
Journal of Machine Learning Research 22 (2021) 1-48 Submitted 7/18; Revised 8/21; Published 9/21

Matrix Product States for Inference in Discrete Probabilistic
Models

Rasmus Bonnevie rabo@dtu.dk
Cognitive Systems, Department of Applied Mathematics and Computer Science
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Mikkel N. Schmidt mnsc@dtu.dk

Cognitive Systems, Department of Applied Mathematics and Computer Science

Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Editor: Ryota Tomioka

Abstract

When faced with problems involving inference in discrete domains, solutions often involve
appeals to conditional independence structure or mean-field approximations. We argue
that this is insufficient for a number of interesting Bayesian problems, including mixture
assignment posteriors and probabilistic relational models (e.g. the stochastic block model).
These posteriors exhibit no conditional independence structure, precluding the use of graph-
ical model methods, yet exhibit dependency between every single element of the posterior,
making mean-field methods a poor fit. We propose using an expressive yet tractable ap-
proximation inspired by tensor factorization methods, alternately known as the tensor train
or the matrix product state, and which can be construed of as a direct extension of the
mean-field approximation to higher-order dependencies. We give a comprehensive intro-
duction to the application of matrix product state in probabilistic inference, and illustrate
how to efficiently perform marginalization, conditioning, sampling, normalization, some
expectations, and approximate variational inference in our proposed model.

Keywords: variational inference, matrix product states, tensor trains, discrete models,
symmetry

1. Introduction

Inference in discrete Bayesian probabilistic models has been studied intensely for decades.
In terms of a graphical model, inference problems can be solved exactly based on dy-
namic programming such as the junction tree algorithm (Lauritzen and Spiegelhalter, 1988;
Wainwright and Jordan, 2008); however, the computational cost scales exponentially in
the so-called treewidth, intuitively a measure of graph connectedness, roughly implying
that sparse graphs (few dependencies) are straightforward to perform inference on, while
densely connected graphs can be computationally intractable. Unfortunately, for many
hierarchical models such as mixture models and probabilistic relational models, marginal-
ization of nuisance parameters leads to posteriors that are completely connected, meaning
that algorithms which rely on local conditional independence fall short.

One solution has been to use Markov chain Monte Carlo (MCMC) sampling, and in
many scenarios marginalization actually induces posteriors that are more easily traversed
by MCMC algorithms as the nuisance parameters no longer have to be set appropriately

c©2021 Rasmus Bonnevie and Mikkel N. Schmidt.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/18-431.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/18-431.html

Bonnevie and Schmidt

for a particular configuration to be likely (Teh et al., 2007). But MCMC on discrete spaces
also prohibits the use of efficient gradient-based samplers and Gibbs sampling and other
MCMC methods often tend to get stuck in local modes of the posterior distribution.

Variational inference is a completely separate strategy which has been applied success-
fully to e.g. mixture inference (Bishop, 2006; Hughes and Sudderth, 2013). The idea is
to form an analytic approximation of the posterior distribution by minimizing a statistical
distance between some tractable family of distributions and the true posterior. One issue
with variational inference we would like to highlight here is that the approximations are
often quite limited in their expressiveness, and suffer more from mode collapse than even
the Gibbs sampler, as we will illustrate.

We consider probabilistic joint models of the form p(X,Y) where Y is a set of observed
random variables (discrete and/or continuous) and X is a set of latent discrete random
variables. We assume that there is no exploitable conditional independence structure in the
model. Let N denote the number of latent variables X = {Xn}Nn=1, each of which take
values in a discrete space Xn of size Kn. We denote every set x = {xi}Nn=1 where xn ∈ Xn is
a configuration of the random variables, and we note that there are K∗ =

∏N
n=1Kn different

discrete configurations.

Inference is the procedure of reasoning appropriately given observations, which in the
Bayesian setting involves evaluating as well as computing marginals and expectations over
the posterior p(X|Y). This is computationally intractable in most cases, since it involves
evaluating the model evidence p(Y): a sum with an exponential number of terms. Vari-
ational inference circumvents the problem by defining a variational approximation q(x;θ)
to the true posterior p(x|Y) and maximizing the so-called evidence lower bound objective
(ELBO)

ln p(Y) ≥ L = Eq[ln p(x,Y)]− Eq[ln q(x;θ)] ,

where the expectation is with respect to the variational distribution q(x;θ). The optimal
solution implies the approximation with the lowest KL divergence to the posterior (Wain-
wright and Jordan, 2008).

