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ABSTRACT

Variational methods for approximate inference in Bayesian
models optimise a lower bound on the marginal likelihood,
but the optimization problem often suffers from being non-
convex and high-dimensional. This can be alleviated by
working in a collapsed domain where a part of the param-
eter space is marginalized. We consider the KL-corrected
collapsed variational bound and apply it to Dirichlet process
mixture models, allowing us to reduce the optimization space
considerably. We find that the variational bound exhibits con-
sistent and exploitable structure, allowing the application of
difference-of-convex optimization algorithms. We show how
this yields an interpretable fixed-point update algorithm in the
collapsed setting for the Dirichlet process mixture model. We
connect this update formula to classical coordinate ascent up-
dates, illustrating that the proposed improvement surprisingly
reduces to the traditional scheme.

Index Terms— difference-of-convex optimization, varia-
tional inference, collapsed methods, bayesian nonparametrics

1. INTRODUCTION

Although variational inference has been around for a while [1],
there has been a surge in interest lately, moving variational in-
ference beyond the traditional mean-field approximation and
coordinate-ascent optimization. Recent advances include al-
gorithms for non-conjugate black box inference [2], stochas-
tic optimization in the large data setting [3], and universally
applicable probabilistic programming software [4], making
inference tractable for complex models such as Bayesian
neural networks [5].

Despite these advances, the variational approach hinges
on solving a potentially massive, non-convex, and high-
dimensional optimization problem. Reducing the parameter
space by analytically marginalizing parts of the variational
approximation can lead to a more well-behaved objective
function, faster convergence, and better solutions [6]. To
this end, we adopt the KL-corrected (KLC) bound as our
variational objective. It was originally invented for Gaussian
processes alone [7], but was later extended to a larger class of

conjugate exponential models [8] where it was demonstrated
to reduce the optimization space in a principled manner with-
out affecting the set of solutions. Furthermore, it has already
been shown to lead to more efficient optimization [8].

Our primary contribution is the realization that the KLC
bound has consistent structure when applied to a Dirich-
let process mixture, as it decomposes nicely into convex and
concave terms. This leads us to consider difference-of-convex
(DC) optimization as exemplified in the convex-concave pro-
cedure [9] and its generalization to non-differentiable ob-
jectives, the aptly named Difference-of-Convex Algorithm
(DCA) [10]. We show that this leads to a nice fixed-point
mapping which can be expressed as the softmax of a gradient
related to the joint distribution.

While superficially different, and derived by a different
route, this fixed-point formula turns out to reduce to the clas-
sical mean-field update. We investigate under which condi-
tions this holds and find that it is symptomatic of models with
exponential family conditionals. We consider the perspectives
of this alternate derivation, including how results about con-
vergence can potentially be carried over.

2. THE KL-CORRECTED VARIATIONAL LOWER
BOUND

Consider the general Bayesian problem of inferring a distri-
bution over latent variables Z and internal (nuisance) param-
eters U given observations of a random variable X . We can
compute the posterior p(Z,U |X) up to a constant, but the
normalization constant is typically intractable. Variational in-
ference gets around this issue by defining a family of approx-
imations q(Z,U) and then minimizing the KL divergence
KL(q‖p). The KL divergence is similarly intractable, but it
shares its critical points with the standard variational lower
bound:

LMF = Eq[ln p(X,Z,U)]− Eq[ln q(Z,U)] . (1)

Minimizing this non-convex objective with respect to the
parameters of q leads to a locally optimal approximation of
p(Z,U |X). Equation (1) is referred to as a lower bound as
it lower bounds the log-evidence ln p(X).
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Suppose we now try to marginalize U prior to doing in-
ference, then the resulting bound has the form

LC = Eq
[
ln

∫
p(X,Z,U) dU

]
− Eq[ln q(Z)] , (2)

which unfortunately requires the computation of the expec-
tation of a log-integral. Even if the integral is tractable, the
expectation over q often will not be. In the particular case
of conjugate exponential family models the integral leads to
a compound distribution outside of the exponential family,
which means that we lose many of the tractability benefits
of working with exponential family models.

This brings us to the KL-corrected bound. The deriva-
tion of the KL-corrected lower bound is a form of pseudo-
marginalization which reduces the parameter space and leaves
a more well-behaved (and still tractable) objective function,
but where the inference is still effectively over the original
unmarginalized model. There are several ways to derive it,
and we will follow Hensman et al. by deriving it by way of
an auxiliary bound [8].

