolution; FOV = 256 mm; flip-angle = 9157

degrees.158

The functional images were preprocessed using statistical parametric map-159

ping software (SPM8, Wellcome Trust Centre for Neuroimaging, http://160

www.fil.ion.ucl.ac.uk/spm) implemented in Matlab 7.9 (MathWorks, Mas-161

sachusetts, USA). In order to allow stabilization of T1 equilibrium effects we162

discarded the first five volumes prior to analysis. The remaining 475 brain163

volumes were realigned to the time-series mean using a two-step procedure164

and then co-registered to the same-session T1-weighted MPRAGE scan by165

a 6-parameter rigid-body transformation. The T1-weighted scan was spa-166

tially normalized to the Montreal Neurological Institute (MNI) 305 standard167

template using the unified segmentation/normalisation procedure as imple-168

mented in SPM8 (Ashburner and Friston, 2005). Subsequently the same169
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normalisation parameters were used to normalise the EPI images.170

Both hardware instability and unwanted physiological effects (such as car-171

diac pulsation and respiration) produce signal changes in fMRI time-series172

(Smith et al., 1999; Dagli et al., 1999; Glover et al., 2000; Lund et al., 2006).173

These signal changes may give rise to signal fluctuation resembling those typ-174

ically observed in rs-fMRI data (Birn et al., 2006). In order to reduce these175

effects prior to extraction of time series for the regions of interest we applied176

comprehensive temporal filtering of cardiac, respiratory and motion related177

effects. The filter included a high-pass filter based on discrete cosine basis178

functions (cut-off frequency 1/128 Hz). Cardiac and respiratory cycles were179

modeled using Fourier expansions of the aliased cardiac (10 parameters) and180

respiratory (6 parameters) cycles as well as first order cardiac by respiration181

cycles interaction (4 parameters) effects (Glover et al., 2000). Residual mo-182

tion effects (24 parameters) were modeled using a Taylor expansion of the183

estimated movement parameters including spin-history effects (Friston et al.,184

1996). Changes in the respiration volume over time has been demonstrated185

to produce signal changes resembling those observed in rs-fMRI (Birn et al.,186

2006). We model these changes by included 41 time delayed versions (time187

delay between 20 and -20 seconds in one second intervals) of the respiration188

volume. Finally the filter included individual time series from cerebrospinal189

fluid voxels and white matter voxels from both the right and left hemispheres.190

In total the linear filter included 108 regressors leaving 367 degrees of freedom191

for the data.192
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2.2. Beijing and Leipzig data193

Two other datasets were used from the FCON1000 database (Biswal et al.,194

2010) (http://fcon_1000.projects.nitrc.org). See Appendix A for a195

list of subjects used. The Beijing dataset consists of 42 of the subjects196

from the Beijing Zang set. The dataset is recorded with 33 slices using197

TR=2000ms and with 225 brain volumes. The Leipzig dataset consists of 37198

subjects (21 females), ages 20-42, TR=2300ms, 34 axial slices, and 195 brain199

volumes. For both datasets the first 5 volumes had already been discarded.200

Preprocessing was done in SPM8 and included realigning to time-series mean201

for motion correction and normalising to standard MNI space using the tem-202

plate EPI image included in SPM.203

2.3. Graph construction204

We extracted the mean signal in each of the 116 regions covered in the205

AAL database (Tzourio-Mazoyer et al., 2002) and constructed the correla-206

tion matrix for each subject. Since this matrix is symmetric only the upper207

diagonal is further considered. Each subject’s correlation matrix was bina-208

rized at an individual level to maintain the highest d-percent correlations209

corresponding to having a graph link density at d-percent. After threshold-210

ing an adjacency matrix A is retrieved where Ai,j is the (i, j)-th element of211

A and Ai,j = 1 if there is a link between nodes i and j and Ai,j = 0 other-212

wise. Since we model multiple subjects, A(n) denotes the adjacency matrix213

corresponding to subject n.214
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2.4. The models215

This section will provide an overview of the models considered in this216

paper. For a more in depth description please refer to (Schmidt and Mørup,217

2013). The goal is to group nodes into non-overlapping clusters, such that218

a common node-clustering across subjects is retrieved. Let z be the vector219

of nodes assignments where zi takes the integer value corresponding to the220

cluster index node i belongs to. The models used are all generative models221

meaning that given the model definition and the model parameters one can222

generate new graphs by drawing samples from the model. The models differ223

in the way they model the link probability between and within clusters. Let224

ρk,l represent the link probability between clusters k and l. Since we here225

consider undirected graphs ρ is symmetric.226

2.4.1. The Infinite Relational Model227

In IRM link probabilities within and between clusters are modeled in-228

dividually and without restrictions. As such the model allows for complex229

relations between clusters, and thus allows for flexible clustering of nodes.230

Consider generating graphs from this model. The first step is to draw as-231

signments of nodes into clusters, which is done using the Chinese Restaurant232

Process (CRP) (Aldous, 1985) using the hyper-parameter α. The CRP gener-233

ates a cluster assignment, where α controls the number of clusters generated,234

where larger α will generate more clusters. Next, the link probabilities within235

and between clusters ρk,l are generated from the symmetric Beta distribu-236

tion using the hyper-parameter β. Finally, the cluster assignments and the237

link densities are used to generate links between nodes. This is done using238

the Bernoulli distribution, where the probability of a link (success) between239
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nodes i and j is determined by the clusters (zi and zj) the nodes belong to.240

The generative model can be summarized as:241

Infinite Relational Model

Cluster assignments: z ∼ CRP(α)

Link probabilities: ρk,l ∼ Beta(β, β)

Links: A
(n)
i,j ∼ Bernoulli(ρzi,zj)

In Appendix B.1 we derive the likelihood function for the IRM which is used242

in model inference.243

2.4.2. Infinite Diagonal Model244

The model termed Infinite Diagonal Model (IDM) (Mørup and Schmidt,245

2012) is a special case of the IRM where link probabilities between clusters246

are constrained to be equal. As such, the IDM does not model the relation247

between clusters but has a constant background link probability. The only248

difference in terms of the model formulation is then249

ρk,l =

 ρk,k if k = l

ρb otherwise.
250

2.4.3. Bayesian Community Detection251

A network community is defined as a group of nodes with more dense link-252

ing internally than externally. The Bayesian Community Detection (BCD)253

model proposed in (Mørup and Schmidt, 2012) enforces larger within-cluster254

link probabilities than between-cluster link probabilities. Like IRM, the clus-255

ter assignments are first generated using the CRP. A cluster-gap is then256
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drawn from a symmetric Beta distribution with hyperparameter v. The257

within-cluster link probabilities are then drawn for each cluster again us-258

ing the Beta distribution. The between-cluster link probabilities are subse-259

quently drawn using the incomplete Beta distribution BetaInc(a, b, x) con-260

strained to the interval [0, x], with the density, p(θ) = 1
Bx(a,b)

θa−1(1 − θ)b−1,261

where Bx(a, b) is the incomplete beta function. Thus, a draw from the in-262

complete Beta distribution will return a value between [0, x], which can then263

be used to control the maximal value the between-cluster link probability can264

take. By setting x to the cluster-gap times the within-cluster link probability,265

the between-cluster link probability between two clusters k and l can then266

at most be as high as the smaller of the two within-cluster link probabilities267

multiplied by the cluster gap. The lower the gap-value the higher difference268

in within and between-cluster link probability. Finally, links are drawn using269

the Bernoulli distribution just like the other models. The generative model270

for BCD can thus be summarized as:271

Bayesian Community Detection

Cluster assignments : z ∼ CRP(α)

Cluster gap : γ ∼ Beta(v, v)