Recent innovations have extended the tractable classes of approximations for probabilis-
tic models over continuous random variables to arbitrarily complex distributions (Kingma
and Welling, 2014; Ranganath et al., 2014; Rezende and Mohamed, 2015). For discrete ran-
dom variables approximations based on invertible discrete flows (Tran et al., 2019; Hooge-
boom et al., 2019; Kuśmierczyk and Klami, 2020) is a promising avenue of research. How-
ever, for most discrete distributions it is uncommon to see approximations that are not
mean-field, i.e., where the approximation factorizes completely as q(x;θ) =

∏N
n=1 q(xn;θn).

In the discrete case, this leaves a rather constrained design space as each independent dis-
crete factor can in all generality be modeled with a categorical distribution represented by
a probability vector θn, where q(xn = k) = θn,k and

∑Kn
k=1 θn,k = 1, ∀n.

While this approximation has been used successfully to find clusterings (Hughes and
Sudderth, 2013), topics (Teh et al., 2007), and communities (Xu et al., 2014), it does so in
part by being exceedingly coarse. It is well-known that approximations found through vari-
ational inference tend to underestimate variance and are mode-seeking by nature (Minka,
2005), and in the discrete setting this often translates into a low-variance collapse unto a
particular locally-optimal configuration x∗.

2

MPS for Discrete Models

2. Probability Tensor Decomposition

To get a sense for the low fidelity of the mean-field approximation, we will draw a connection
between multivariate discrete distributions and tensors. We will follow Kolda and Bader
(2009) in giving a brief outline of tensors and operations thereon. An N ’th order (or N -way)
tensor is a multidimensional array T of shape K1 × . . . × KN where the element indexed
by I = (i1, . . . , iN) is denoted by TI and takes values in R or C. In this sense, vectors and
matrices are also tensors of order 1 and 2, respectively. The rows and columns of matrices
generalize to n-mode fibers for higher-order tensors, defined as the vector vi1,...,in−1,in+1,...iN

where the elements are taken from a slice of the tensor where every index but one is kept
fixed, i.e. [vi1,...,in−1,in+1,...iN]in = Ti1,...,iN . Matrix products are likewise subsumed by the
n-mode product ×n, which is an operation on a tensor T with a matrix A of shape K∗×Kn

which applies to the n’th index alone,

[T ×n A]i1,...,jn,...iN =

Kn∑
in=1

Ti1,...,in,...,iNAjn,in . (1)

This can be written in terms of standard linear algebra via matricizations of T on
each mode n, denoted by T(n): the matricization is the matrix found by stacking all
of the tensor’s n-mode fibers row-wise into a matrix of shape Kn × (

∏
m6=nKm), i.e.

[T(n)]in,f(i1,...,in−1,in+1,...iN) = TI , with f being a bijective function mapping the fiber in-
dices to a row index in some arbitrary order.1 Then the above n-mode product can be
expressed using matricizations and standard matrix products,

(T ×n A)(n) = AT(n).

There are two notions of rank, each going hand-in-hand with a particular kind of tensor
decomposition. The first is the tensor rank R, which is the minimal number of vector outer
products (otherwise known as rank-one tensors) needed to sum to the tensor T . It is related
to the canonical polyadic (CP) decomposition of the form

T =
R∑
r=1

v
(r)
1 ◦ . . . ◦ v

(r)
N , (2)

where ◦ is the tensor outer product such that [T ◦v]i1,...,iD+1 = Ti1,...,iDviD+1 . Second, there’s
the multilinear rank which is a vector (r1, . . . , rN), where rn is equivalently the rank of T(n)

or the minimal number of rows in the matrix Un of size rn × Kn, which features in the
higher-order SVD (or Tucker) decomposition,

T = C ×1 U1 ×2 . . .×N UN , (3)

or, using index notation,

Ti1,...,iN =

r1∑
j1=1

. . .

rN∑
jN=1

Cj1,...,jN [U1]i1j1 . . . [UN]iN jN , (4)

where C is the r1 × . . .× rN core tensor. By counting the number of rank-one terms in
the Tucker decomposition, we get that R ≤

∏N
n=1 rn ≤

∏N
n=1Kn. It should be noted that

the final upper bound is loose.

1. The stacking order is inconsequential, as long as it is used consistently.

3

Bonnevie and Schmidt

(a) Matrix. (b) Matrix
product.

(c) N -mode
product.

(d) Tucker
decompo-
sition.

Figure 1: Examples of tensor network diagrams.