The auxiliary bound is derived as a standard lower bound,
but for the model conditioned on U , instead of on the full
joint distribution.

L1(U) = Eq(Z)[ln p(X,Z|U)− ln q(Z)] . (3)

Note that the bound is a function ofU . The conditional bound
can be transformed into the KL-corrected bound as follows

LKL = lnEp(U)[exp(L1(U))] . (4)

Since L1(U) is a bound on ln p(X|U), the operations above
result in LKL being a bound on the marginal likelihood
ln p(X) as desired. The KLC bound is related to the CVB0
approximation [11] as detailed in the original article [8].

2.1. The KLC Bound for the Dirichlet Process Mixture

As an example, we will consider a particular conjugate expo-
nential family model where the KL-corrected bound is com-
putationally advantageous — namely a Dirichlet process mix-
ture model. KLC bounds for finite mixture models have al-
ready been covered [8, supplementary], but we will need the
KLC bound later so we provide the derivation here for the
non-parametrically extended mixture. We will leave the com-
ponent distribution arbitrary, under the constraint that it is an
exponential family distribution with a density of the form

p(xi|ηk) = h(xi) exp
(
η>k T (xi)−A(ηk)

)
(5)

We further model each parameter vector ηk as being drawn
from a common conjugate prior ηk ∼ p(η|γ, ν). We can
combine the above into a mixture model using latent indica-
tors Z

p(X, {ηk}∞k=1|Z) =

∞∏
k=1

[
N∏
i=1

p(xi|ηk)zik

]
p(ηk|γ, ν) (6)

The final component needed is the prior on Z. We will em-
ploy a stick-breaking representation of the Dirichlet process,
but one could just as well use a Dirichlet-multinomial pair for
a finite mixture. The stickbreaking distribution takes the form

βk ∼ Beta(1, α), zik|β1, . . . , βk ∼ Cat(wk) (7)

with dependency through wk = βk
∏
`<k(1−β`). While this

prior has an unbounded number of variables, we will control
for this later using the variational approximation so that the
bounds only ever have a finite number of terms. Writing out
the prior density gives us

p(Z|β) =

N∏
i=1

∞∏
k=1

[
βk
∏
`<k

(1− β`)
]zik

=

∞∏
k=1

βmk

k (1− βk)m
∞
k+1 , (8)

where mk =
∑N
i=1 zik and m∞k+1 =

∑∞
`=k+1m`.

Collecting U = ({ηk}∞k=1,β), we can compute the
L1(U) conditional bound, under an exponential family vari-
ational approximation q(Z|µ) parametrized by mean param-
eters µ, resulting in

L1(U) = C +

∞∑
k=1

[
η>k T̄k − m̄kA(ηk)

]
+

∞∑
k=1

[
m̄k ln(βk) + m̄∞k+1 ln(1− βk)

]
+Hq(µ), (9)

where C =
∑N
i=1 lnh(xi), T̄k =

∑N
i=1 Eq[zik]T (xi),

m̄k =
∑N
i=1 Eq[zik], and m̄∞k+1 =

∑∞
`=k+1 m̄`.

To compute the KL-corrected bound we will split up the
L1 bound into terms depending on η and β. Taking the expo-
nential as in equation (4) gives us expressions with the same
functional forms as the original distributions, allowing us to
integrate over the appropriate conjugate priors, yielding fac-
tors

∞∏
k=1

eA0(γ+T̄k,ν+m̄k)

eA0(γ,ν)
,

∞∏
k=1

B(1 + m̄k, α+ m̄∞k+1)

B(1, α)
. (10)

for the likelihood and latent distributions, respectively. Here,
A0 is the log-normalizer of the conjugate prior to η and B is
the beta function, i.e. the normalizer of the Beta distribution..

The KL-corrected bound now follows naturally from the
definition.

LKL =

∞∑
k=1

[
A0(γ + T̄k, ν + m̄k)+

lnB(1 + m̄k, α+ m̄∞k+1)
]

+Hq(Z) + const. (11)



2.2. Difference-of-Convex Structure of the KLC Bound

Our key observation is that both A0 and lnB are the log-
normalizers of exponential family models and are thus known
to be convex [12]. Since T̄k and m̄k are linear functions in
µik ≡ Eq[zik], we know that their composition with a convex
function results in something that is also convex in µik [13].
Since the sum likewise preserves convexity, the whole sum is
convex.