Link probability : ρk,l ∼

 Beta(β, β) if k = l

BetaInc(β, β, wk,l) otherwise.

where wk,l = min[γρll, γρkk]

Links : A
(n)
i,j ∼ Bernoulli(ρzi,zj)
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2.5. Example 1272

For illustration we generate a graph consisting of 50 nodes from each of273

the three models with α = 5, β = 1. For the BCD model we set v = 1.274

Figure 1 shows the generated graphs. The plots are a combination of both275

the cluster assignment matrix, the adjacency matrix, and the link probability276

matrix. The adjacency matrix A is plotted, where links between nodes are277

indicated by small black dots. Cluster membership is indicated with the278

colors to the left and top of the adjacency matrix and the link probability279

matrix is indicated with gray shaded background. For IRM there are no280

restrictions in the link probability values, resulting in some between-cluster281

link probabilities being larger than within-cluster link probabilities. For the282

BCD model the between-cluster link probability between two clusters are283

restricted to be smaller than the within-cluster link probability times the284

gap. The gap was drawn from the Beta distribution and in this case the gap285

is γ = 0.96. For the IDM model all the between-cluster link probabilities are286

equal meaning that clusters are only defined in the way they link internally287

in the clusters.288

2.6. IRM and IDM model inference289

In the previous sections we defined the generative models, which allow290

one to generate data by sampling from the model. However, we are inter-291

ested in inferring the model parameters given the data. By using the model292

definition the joint likelihood can be written and by using Bayes theorem293

an expression for the posterior distribution can be found. It is then possible294

to sample from this posterior distribution using Markov chain Monte Carlo295

sampling (MCMC) methods. For IRM and IDM the link probabilities can296
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IRM BCD IDM 

Figure 1: Example 1. Figure illustrating data drawn from each of the three models, IRM,

BCD, and IDM respectively. Plots illustrates both the adjacency matrix A (links indicated

by small black squared dots), cluster membership z as color codes to the left and top of the

adjacency matrix, and link probability matrix ρ as gray shading of the matrix elements.

analytically be integrated out which means that we only have to sample over297

the node assignments. For that Gibbs sampling in combination with split-298

merge Metropolis-Hastings updates (Jain and Neal, 2004; Kemp et al., 2006;299

Mørup et al., 2010) is used. Below is a description of these two steps.300

Gibbs sampling is a Markov-chain Monte Carlo sampling method. For301

each scan of the Gibbs sampler each node’s cluster assignment is updated302

using the conditional distribution of that node’s assignment given the as-303

signments of the remaining nodes. For IRM the conditional distribution is304

derived in Appendix B.1 (equation B.2) and for IDM it is derived in Ap-305

pendix B.2 (equation B.3).306

Given the incremental nature of the Gibbs sampling algorithm it has307

difficulties escaping local maxima of the probability landscape. For instance308

it is hard to split a single cluster into two new clusters since this requires309

that nodes are moved one at a time from a cluster to the other cluster. To310
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overcome this we use a restricted split-merge sampling scheme (Jain and311

Neal, 2004), which potentially merges two existing clusters into one or split312

a single cluster into two clusters. At each step of the algorithm two nodes313

are selected at random with uniform probability. If the two selected nodes314

currently are assigned different clusters then an assignment is proposed where315

these two clusters are merged into one cluster. On the contrary, if these316

two selected nodes are currently assigned to the same cluster then a new317

assignment is proposed where all nodes assigned to this cluster are split into318

two separate clusters. The split-proposal is found using a restricted Gibbs-319

sampling procedure. First a launch state is found by allocating the two320

nodes to two different empty clusters as proposed in (Dahl, 2005). Then321

remaining nodes are in random order assigned to either of the two clusters322

based upon their conditional probability. This state is then referred to as the323

launch state. The launch state is refined by restricted Gibbs sampling steps324

where nodes from the two new clusters can be re-assigned either of the two325

clusters based on the conditional probability (equation B.2 and B.3). This326

procedure is restricted because only nodes from the cluster from which the327

nodes originally came from are re-assigned and they can only be assigned to328

either of the two new clusters. The proposed configuration is then sampled329

from the launch state. If this proposed state z∗ in the Markov chain is330

accepted with the Metropolis-Hasting acceptance probability a(z∗, z) then331

this becomes the new state else the old state z is kept as the new state.332

The acceptance probability is given as a(z∗, z) = min
[
1, q(z|z

∗)
q(z∗|z)

π(z∗)
π(z)

]
, where333

π(z) = P (A|z)P (z) (please see Appendix B) and q(z∗|z) is the probability334

of transition from z to z∗. For further detail about the split-merge sampling335
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please refer to Jain and Neal (2004).336

2.7. BCD model inference337

In IRM and IDM we are able to marginalize link probabilities (ρ) out.338

This is not the case in BCD because between-cluster link probabilities are339

dependent of the within-cluster link probabilities. However, the vast ma-340

jority of the parameters, namely the between-cluster link probabilities, can341

be integrated out (Appendix B.3). The remaining parameters z, ρ̇, and γ342

are sampled using MCMC, where ρ̇ refer to the within-cluster link proba-343

bilities (the diagonal of ρ). The within-cluster link probabilities and cluster344

gaps are sampled with Metropolis-Hastings. The cluster assignments z are345

like the IRM sampled with Gibbs sampling and split-merge moves, however346

new possible values for the within link probabilities and cluster gaps are first347

drawn from their prior. In Appendix B.3 we derive the conditional distribu-348

tions used in the sampling. For further information please see (Mørup and349

Schmidt, 2012).350

2.8. Example 2351

We illustrate differences in cluster assignments and link probabilities in-352

ferred by each of the three models. We generate a synthetic graph with353

40 nodes, 10 nodes in each of four clusters. The example is designed such354

that cluster1 and cluster2 share the same within and between-cluster link355

probabilities, however only cluster2 is connected with cluster3. Cluster3 and356

cluster4 have low within-cluster probabilities but high between-cluster link357

probability. Cluster3 and cluster4 are not connected to cluster1 and clus-358

ter2. The first row in Figure 2 show the true assignment vector (z) coded as359
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a 1-of-n matrix and the true link probabilities. The next rows show the as-360

signments and link probabilities inferred by the IRM, BCD, and IDM models361

respectively. Except for a single node IRM finds the correct grouping struc-362

ture. BCD assigns the first two clusters correctly and mislabels the same363

node as IRM, but BCD has difficulties with the remaining nodes because the364

true model has higher between-cluster than within-cluster link probabilities.365

Since IDM does not model the between-cluster link probabilities, it groups366

the first two clusters together and the next two clusters together.367

2.9. NPAIRS Evaluation Criteria368

To evaluate the performance of the models, we used the NPAIRS split-369

half evaluation framework (Strother et al., 2002). Under this framework370

the set of subjects were split into two half-splits (S1 and S2) and models371

were inferred on each half-split enabling us to estimate the predictability372

and reproducibility of the models. The models’ predictability was evaluated373

using test log likelihood. The node assignment and link probabilities from374

the sample with the highest value of the posterior distribution were used to375

calculate the test log likelihood of the other split. The test log likelihood376

was calculated for both splits (with the other split as training data) and377

the average test log likelihood was calculated and used as the predictability378

measure. The test log likelihood for split S2 (using the model parameters379

inferred using split S1) was calculated by380

logP (AS2,(1), ...,AS2,(N)|ρ, z) =381

1

N

N∑
n=1

∑
j>i

[
A

S2,(n)
i,j log(ρzi,zj) + (1− AS2,(n)

i,j ) log(1− ρzi,zj)
]
. (1)382

19



ρ
z

T
R

U
E

IR
M

B
C

D
ID

M

Figure 2: Example 2. First row show the true assignments coded as a 1-of-n matrix and

the true link probabilities. The next rows show the structure and link probabilities inferred

by IRM, BCD, and IDM respectively.

We measured the reproducibility of the models using normalized mutual in-383

formation between assignment matrices (zS1 and zS2) of the sample with the384

highest value of the posterior distribution inferred using the two different385

splits.386

NMI =
2MI(zS1, zS2)

MI(zS1, zS1) + MI(zS2, zS2)
, (2)387
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where388

MI(zS1, zS2) =
D1∑
k=1

D2∑
l=1

p(zS1 = k, zS2 = l) log

(
p(zS1 = k, zS2 = l)

p(zS1 = k)p(zS2 = l)

)
, (3)389

where D1 and D2 are the number of clusters inferred using S1 and S2, re-390

spectively.391

The model used in e.g. Mørup et al. (2010) used individual subject link392

probabilities, that is, each subject was modeled with her own link proba-393

bility matrix while sharing the node assignments z. This allows for subject394

variability in the communication between clusters and can be used to test395

for differences in subject populations. However, here we are interested in the396

models’ predictive abilities, that is, how well can a model and its parame-397

ters learned from a sub-group of subjects predict the graphs from another398

group of subjects. Therefore we do not model individual subject link den-399

sities but constrain ρ to be common across subjects. The derivation of the400

models (Appendix B.1) reveals that this amounts to simply summing the401

adjacency matrices across subjects
∑

nA
(n) = Atot. This means that under402

this restricted model definition inference of the latent variables of the model403

does not scale with the number of graphs (subjects) and therefore our model404

formulation allows for analysis of large numbers of subjects.405

2.10. Experiments406

The initial assignment of nodes to clusters might affect the final cluster-407

ing, so we did some initial experiments with different number (1, 20, 50, or408

116) of initial clusters (data not shown). For IRM and BCD, the similarity409

between different choices were in general very high (mean NMI > 0.95) with410

a tendency of generating more clusters when initializing all nodes in its own411
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cluster. For the IDM the initialization had a greater impact on the final412

clustering. Initialization in few (1 or 20) clusters showed greater variabil-413

ity in the final clustering whereas initialization in 50 or 116 clusters showed414

more stable final clustering. Thus to compromise, in all the experiments de-415

scribed below, nodes were randomly assigned to one of 50 clusters and the416

sampler ran for 500 iterations. The sample with the highest value of the417

posterior distribution was then used as representative for a given run. In all418

experiments α = β = 1.419

2.10.1. Estimated clusters420

To inspect the clustering of the different models, the inference procedure421

was launched 10 times for each model using the graph link density d = 8%422

and the sample with the overall highest value of the posterior distribution423

across the 10 runs was visualized. The reproducibility measured as the mean424

NMI between the samples with the highest value of the posterior distribution425

for each run was calculated. As the inference is stochastic, this measures the426

methods’ ability to reproduce clusterings for different restarts. Likewise, the427

clustering similarity between the methods was also estimated by calculating428

the mean NMI between each pair of the 10 solutions found.429

In addition, we investigated the impact on different choices of graph link430

density. For each of the densities d = 2%, 4%, 8%, 16%, 32% we launched431

the inference 10 times for each model and estimated the mean NMI between432

densities within each model. The clustering with the highest value of the433

posterior distribution for each density was visualized for the BCD model.434

These experiments used all the subjects from the Copenhagen dataset.435
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2.10.2. Predictability and reproducibility436

We asked how well the clusterings reproduce between datasets and how437

well the models predict new data. To this end, we evaluated the models us-438

ing the NPAIRS framework. Subjects were randomly split into two equally439

sized groups and model inference was conducted on each split. The highest440

posterior distribution sample was identified for the two splits and NMI be-441

tween clusterings was calculated as a measure of the models’ reproducibility.442

Using the estimated link probability matrix and assignment from the sam-443

ple with the highest value of the posterior distribution of one split, the test444

log likelihood for the other split was calculated as a measure of the models’445

predictability. This was done for 100 different half-splits of the Copenhagen446

dataset using 8% graph link density.447

2.10.3. Predictability and reproducibility for various link densities448

For further evaluation of the methods the analysis were repeated within449

each of the three datasets as well as between the datasets for graph link450

densities of d = 2%, 4%, 8%, 16%, 32%. For analysis done within each in-451

dividual dataset the subjects were randomly split in half. For the between452

dataset analysis, inference was done within each dataset and NMI and test453

log likelihood was calculated between datasets. For each link density the log454

likelihood ratio was calculated as the log likelihood of a random Erdős-Rényi455

model having the considered link density divided by the log likelihood of456

the inferred model. This makes the predictability measure more comparable457

between link densities, however, we note that the log likelihood cannot di-458

rectly be compared for different link densities as the data itself changes when459

changing the link densities.460
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We compare the Baysian methods with two of the best community detec-461

tion algorithms (Fortunato, 2010) as well as with a simple method based on462

hierarchical clustering. The first method is Infomap (Rosvall and Bergstrom,463

2008) using the C++ implementation available from http://www.mapequation.464

org/. Infomap has previously been used for fMRI networks, see e.g. (Power465

et al., 2011). The second method is the so-called Louvain method (Blondel466

et al., 2008) as implemented in the Brain Connectivity Toolbox (https:467

//sites.google.com/site/bctnet/) (Rubinov and Sporns, 2010). This468

method is based on modularity optimization. The third method is the ag-469

glomerative hierarchical clustering based on average linkage using the Matlab470

function ’linkage’. For this method we formed clusters by thresholding the471

hierarchical tree at the distance 0.9.472

To obtain a single clustering across a group of subjects we ran the meth-473

ods on the summed adjacency matrix across the subjects in each half-split.474

This summed adjacency matrix is also used for inference in the probabilistic475

models (as noted in section 2.9), which therefore allows for a comparison476

between methods. To compare the results from these three methods we treat477

the clustering found as it was produced by the IRM and thus calculate the478

link probabilities between clusters as it was done for the IRM model. This al-479

lows us to calculate the predictability for unseen data as described in Section480

2.9. In addition to the predictability and reproducibility we also evaluate481

the modularity index for all methods. The modularity index is given as482

Q = Tr(ZBZ>)/2m where Z is 1-of-D encoding matrix of the link assign-483

ment vector z and m is the number of links in the graph. B = A−(kk>)/2m484

is the modularity matrix where k is the vector of node degrees.485

24



3. Results486

3.1. Estimated clusters487

We thresholded the graphs to maintain the top 8% correlations. The488

threshold correspond to a mean (std) p-value across subjects of 4.75∗10−5 (1.80∗489

10−4). The reproducibility between solutions found with different restarts490

was measured as the NMI between the sample with the highest value of the491

posterior distribution for each run. This was done within all three methods492

and between the methods and results are shown in table 1 along with the493

number of clusters estimated by each of the methods. For all three meth-494

ods the clustering for different initializations showed a very high consistency495

as the NMI was greater than 0.96 for all methods. Also, the number of496

estimated clusters was very consistent within method, but showed a great497

between method variability where IRM estimated on average 35.7 clusters,498

BCD estimated 41.0 and IDM estimated only 18.8. For BCD the mean (std)499

gap parameter was estimated to 0.88 (0.02). The IRM and BCD clusterings500

were found to be very similar with a mean NMI of 0.94. The IDM clustering,501

however, was less similar to the other two methods with a mean NMI of 0.76502

and 0.75 to IRM and BCD respectively.503

In figure 3 the samples with the highest value of the posterior distribution504

across the 10 runs for each method are visualized. The first column shows505

the link probability matrix ρ which has been permuted such that clusters506

with the greatest overlap between methods are first. The labels for the clus-507

ters can be found in Appendix C. The matrix elements are color-coded in508

grey-scale according to the value of the link probabilities and the size of the509

matrix elements indicate the size of the clusters. The first 5 clusters were510
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Method IRM BCD IDM Mean (std) D