Furthermore, if q(Z) is an exponential family with mean
parametrization µ and log-normalizer Aq , then it can also be
shown that [12, theorem 3.4]

−A∗q(µ) = Hq(µ), (12)

whereA∗q denotes the convex conjugate of the log-normalizer.
Since the convex conjugate is always convex, we can con-
clude that the entropy is concave for an exponential fam-
ily [12].

To summarize, the bound is made up of a convex and a
concave part; additional structure we should do our best to
exploit. To stay true to the optimization literature, we will
consider minimization of −LKL from here on out, resulting
in the following (flipped) decomposition

−LKL = fvex + fcave − C, fvex = −Hq(µ), (13)

fcave = −
∞∑
k=1

[
A0(γ + T̄k, ν + m̄k)+ (14)

lnB(1 + m̄k, α+ m̄∞k+1)
]
. (15)

3. CONVEX-CONCAVE PROCEDURE

Optimization problems with a mix of convex and concave
terms are denoted as difference-of-convex problems (DC).
Technically, any non-convex smooth problem is a DC prob-
lem as functions can be decomposed into regions of positive
and negative curvature, but the decomposition is not always
obvious [9, 10].

The convex-concave procedure (CCCP) is a straightfor-
ward algorithm for DC problems [9]. The core idea is that
a stationary point for a difference function occurs when the
gradients of the two terms match, i.e.

0 = ∇ (fvex + fcave)⇔ ∇fvex = −∇fcave. (16)

The CCCP algorithm simply turns this premise into an
implicit fixed-point scheme

∇fvex(µt+1) = −∇fcave(µt), (17)

so µt+1 is picked so that the convex gradient matches the
negative concave gradient at time t. While this might look
arbitrary, this in fact elegantly exploits the features of the
function’s convex-concave nature, ensuring a monotonously
decreasing sequence [9].

An equivalent, but slightly more approachable, interpreta-
tion of CCCP is as a sequential optimization problem, where

µt+1 = argmin
µ

fvex(µ) + f̃ (µt)
cave(µ). (18)

where we have linearized the concave part around µt as
f̃

(µt)
cave(µ) =

(
fcave(µt) + (µ− µt)>∇fcave(µt)

)
. Since

the concave part is linearized it becomes trivially convex
(in addition to concave), and the complete objective is then
unequivocally a convex function, leading to a simplified
problem where the full brunt of convex optimization can be
brought into play. Since the linearization of a concave func-
tion upper bounds the concave function itself this provides an
illustration of why the sequence is monotonously decreasing
(see figure 1). for more details, see [14, 9, 10].

3.1. Necessary Conditions on the Variational Distribution

So far, we have left the variational approximation q(Z|µ)
vague. With the above in place, we see that to apply CCCP
to our bound, there are two key restrictions (and an additional
facilitator).

Expectations Linear in the Parameters We are relying on
the transparent relationship µik = E[zik] between pa-
rameters and expected latent variables. This could be
relaxed a bit — the expectation could be any linear
function of the parameters. In fact, it could even be
a convex or concave function of the parameters follow-
ing the standard composition theorems, assuming some
further conditions hold [13].

Concave Entropy The variational approximation needs to
have concave entropy. The entropy function is con-
cave for exponential family models [12], and entropy
in general is concave in the space of distributions, but
we have been unable to document that this holds for all
distributions outside of the exponential family, as well
as all possible parameterizations.

(Tractable Inverse Gradient Map) Ideally, we would also
like to know the inverse entropy-gradient map. This
turns out to be well-known for many exponential fami-
lies, but is likely unavailable for many more interesting
variational approximations. Fortunately, we will still
be able to solve the sequential problem in equation (18)
efficiently if q obeys the other conditions, so the inverse
map is not strictly necessary.

We can find at least one simple variational approximation
obeying the above conditions in the form of the widely used
product of single-sample multinomials (i.e. categorical distri-
butions).
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Fig. 1. The sequential interpretation minimizes the objective (black) by constructing an upper bound. The concave term is
linearized to yield a convex upper bound (red; right).