IRM 0.96 (0.01) - - 35.7 (1.25)

BCD 0.94 (0.01) 0.96 (0.02) - 41.0 (2.05)

IDM 0.76 (0.02) 0.75 (0.01) 0.97 (0.02) 18.8 (1.14)

Table 1: The mean(std) of normalized mutual information (NMI) between the clustering

of 10 runs within and between method along with the number of clusters (D) estimated

with each of the three methods IRM, BCD, and IDM.

identical between the three methods. The next 12 clusters were identical511

between IRM and BCD while IDM had all these clusters in one large cluster.512

When looking at the link probabilities between these 12 clusters it is evident513

that there is a high link probability within and between these nodes, but sub-514

tle differences exist between the different clusters which caused the IRM and515

BCD to cluster them into separate clusters. Since IDM does not consider the516

between-cluster link probabilities these clusters were grouped together in the517

IDM method. The same was true for the next 6 clusters which were identical518

for the IRM and BCD and all lumped together in the IDM model since the519

link probabilities between these clusters were relatively high. The next three520

columns show the found clusters in posterior, lateral and superior views of521

the brain. The clusters are colored according to the colors shown next to522

the link probability matrices (and the labels given in Appendix C). Brain523

regions within clusters are connected with lines where line thickness indicates524

the average link density over subjects for the specific connection. This figure525

shows that the IRM and BCD clusterings were very similar. In general, these526

two methods produced clusters with relatively few nodes and grouped inter-527

hemispheric homologues areas together. IDM also grouped interhemispheric528
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homologues areas together, however, as just described this method does not529

consider specific relations to other brain areas, which resulted in larger and530

rather unspecific clusters. For instance the cluster colored in turquoise is a531

cluster made up of 34 nodes including nodes in frontal, occipital, parietal,532

and temporal lobes.533
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IRM BCD IDM

Figure 3: The extracted clusters using the three methods IRM, BCD, and IDM respec-

tively. The first row shows the link probability matrices ρ, which have been permuted such

that the order of the clusters corresponds across methods. The matrix elements are color-

coded according to the value of the link probabilities and the size of the matrix element

indicates the size of the respective cluster. The colors next to the matrices correspond to

different clusters. The next three rows show the clusters in three different views (superior,

posterior, and lateral) of the brain. The clusters are color coded according to the colors

next to the link probability matrices and node assignment for each node can be found

in Appendix C with the same color as plotted here. Different brain regions within each

cluster are connected with lines where the thickness of the line indicates the average link

density across subjects for the specific connection.
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In figure 4 we show an example cluster and its connectivity to other534

clusters. A cluster composed of left and right supplementary motor area535

and left precentral gyrus (A) was selected. This cluster was identical for536

IRM and BCD while results are not shown for IDM. The figure also displays537

the 4 clusters with highest between-cluster link probabilities to this cluster.538

These 4 clusters with highest link probabilities were: (B, ρA,B = 0.732)539

left and right postcentral gyrus, left and right paracentral lobule and right540

precentral gyrus; (C, ρA,C = 0.714) left and right middle cingulate gyrus;541

(D, ρA,D = 0.516) left and right superior frontal gyrus; (E, ρA,E = 0.456)542

left and right superior temporal gyrus. The line widths between clusters in543

the figure reflect between-cluster link probabilities, likewise the widths of the544

boxes reflect the within-cluster link probabilities.545
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Figure 4: This figure shows a single cluster A composed of left and right supplementary

motor area and left precentral gyrus. Also, the 4 clusters with highest between cluster

link probability to this cluster are shown. These 4 clusters are (B, ρA,B = 0.732) left

and right postcentral gyrus, left and right paracentral lobule and right precentral gyrus;

(C, ρA,C = 0.714) left and right middle cingulate gyrus; (D, ρA,D = 0.516) left and right

superior frontal gyrus; (E, ρA,E = 0.456) left and right superior temporal gyrus. The line

widths between clusters reflect the link probabilities between clusters, likewise the widths

of the boxes reflect the within-cluster link probabilities.

Figure 5 shows the clustering similarity both within the same link density546

and between different link densities for IRM, BCD, and IDM, respectively.547

IRM and BCD showed a similar pattern with increasing clustering similarity548

with increasing link density. When considering the link densities 8%, 16%,549
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Figure 5: Mean NMI between clusterings found with different graph link densities for

IRM, BCD, and IDM, respectively.

and 32% the mean NMI between the clusterings were all above 0.91, reflecting550

high similarity. Comparing the similarity between low and high link densities551

reveal lower similarity, for instance the mean NMI between 2% and 32% were552

0.79 and 0.85 for IRM and BCD, respectively. BCD showed in general higher553

NMI values than IRM. For IDM the pattern was opposite, with decreasing554

similarity with increasing link density. Comparing clusterings between 2%555

and 32% for IDM revealed a relatively low NMI value of 0.56. The NMI556

values were in general lower for IDM than for IRM and BCD.557

Figure 6 shows the solutions with the highest values of the posterior using558

BCD for different link densities. The tendency across different link densities559

is that clusters are very left-right symmetric.560
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Figure 6: Clusterings found using BCD for different graph link densities.
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Figure 7: Reproducibility vs predictability plot for the three models using a link density

of 8%. IDM and BCD showed better NMI and test log likelihood compared with IDM

(p < 0.0001). BCD showed better predictability (p = 0.023) compared with IRM while

IRM and BCD did not differ in reproducibility (p = 0.15).

3.2. Predictability and reproducibility561

Figure 7 shows the PR scatter plot of the predictability versus repro-562

ducibility of the 3 methods using the NPAIRS split-half framework. Clearly,563

IRM and BCD performed better compared with IDM in both reproducibility564

and predictability as measured with NMI and test log likelihood (p < 0.0001,565

permutation test). IRM and BCD overlap, however, when testing for differ-566

ences BCD showed slightly better predictability than IRM (p = 0.023) while567

the two methods did not differ in reproducibility (p = 0.15). On average568

IRM estimated 29.6 (std=0.83) clusters while BCD estimated 34.8 (0.88)569

and IDM estimated 17.7 (1.13). The number of clusters reported here was570

estimated on half-splits of the subject sample and are therefore different from571

the numbers reported in table 1 for models estimated on the whole sample.572
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3.3. Predictability and reproducibility for various link densities573

Figure 8 shows the mean data and its standard error for the repro-574

ducibility, predictability, number of clusters, and modularity index within575

and between the three datasets when varying link density. This is shown for576

IRM, BCD, and IDM, as well as Infomap, Louvain modularity, and hierar-577

chical clustering. The columns represent the different datasets (Copenhagen,578

Leipzig, Beijing, and between datasets respectively). Inspecting clustering579

reproducibility the general tendency was that BCD and IRM increased with580

increasing link densities while the other methods tended to decrease. For581

link densities greater than 4% IRM and BCD were superior to the other582

methods. BCD performed better or on par with IRM across all datasets and583

for all link densities. For high link densities Infomap produced only a single584

cluster causing both the nominator and denominator in the NMI calculation585

to be zero, thus these values are not shown.586

BCD and IRM generally showed higher predictability compared with the587

other methods for all datasets and link densities. For the three within dataset588

analyses BCD performed better compared with IRM for low link densities,589

for higher link densities these two methods were on par. Interestingly, hier-590

archical clustering generally showed higher predictability and reproducibility591

than IDM, Louvain, and Infomap. Please note that the test log likelihood592

ratio cannot be compared directly between different link densities.593

When inspecting the number of clusters estimated by the methods two594

patterns are observed. For IRM and BCD the number of clusters increased595

with increasing link density. The opposite is seen with the other methods596

where the number of clusters decreased with increasing link density.597
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Not surprisingly, the Louvain method had higher modularity values for all598

sets and link densities compared with the other methods. IRM and BCD had599

comparable modularity but was generally lower than the other methods. IDM600

had higher modularity compared with the two other probabilistic methods601

IRM and BCD.602
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Figure 8: First row reproducibility (NMI), second row predictability (test log likelihood

ratio), third row number of clusters, and fourth row modularity index as function of

graph densities. Columns represent Copenhagen, Leipzig, Beijing, and between datasets

respectively.

4. Discussion and conclusion603

Our aim was to explore statistical models for finding structure in networks604

at the intermediate level. Accumulated evidence points to the importance of605
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community structure in brain networks, hence, we tested three statistical link606

models, which differed in terms of the different restrictions that were imposed607

on how nodes are clustered. The IRM is a very flexible representation for608

graph clustering, in which nodes can be grouped together without having609

a high link density among them. The BCD is a constrained version of the610

IRM that discards such group structures by insisting on higher within-cluster611

interaction, conforming with the notion of community structure. Finally,612

the IDM model is further constrained to ignore potential differences in the613

way nodes in a community interact with other communities, inspired by614

the methods aimed at identifying structure based on the global modularity615

concept. These probabilistic models were compared against three other non-616

probabilistic methods for finding community structure in networks; Infomap,617

Louvain, and hierarchical clustering.618

The results show a remarkably difference between the two models (IRM619

and BCD), which models the between-cluster linking, and the other meth-620

ods, which does not specifically take the between-cluster linking into ac-621

count. IRM and BCD had generally higher reproducibility (except for low622

link densities) and predictability and showed an increasing number of esti-623

mated clusters with increasing link densities. On the contrary, these two624

models had lower modularity index as compared with the other methods.625

Modularity is often used for node clustering in brain networks, however, the626

results shown here indicate that a modularity optimized partition is neither627

the most reproducible nor the most predictable.628

In general IRM and BCD clustered few nodes together corresponding629

to interhemispheric homologues areas. IRM and BCD model the between-630
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cluster link probabilities, which allows one to inspect how different clusters631

link to each other, an example of this is shown in figure 4. While a low632

number of nodes in a specific cluster might not reveal a lot of information633

in itself, important characteristics can be extracted and interpreted when634

considering the information available from the between-cluster link probabil-635

ities. In such a way, the between-cluster link probabilities can reveal how the636

different clusters are linked, indicating the communication pattern between637

clusters. In contrast to these two most expressive models, IDM does not638

model specific between-cluster link probabilities. This results in larger clus-639

ters with relatively high within-cluster link probabilities, which are formed640

since the model does not care about specific relations to other clusters. These641

clusters are generally coarser and less nuanced compared to IRM and BCD642

rendering cluster interpretation difficult. An example of this is the large643

turquoise cluster shown in figure 3, which is composed of nodes in frontal,644

occipital, parietal, and temporal lobes.645

The clusterings produced by IRM and BCD were very similar with mean646

NMI between clusterings of 0.94 at 8% link density. The similarity between647

the representations of IRM and BCD indicates that the flexibility of IRM is648

not needed when modeling rs-fMRI data. Even though IRM is able to cluster649

nodes such that the clustering does not obey the community structure, we see650

that IRM in general does produce clusterings which are very similar to BCD.651

The difference between BCD and IRM was most pronounced for smaller652

link densities suggesting that despite the large similarity between IRM and653

BCD it helps having the community structure constraint on the clustering.654

This is most evident for smaller link densities where the graphs contain less655
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information about the network. The better performance of BCD adds to656

the evidence that coordinated activation in the resting state is community657

structured.658

By invoking a non-parametric Bayesian approach, the three modeling659

schemes considered are less sensitive to conventional model specification is-660

sues such as determining the number of communities as the number of clusters661

is inferred during model inference. However, the models’ hyper-parameters662

still need to be set. In this study a uniform distribution was used as prior663

for the link probabilities (obtained by setting β = 1) and the CRP hyper-664

parameter α was set to 1, however other strategies could be considered. For665

instance, given the Bayesian framework it would be straightforward to sam-666

ple the hyper-parameters as part of the model inference (Kemp et al., 2006).667

Our analysis scheme is a population level model, as we enforced graphs (sub-668

jects) to share the model’s link probability matrix. The choice of fixing the669

link probabilities across subjects was done partly for evaluation purposes as670

it allows us to estimate the test likelihood for unseen data and thus allows us671

to estimate the models’ predictability. However, the assumption that all sub-672

jects have similar linking between clusters with no inter-subject variability673

is somehow sub-optimal. Extending the models to allow for individual sub-674

ject link probabilities is straight-forward (Mørup et al., 2010; Andersen et al.,675

2012a). The results can be seen as compressed networks, where the new nodes676

are formed by the clusters and (weighted) links are given by the individual677

subject link probabilities. This enables test for group differences in link prob-678

abilities or correlating with behavioral or personality measures where specific679

between-cluster linking can be considered and enables a more specific conclu-680
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sion about how, e.g., different population groups differ in linking structure.681

Using models which allow for individual subject link probabilities generally682

result in fewer clusters than models which restrict link probabilities to be683

equal across subjects (data not shown). This can be attributed to individual684

subject link probabilities causing a more flexible model, thereby capturing685

some of the flexibility which was previously accounted for by additional clus-686

ters.687

A number of studies have reported relevance of the conventional network688

modularity measure to important cognitive measures, such as short term689

memory capacity, reaction time etc. (Bassett et al., 2011; Stevens et al., 2012;690

Meunier et al., 2009). Our findings suggest that there is important structure691

in resting state networks beyond the global modularity. The rich link struc-692

tures of the relational models can be seen as a way of inferring functional693

integration at the inter-community level as discussed in (Hagmann et al.,694

2008; Sporns, 2013). Hence, an interesting open question is how to convert695

the flexible representations of the IRM and BCD to summary statistics that696

can be used as bio-markers. Indeed, initial evidence for the relevance of the697

community level link density (ρ) as a bio-marker for multiple sclerosis was698

presented in Mørup et al. (2010)699

When constructing the graphs one have to make decisions on how to de-700

fine nodes and links. In this paper we used the brain regions from the AAL701

atlas (Tzourio-Mazoyer et al., 2002) to define nodes, which enables compar-702

ison with a large body of existing literature as the AAL atlas is the most703

commonly used atlas in the fMRI brain network literature (Stanley et al.,704

2013). The AAL regions have, however, been criticised for not reflecting705
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homogeneous functional units (Craddock et al., 2012). For instance, some706

of the AAL regions are rather large and thus could include more functional707

sub-units, which, when averaged together, degrade the functional connectiv-708

ity to other regions. Similarly, if a functional unit lies between two or more709