3.2. Fixed-point Update for the KLC Bound

To formulate our main result, we rewrite equation (17) fol-
lowing [9],

µt+1 = [∇fvex]−1 (−∇fcave(µt)) . (19)

Since the KLC bound consists of log-normalizers, we
just need to be able to compute gradients of exponential fam-
ily log-normalizers to compute the gradient of the bound.
This makes it relevant to mention the following relation-
ships between the (arbitrary exponential family) distribu-
tion’s log-normalizer A, its natural parameters η, and its dual
parametrization in mean parameters µ [12]

[∇A]
−1

(µ) = ∇A∗(µ) = η, (20)

[∇A∗]−1
(η) = ∇A(η) = µ, (21)

illustrating key symmetries found in exponential family
models. Recall that fvex = −Hq(µ) = A∗q(µ), so that
[∇fvex]

−1
= ∇Aq by the above. Then CCCP yields

µt+1 = ∇Aq(−∇fcave(µt)). (22)

If we compare this to the second identity in (20), it appears
that −∇fcave(µt) is in some sense representing a set of nat-
ural parameters. At the fixed point µ∗ of the update rule, it
must in fact be the exact corresponding natural parameter η∗,
i.e. −∇fcave(µ∗) = η∗ = ∇A∗q(µ∗).

We can make the update rule a bit more explicit, but first
we have to handle the normalization constraints

∑K
k=1 µik =

1. We add Lagrangian terms to the convex terms such that

fvex =

N∑
i=1

K∑
k=1

µik lnµik +

N∑
i=1

λi

(
K∑
k=1

µik − 1

)
. (23)

Taking the derivative yields

gik =
∂

∂µik
fvex = lnµik + 1 + λi ⇔ µik =

exp(gik − 1)

exp(λi)
.

(24)
Applying the constraint, we get that

µik =
exp(gik)∑K
k=1 exp(gik)

, (25)

which is the softmax function S(·), so we can write the actual
CCCP update formula (equation (19)) as

µt+1 = S(−∇fcave(µt)) = S(∇µ ln p(X,Eµ[Z]))|µ=µt
.

(26)
This is reminiscent of exponentiated gradient algorithms

which show up when objectives are regularized with Kullback-
Leibler divergences [15, 16]. Since the KL divergence
includes an entropy term it makes sense that they appear
similar.

4. CONNECTING THE KLC UPDATES WITH
MEAN-FIELD COORDINATE ASCENT

The original solution to the mean-field variational inference
problem in the uncollapsed setting was to apply coordinate
ascent, updating each distribution in turn. This procedure
was often tractable for conjugate exponential family models,
if sometimes convoluted.

In general, by taking the derivative of the lower bound
with respect to the parameters controlling the distribution over
model variable θi ∈ {θj}Nj=1 and setting the derivative to
zero, we can find that the optimal variational approximation
is[17]

q(θi) ∝ exp(Eq[ln p(θi|D, {θj}i6=j) | θi]), (27)



where D is the set of observed variables. Usually, mean field
assumptions are exploited to ensure that the expectations are
tractable, but if the expectations are computable without that
assumption then the parameters can be updated in blocks.

For our mixture, the expectation resolves to

Eq
[
ln p(zi|X,Z\i,U) | Z

]
= (28)

K∑
k=1

zik
(
T (xi)

> E[ηk]− E[A(ηk)] + E[lnwk(β)]
)

(29)

where we will denote the term in the parenthesis by ln π̃ik,
which is understood to be the log of the unnormalized prob-
ability parametrizing the multinomial variational approxima-
tion over zi. If we take the softmax of ln π̃ik we recover
the distribution itself. Let us compare this to −∇fcave. We
will consider its terms individually, starting with the log-
normalizer terms involving A0. Taking the gradient, we get

∂

∂µik
A0(γ + T̄k, ν + m̄k) = (30)

∇γ,νA>0
(
T (xi)

1

)
=

(
E[ηk]

−E[A(ηk)]

)>(
T (xi)

1

)
. (31)

These terms exactly match the ones found in the coordi-
nate ascent update.

Following a similar process, if we take the derivatives of
the log-beta terms — being log-normalizers of beta distribu-
tions — in fcave, we recover the latent terms in the ascent
updates

∂

∂µi`
lnB(1 + m̄k, α+ m̄∞k+1) =(

E[lnβk]
E[ln(1− βk)]

)>(
1[` = k]
1[` < k]

)
, (32)

as the latent terms in the ascent formula can be expanded as

E[lnwk(β)] = E[lnβk] +
∑
`<k

E[ln(1− βk)]. (33)

Thus we can conclude that the CCCP strategy exactly matches
classical coordinate ascent. This conclusion hinges on the ex-
pectations being over the same variational distribution q(U),
but the KL-corrected bound implicitly always uses the op-
timal approximation q∗(U) so if we take coordinate ascent
steps to maximize q(U) before updating µ, then the expecta-
tions will always match.