AAL regions they will be purely represented. The main purpose of this pa-710

per was to compare different models and not, per se, interpret the resulting711

clusterings. The AAL definition thus allow for a broad comparison of the712

results with other methods already reported using this atlas. However, using713

a higher resolution network, e.g. by invoking an initial parcellation of voxels714

into functionally coherent units (Craddock et al., 2012), it will be possible to715

make more interesting neurobiological interpretations of the resulting clusters716

and their interactions. Likewise, the measure used for forming links between717

nodes have a great impact on the network. Here we used Pearson correlation718

between nodes’ time series. As described in the introduction, a high correla-719

tion between two nodes can be found simply if the two nodes are both highly720

correlated with a third node. The use of partial correlations or the inverse721

covariance matrix (Varoquaux and Craddock, 2013) can remove correlations722

mediated by a third node and thus remove this transiency effect. However,723

partial correlations are less stable and are therefore also less reproducible724

than simple correlations.725

The models presented here use simple graphs, that is, unweighted and726

undirected graphs, which requires that the correlation matrices are thresh-727

olded at a certain level. The results show that the choice of threshold have728

an impact on the resulting clusters and that different methods is affected729

differently by increasing the threshold. However, for IRM and BCD the730
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consistency between the found clusterings higher thresholds (8%, 16%, 32%)731

were all very high as revealed by mean NMI all above 0.91. The exact choice732

of threshold is somewhat arbitrary to the problem as there is no natural733

threshold for which nodes can be said to be functionally connected. In ad-734

dition, large negative correlations between nodes could provide important735

information to the network as well. However, negative coupling between736

nodes are by nature different from positive couplings, and thus should be737

considered differently in the network. Choosing a high threshold (meaning738

low link density) will fragment the network, that is, parts of the network or739

even single nodes will be unconnected to the rest of the network. In fact, in740

the networks presented here a number of nodes has very low or zero node741

degrees and are thus disconnected to the remaining network. An example742

of such nodes is seen in figure 3, where the IRM have clustered together a743

group of nodes1 with low linking to the rest of the network (the cluster is744

best seen as the bright diagonal element in the lower right corner of the link745

probability matrix in the top panel of figure 3). These nodes are similar in746

the sense that they have low node degrees and can thus be represented as a747

’null’-cluster. A similar ’null’-cluster2 is found with the IDM model. For this748

cluster the within-cluster link probability is actually lower than the shared749

1Green cluster composed of Amygdala L+R, Temporal Pole Mid L+R, Olfactory L+R,

Pallidum L+R, Vermis 1 2, Vermis 3, Vermis 10, Cerebelum 3 L+R, Cerebelum 10 L+R.

See Figure Appendix C.
2Red cluster composed of Amygdala L+R, Cerebelum 3 L, Cerebelum 7b R, Cerebelum

10 L+R, Olfactory L+R, Pallidum L+R, Temporal Pole Mid L+R, Vermis 1 2, Vermis 3,

Vermis 7, Vermis 9, Vermis 10.
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between-cluster link probability. For the BCD model this null-cluster is split750

into several smaller clusters which have slightly higher within-cluster link751

probabilities than between-cluster link probabilities to other clusters, thus752

conforming to the definition of the community model. Given the somewhat753

arbitrary thresholding for binary graphs, an interesting future direction is754

to model dense weighted graphs. In fact, a modification of the IRM have755

already been proposed, which models dense weighted graphs. The normal756

Infinite Relational Model (nIRM) (Herlau et al., 2012) models weighted links757

with a normal distribution instead of the Bernoulli distribution for binary758

links. This means that the correlation between nodes are modelled directly759

without thresholding. The relational models have also been extended to760

model hierarchical grouping structure and to allow for nodes to be members761

of multiple clusters, please see (Schmidt and Mørup, 2013) for an overview.762

In conclusion, we evaluated three different Bayesian models for finding763

structure in rs-fMRI graphs and compared them with 3 other methods for764

node clustering in complex networks. We showed that BCD performs best765

compared to IRM and IDM in terms of predictability and reproducibility.766

This suggests that (1) rs-fMRI data adhere to the community structure and767

(2) modeling specific between-cluster linking improves predictability and re-768

producibility.769

Toolbox770

A Matlab toolbox for performing the experiments conducted in this paper771

can be found at https://brainconnectivity.compute.dtu.dk/772
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Appendix B. Inference957

Appendix B.1. IRM958

As stated in section 2.4 the generative model for the Infinite Relational959

Model is960

Infinite Relational Model

Cluster assignments: z ∼ CRP(α)

Link probabilities: ρk,l ∼ Beta(β, β)

Links: A
(n)
i,j ∼ Bernoulli(ρzi,zj)

For brevity we define the joint set of graphs as A = {A(1), ...,A(N)}. The961

Bernoulli likelihood can then be written as:962

P (A|z,ρ) =
∏
n

∏
j>i

ρ
A

(n)
i,j

zi,zj(1− ρzi,zj)
(

1−A(n)
i,j

)
963

=
∏
j>i

ρ

(∑
n A

(n)
i,j

)
zi,zj (1− ρzi,zj)

(
N−

∑
n A

(n)
i,j

)
964

=
∏
k≥l

ρ
N+

k,l

k,l (1− ρk,l)N
−
k,l ,965

where N+
k,l and N−k,l is the total number of links and nonlinks for all graphs966

between cluster k and l, respectively and N is the number of graphs (sub-967

jects). The prior for the link probabilities is a symmetric Beta distribution968

and can be written as969

P (ρ|β) =
∏
k≥l

Γ(2β)

Γ(β)2
ρβ−1
k,l (1− ρk,l)β−1

970
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where Γ(x) = (x − 1)! is the gamma function. The CRP prior for the node971

partition can be written as972

P (z|α) =
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)
, (B.1)973

where J is the number of nodes per graph, nk is the number of nodes as-974

signed to cluster k and K is the number of clusters. These distributions are975

combined to yield the joint distribution for the IRM:976

P (A, z,ρ|α, β) = P (A|z,ρ)P (ρ|β)P (z|α)977

=
[∏
k≥l

ρ
N+

k,l

k,l (1− ρk,l)N
−
k,l

][∏
k≥l

Γ(2β)

Γ(β)2
ρβ−1
k,l (1− ρk,l)β−1

]
978

×
[αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
979

=
[∏
k≥l

Γ(2β)

Γ(β)2
ρ
N+

k,l+β−1

k,l (1− ρk,l)N
−
k,l+β−1

]
980

×
[αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
981

Now we can marginalize ρ:982

P (A, z, |α, β) =

∫
P (A, z,ρ|α, β)dρ983

=
[∏
k≥l

B(N+
k,l + β,N−k,l + β)

B(β, β)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
984

where B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function. Finally using Bayes’ theorem985

we can find the posterior distribution of the assignment of a single node zi986

P (zi = l|A, z\i, β, α) =
P (A, z\i, zi = l|α, β)∑
l′ P (A, z\i, zi = l′|α, β)

987

where z\i is the assignments of all nodes except node i. By writing out this988

equation and finding parts which change when a node is assigned to a cluster989
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(Schmidt and Mørup, 2013) we have that:990

P (zi = l|A, z\i, β, α) ∝

 nl\i
∏

k

B(N
+\i
k,l +r+i,k+β,N

−\i
k,l +r−i,k+β)

B(N
+\i
k,l +β,N

−\i
k,l +β)

if nl\i > 0

α
∏

k

B(r+i,k+β,r−i,k+β)

B(β,β)
otherwise.

(B.2)991

N
+\i
k,l and N

−\i
k,l is the number of links and nonlinks between clusters k and l992

not counting links from node i. nl\i is the number of nodes assigned to cluster993

l disregarding the assignment of node i. r+
i,k and r−i,k is the number of links994

and nonlinks from node i to any node in cluster k. This posterior likelihood995

can be evaluated efficiently since we only need to compute N+ and N− and996

evaluate the Beta function for entries affected by the considered assignment997

change. The posterior likelihood is used in the Gibbs sampler to infer the998

node assignments.999

Appendix B.2. IDM1000

The generative model for the Infinite Diagonal Model is given by:1001

Infinite Diagonal Model

Cluster assignments: z ∼ CRP(α)

Link probabilities: ρk,l ∼

 ρk = Beta(β, β) if k = l

ρb = Beta(β, β) otherwise.

Links: A
(n)
i,j ∼ Bernoulli(ρzi,zj)

The Bernoulli likelihood can accordingly be written as:1002

P (A|z,ρ) = ρ
N+

b
b (1− ρb)N

−
b

[∏
k

ρ
N+

k
k (1− ρk)N

−
k

]
,1003
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where N+
k and N−k is the number of links and nonlinks within cluster k and1004

N+
b and N−b is the total number of links and nonlinks which fall between1005

clusters. The prior for the link probabilities can be written as1006

P (ρ|β) =
Γ(2β)

Γ(β)2
ρβ−1
b (1− ρb)β−1

[∏
k

Γ(2β)

Γ(β)2
ρβ−1
k (1− ρk)β−1

]
1007

The prior for the node partition is the same as the IRM model (equation1008

B.1). The joint distribution for the IDM can then be written as:1009

P (A, z,ρ|α, β) = P (A|z,ρ)P (ρ|β)P (z|α)1010

=
[
ρ
N+

b
b (1− ρb)N

−
b

][∏
k

ρ
N+

k
k (1− ρk)N

−
k

]
1011

×
[Γ(2β)

Γ(β)2
ρβ−1
b (1− ρb)β−1

][∏
k

Γ(2β)

Γ(β)2
ρβ−1
k (1− ρk)β−1

]
1012

×
[αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
1013

=
Γ(2β)

Γ(β)2
ρ
N+

b +β−1

b (1− ρb)N
−
b +β−1

1014

×
[∏

k

Γ(2β)

Γ(β)2
ρ
N+

k +β−1

k (1− ρk)N
−
k +β−1

]
1015

×
[αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
1016

Now marginalizing over ρ:1017

P (A, z|α, β) =

∫
P (A, z,ρ|α, β)dρ1018

=
B(N+

b + β,N−b + β)

B(β, β)

[∏
k

B(N+
k + β,N−k + β)

B(β, β)

]
1019

×
[αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
1020
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Finally using Bayes’ theorem we can find the posterior distribution of the1021

assignment of a single node zi1022

P (zi = l|A, z\i, β, α) =
P (A, z\i, zi = l|α, β)∑
l′ P (A, z\i, zi = l′|α, β)

1023

By writing out this equation and finding parts which change when a node is1024

assigned to a cluster we find that:1025

P (zi = l|A, z\i, β, α) ∝1026 
nl\i

B(N
+\i
l +r+i,l+β,N

−\i
l +r−i,l+β)

B(N
+\i
l +β,N

−\i
l +β)

B(N
+\i
b +

∑
k 6=l r

+
i,k+β,N

−\i
b +

∑
k 6=l r

−
i,k+β)

B(N
+\i
b +β,N

−\i
b +β)

if nl\i > 0

α
B(N

+\i
b +

∑
k 6=l r

+
i,k+β,N

−\i
b +

∑
k 6=l r

−
i,k+β)

B(N
+\i
b +β,N

−\i
b +β)

otherwise.
(B.3)1027

r+
i,l and r−i,l is the number of links and nonlinks from node i to any node in1028

cluster l.1029

Appendix B.3. BCD1030

This section will give a short description of the inference in the Bayesian1031

Community Detection (BCD) model, for further details please refer to Mørup1032

and Schmidt (2012). The generative model for BCD is given by:1033
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Bayesian Community Detection

Cluster assignments : z ∼ CRP(α)

Cluster gap : γ ∼ Beta(v, v)

Link probability : ρk,l ∼

 Beta(β, β) if k = l

BetaInc(β, β, wk,l) otherwise.

where wk,l = min[γρll, γρkk]

Links : A
(n)
i,j ∼ Bernoulli(ρzi,zj)

If we let ρ̇ = {ρk,l|k = l} and ρ̈ = {ρk,l|k 6= l} be the set of within and1034

between link probabilities respectively. Then the joint distribution can be1035

written as1036

P (A, z,ρ, γ|α, β) = P (A|z,ρ)P (ρ̈|ρ̇, γ, β)P (ρ̇|β)P (γ|v)P (z|α)1037

=
[ N∏
n=1

∏
j>i

ρ
A

(n)
i,j

zi,zj(1− ρzi,zj)1−A(n)
i,j

]
1038

×
[∏
k>l

ρβ−1
k,l (1− ρk,l)β−1

Bxk,l(β, β)

][ K∏
l=1

ρβ−1
l,l (1− ρl,l)β−1

B(β, β)

]
1039

×
[γv−1(1− γ)v−1

B(v, v)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
1040

1041

58



Integrating over ρ̈:1042

P (A, z, ρ̇, γ|α, β) =

∫
P (A, z,ρ, γ|α, β)dρ̈1043

=
[ K∏
k=1

ρ
N+

k,k+β−1

k,k (1− ρk,k)N
−
k,k+β−1

B(β, β)

]
1044

×
[∏
k>l

Bxk,l(N
+
k,l + β,N−k,l + β)

Bxk,l(β, β)

]
1045

×
[γv−1(1− γ)v−1

B(v, v)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
1046

Again, using Bayes theorem and eliminating terms which does not depend1047

on ρl,l the marginal posterior reduces to1048

P (ρl,l|A, z, ρ̇\ρl,l, β, α, γ) ∝ ρ
N+

l,l+β−1

l,l (1− ρl,l)N
−
l,l+β−1∏

k 6=l
Bxl,k

(N+
k,l+β,N

−
k,l+β)

Bxk,l
(β,β)

1049

The conditional distribution for a node assignment is given as (Mørup and1050

Schmidt, 2012):1051

P (zi = l|A, z\i, ρ̇, β, α, γ) ∝ ρ
r+i,l
l,l (1− ρl,l)r

−
i,lαKnl\i1052 ∏

k 6=l

Bxk,l
(N

+\i
k,l +r+i,k+β,N

−\i
k,l +r−i,k+β)

Bxk,l
(N

+\i
k,l +β,N

−\i
k,l +β)

1053

When terms which does not depend on γ are ignored the posterior reduces1054

to1055

P (γ|A, z, ρ̇, β, α) ∝ γv−1(1− γ)v−1
∏

k>l

Bxk,l(N
+\i
k,l + β,N

−\i
k,l + β)

Bxk,l(β, β)
1056
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Appendix C. Clusters labels1057

IRM IRM

Frontal Mid Orb L   
Frontal Mid Orb R   
Frontal Sup Orb L   
Frontal Sup Orb R   
Hippocampus L       
Hippocampus R       
ParaHippocampal L   
ParaHippocampal R   
Thalamus L          
Thalamus R          
Parietal Inf L      
Parietal Inf R      
Temporal Pole Sup L 
Temporal Pole Sup R 
Calcarine L         
Calcarine R         
Lingual L           
Lingual R           
Cingulum Mid L      
Cingulum Mid R      
Cuneus L            
Cuneus R            
Occipital Sup L     
Occipital Sup R     
Occipital Inf L     
Occipital Inf R     
Occipital Mid L     
Occipital Mid R     
Fusiform L          
Fusiform R          
Paracentral Lobule L
Paracentral Lobule R
Postcentral L       
Postcentral R       
Precentral R        
Precentral L        
Supp Motor Area L   
Supp Motor Area R   
Parietal Sup L      
Parietal Sup R      
Precuneus L         
Precuneus R         
Temporal Inf L      
Temporal Inf R      
Temporal Sup L      
Temporal Sup R      
Temporal Mid L      
Temporal Mid R      
Frontal Mid L       
Frontal Mid R       
Cingulum Ant L      
Cingulum Ant R      
Frontal Inf Oper L  
Frontal Inf Oper R  
Frontal Inf Tri L   
Frontal Inf Tri R   
Frontal Sup L       
Frontal Sup R       
Frontal Sup Medial L
Frontal Sup Medial R
Frontal Inf Orb L   
Frontal Inf Orb R   