To investigate this further, recall that in the uncollapsed
setting we need to find both a variational approximation q(U)
over the component parameters, as well as a distribution over
the clusters parameterized by µ. To every state µt, there is
an optimal setting of the variational approximation q(U); we
use Λ(µt) to denote the implicit map that maps µt to the op-
timal q∗(U). Let us use that the entropy (−fvex) is a term

LMF and LKL have in common and define a decomposition
−LMF (µ,Λ(µt)) = −E(µ,Λ(µt)) + fvex(µ) where E is
the average energy — the first argument µ is identified with
a distribution over Z, while the second argument is the distri-
bution over U which we set to the optimal value with respect
to a previous iterate µt, using the implicit map Λ(·). If µ∗ is
the optimum of the bound, the first-order optimality condition
for LMF with respect to µ states that

∇E(µ∗,Λ(µt)) = ∇fvex(µ∗) (34)

Now recall that CCCP can be interpreted as a sequen-
tial convex problem (equation (18)) with a linearized con-
cave component f̃cave(µ). We then have the exact same
optimality condition, but at a potentially different point:
−∇f̃cave(µ̃∗) = ∇fvex(µ̃∗). Furthermore, recall that the
two bounds have matching values and gradients at µt by con-
struction, i.e. ∇LKL(µt) = ∇LMF (µt), which means the
energy must match the linearized concave component

−∇f̃cave(µ̃∗) = E(µt,Λ(µt))

since f̃cave is linear, its gradient is constant, so if µ̃∗ =
µ∗, we have the peculiar property that ∇E(µt,Λ(µt)) =
∇E(µ∗,Λ(µt)), i.e. the gradient of the energy is constant as
well. This hints at “hidden linearity” in the average energy.

A partial explanation comes from considering the case
where the distribution p(Z|X,U) is in an exponential family
together with its prior p(Z|ν). Following Hoffman et al. [3],
the natural gradient ∇̃ of the lower bound for an exponential
family with parameters η is

∇̃ηLMF (η) = η − Eq(ν)[ν] = ∇µLMF (η(µ)), (35)

where the last equality can be proven using the chain rule [8].
Since the η term comes from the entropy, the natural gradient
in the energy does indeed appear to be constant. So from this
it’s clear that mean parameter gradients of the average energy
are constant when the conditionals are exponential family dis-
tributions.

We note that this identity between the two algorithms has
its benefits and can provide new angles of attack for theo-
retical problems concerning variational inference. As an ex-
ample, convergence for CCCP and other bound optimization
algorithms was investigated by Salakhutdinov et al. [14]. Fi-
nally, we should mention that this is not the first connection
found between the coordinate ascent updates and other opti-
mization paradigms. Sato deduced that the coordinate ascent
updates were similarly identical to natural gradient steps with
stepsize 1 [18]. By transitivity our iteration formula is then
also identical to a unit natural gradient step.

5. CONCLUSION

The main result of this paper is the demonstration that the
KL-corrected bound for the Dirichlet process mixture inher-



its structure from the original variational problem and can be
partitioned into convex and concave parts.

We argue that additional information available about an
objective function should be exploited to the extent possi-
ble, and the difference-of-convex literature indicates that the
above split can lead to improved non-convex optimization.

Applying the CCCP algorithm leads to a general analyti-
cal fixed-point update formula. The update formula is shown
to match standard variational Bayes updates, and thus pro-
vides a new angle of attack on the variational problem, which
can potentially be extended to models beyond the classical
mixture model.

To truly surpass the existing inference schemes it appears
that we need difference-of-convex algorithms that can take
advantage of second-order derivatives. Unfortunately, to the
best of our knowledge, the DC optimization literature has yet
to find algorithms improving on CCCP/DCA. We hope that
future research will either uncover new ways to exploit the
difference-of-convex structure, or that the connections with
DC optimization can provide a new fruitful avenue for the
analysis of collapsed variational Bayes.
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