Insula L            
Insula R            
Rolandic Oper L     
Rolandic Oper R     
Heschl L            
Heschl R            
SupraMarginal L     
SupraMarginal R     
Caudate L           
Caudate R           
Putamen L           
Putamen R           
Angular L           
Angular R           
Cingulum Post L     
Cingulum Post R     
Frontal Med Orb L   
Frontal Med Orb R   
Rectus L            
Rectus R            
Cerebelum 7b L      
Cerebelum 7b R      
Vermis 7            
Vermis 9            
Cerebelum 9 L       
Cerebelum 9 R       
Vermis 8            
Amygdala L          
Amygdala R          
Temporal Pole Mid L 
Temporal Pole Mid R 
Olfactory L         
Olfactory R         
Pallidum L          
Pallidum R          
Vermis 10           
Vermis 1 2          
Cerebelum 3 R       
Cerebelum 10 L      
Cerebelum 10 R      
Cerebelum 3 L       
Vermis 3            
Cerebelum 4 5 L     
Cerebelum 4 5 R     
Vermis 4 5          
Vermis 6            
Cerebelum 8 L       
Cerebelum 8 R       
Cerebelum 6 L       
Cerebelum 6 R       
Cerebelum Crus1 L   
Cerebelum Crus1 R   
Cerebelum Crus2 L   
Cerebelum Crus2 R   

BCD BCD

Frontal Mid Orb L   
Frontal Mid Orb R   
Frontal Sup Orb L   
Frontal Sup Orb R   
Hippocampus L       
Hippocampus R       
ParaHippocampal L   
ParaHippocampal R   
Thalamus L          
Thalamus R          
Parietal Inf L      
Parietal Inf R      
Temporal Pole Sup L 
Temporal Pole Sup R 
Calcarine L         
Calcarine R         
Lingual L           
Lingual R           
Cingulum Mid L      
Cingulum Mid R      
Cuneus L            
Cuneus R            
Occipital Sup L     
Occipital Sup R     
Occipital Inf L     
Occipital Inf R     
Occipital Mid L     
Occipital Mid R     
Fusiform L          
Fusiform R          
Paracentral Lobule L
Paracentral Lobule R
Postcentral L       
Postcentral R       
Precentral R        
Precentral L        
Supp Motor Area L   
Supp Motor Area R   
Parietal Sup L      
Parietal Sup R      
Precuneus L         
Precuneus R         
Temporal Inf L      
Temporal Inf R      
Temporal Sup L      
Temporal Sup R      
Temporal Mid L      
Temporal Mid R      
Frontal Mid L       
Frontal Mid R       
Cingulum Ant L      
Cingulum Ant R      
Frontal Inf Oper L  
Frontal Inf Oper R  
Frontal Inf Tri L   
Frontal Inf Tri R   
Frontal Sup L       
Frontal Sup R       
Frontal Sup Medial L
Frontal Sup Medial R
Frontal Inf Orb L   
Frontal Inf Orb R   

Insula L            
Insula R            
Rolandic Oper L     
Rolandic Oper R     
Heschl L            
Heschl R            
SupraMarginal L     
SupraMarginal R     
Caudate L           
Caudate R           
Putamen L           
Putamen R           
Angular L           
Angular R           
Cingulum Post L     
Cingulum Post R     
Frontal Med Orb L   
Frontal Med Orb R   
Rectus L            
Rectus R            
Cerebelum 7b L      
Cerebelum 7b R      
Cerebelum 10 L      
Cerebelum 10 R      
Cerebelum 3 L       
Cerebelum 3 R       
Vermis 3            
Amygdala L          
Amygdala R          
Temporal Pole Mid L 
Temporal Pole Mid R 
Olfactory L         
Olfactory R         
Pallidum L          
Pallidum R          
Vermis 10           
Vermis 1 2          
Cerebelum 9 L       
Cerebelum 9 R       
Vermis 7            
Vermis 8            
Vermis 9            
Cerebelum 4 5 L     
Cerebelum 4 5 R     
Vermis 4 5          
Vermis 6            
Cerebelum 8 L       
Cerebelum 8 R       
Cerebelum 6 L       
Cerebelum 6 R       
Cerebelum Crus1 L   
Cerebelum Crus1 R   
Cerebelum Crus2 L   
Cerebelum Crus2 R   

IDM IDM

Frontal Mid Orb L   
Frontal Mid Orb R   
Frontal Sup Orb L   
Frontal Sup Orb R   
Hippocampus L       
Hippocampus R       
ParaHippocampal L   
ParaHippocampal R   
Thalamus L          
Thalamus R          
Parietal Inf L      
Parietal Inf R      
Temporal Pole Sup L 
Temporal Pole Sup R 
Calcarine L         
Calcarine R         
Lingual L           
Lingual R           
Cingulum Mid L      
Cingulum Mid R      
Cuneus L            
Cuneus R            
Occipital Sup L     
Occipital Sup R     
Occipital Inf L     
Occipital Inf R     
Occipital Mid L     
Occipital Mid R     
Fusiform L          
Fusiform R          
Paracentral Lobule L
Paracentral Lobule R
Postcentral L       
Postcentral R       
Precentral R        
Precentral L        
Supp Motor Area L   
Supp Motor Area R   
Parietal Sup L      
Parietal Sup R      
Precuneus L         
Precuneus R         
Temporal Inf L      
Temporal Inf R      
Temporal Sup L      
Temporal Sup R      
Temporal Mid L      
Temporal Mid R      
Frontal Mid L       
Frontal Mid R       
Cingulum Ant L      
Cingulum Ant R      
Frontal Inf Oper L  
Frontal Inf Oper R  
Frontal Inf Tri L   
Frontal Inf Tri R   
Frontal Sup R       
Frontal Sup L       
Frontal Sup Medial L
Frontal Sup Medial R
Frontal Inf Orb L   
Frontal Inf Orb R   

Insula L            
Insula R            
Rolandic Oper L     
Rolandic Oper R     
Heschl L            
Heschl R            
SupraMarginal L     
SupraMarginal R     
Caudate L           
Caudate R           
Putamen L           
Putamen R           
Angular L           
Angular R           
Cingulum Post L     
Cingulum Post R     
Frontal Med Orb L   
Frontal Med Orb R   
Rectus L            
Rectus R            
Vermis 9            
Cerebelum 7b R      
Cerebelum 10 L      
Cerebelum 10 R      
Cerebelum 3 L       
Vermis 7            
Vermis 3            
Amygdala L          
Amygdala R          
Temporal Pole Mid L 
Temporal Pole Mid R 
Olfactory L         
Olfactory R         
Pallidum L          
Pallidum R          
Vermis 10           
Vermis 1 2          
Cerebelum 9 L       
Cerebelum 9 R       
Cerebelum 3 R       
Vermis 8            
Cerebelum 7b L      
Cerebelum 4 5 L     
Cerebelum 4 5 R     
Vermis 4 5          
Vermis 6            
Cerebelum 8 L       
Cerebelum 8 R       
Cerebelum 6 L       
Cerebelum 6 R       
Cerebelum Crus1 L   
Cerebelum Crus1 R   
Cerebelum Crus2 L   
Cerebelum Crus2 R   

Figure C.9: Labels from the extracted clusters using IRM, BCD, and IDM. The colors

correspond to the clusters from figure 3.
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