2.1 Tensor Network Diagrams

To get a better understanding of tensor operations, it helps to use tensor network diagrams
to visualize the operations. The central idea of tensor network diagrams is to represent
each tensor as a vertex with the number of outgoing edges reflecting the order of the tensor.
Using this syntax, matrices have two outgoing edges (Fig. 1a) whereas vectors only have
one, and higher-order tensors can have an arbitrary number of outgoing edges. Operations
on the tensors are represented in the diagrams by connecting two edges to each other, which
indicates that the edge is contracted : if two tensors AI,i∗ and BJ ,i∗ are contracted over the
edge i∗ (of dimension K∗), the resulting tensor takes the value,

CI,J =

K∗∑
i∗=1

AI,i∗BJ ,i∗ . (5)

If we take two matrices Ai,k and Bk,j and contract them over the index k, the result is the
matrix productAB, as depicted graphically in Fig. 1b. Tensor contractions also include the
n-mode product: A 2-mode product between a 3-tensor Aijk and a matrix Bj` is identical
to the contraction over index j, which can be graphically illustrated as in Fig. 1c.

In short, tensor network diagrams is a convenient graphical notation for expressing linear
and multilinear algebra using the common language of tensors and tensor contractions, and
can be used to depict any number of tensors and contractions. Tensor network diagrams can
succinctly express many standard decompositions, e.g. the order-3 Tucker decomposition
illustrated in Fig. 1d, where the three low-rank matrices Un link to the shared order-3 core
tensor C.

2.2 Probability Tensors

To connect tensors to probabilistic models, consider that we can associate each configuration
x with a posterior probability value p(x|Y), returning here to the notation used in the
introduction. We can combine these values into a K1 × . . . ×KN probability tensor Tx =
p(x|Y), where the x subscript indicates that dimension n is indexed by the value of xn,
and the dependency on the constant observables Y is suppressed. This is a probability
tensor in the sense that each element corresponds to a configuration, and it sums to 1, so if
we vectorized it into a vector of length K∗, it could parameterize a categorical distribution
over all possible configurations, similarly to the θn parameters described previously.

4

MPS for Discrete Models

G1

i1

G2

i2

G3

i3

G4

i4

G5

i5

Figure 2: Tensor train as a diagram

Now, as a distribution, the mean-field approximation q(x;θ) also defines a probability
tensor with elements

T̂x = θ1,x1 . . . θN,xN . (6)

In tensor parlance, this is a rank-one tensor of form T̂ = θ1 ◦ . . . ◦ θN . Returning to the
concept of tensor rank, we note that the approximation has the minimal rank possible, and
is thus in some sense maximally simple. It seems optimistic to believe that the posterior
probability tensors will have such simplistic structure, and Kolda and Bader (2009) go on
to cite a result of a Monte Carlo experiment demonstrating that even for a small randomly-
generated 2× 2× 2 tensor, rank-one tensors occur with zero probability.2

2.3 Tensor Trains

So if we accept that approximation with a rank-one tensor is a flawed approach, what
should we do instead? Recall that the sought tensor T has K∗ =

∏N
n=1Kn elements, which

grows exponentially with N , which rules out a naive representation. We already saw two
structured representations, namely the CP representation of equation (2), and the Tucker
representation in (3). Tucker unfortunately suffers from the same combinatorial explosion
as T due to the existence of the tensor C. CP on the other hand is convenient, but given
that expressing T can require up towards K∗ rank-one tensors, it might not be the most
parsimonious representation.

Oseledets (2011) propose a different decomposition. Starting from the tensor T , we can
find a low-rank decomposition of the 1-mode unfolding as

T(1) = U1V
>

1 , (7)

where we choose U1 to be orthogonal (which is possible using SVD). Now, V1 will have
shape r1×

∏N
n=2Kn where r1 is the rank of the low-rank decomposition used. To continue,

we reshape V1 to have shape r1K2 ×
∏N
m=3Km. We can then recursively define Un as

UnV
>
n = Reshape

(
Vn−1;

(
rn−1Kn,

N∏
m=n+1

Km

))
.

Written in terms of tensor reshapes and index-heavy notation like above, this decomposi-
tion can seem dense, but the algorithm is quite elegant when expressed using tensor network
diagrams. Taking some higher-order tensor (Fig. 3a), we can represent matricizations and
vectorizations as simple grouping of the indices as in Fig. 3b, conveniently abstracting away

2. Note, though, that the posterior probability tensors are not random draws from the space of tensors.

5

Bonnevie and Schmidt

i1

i2i3

i4

i5

(a) Order 5 tensor

i1
i2:5

(b) Matricization of tensor

i2:5
V1U1

i1

(c) Low-rank decomposition

V1U1
i1

i3:5

i2

(d) Matrix reshaped to have
i2 on the left side.

V2U2U1

i4:5

i1 i2 i3

(e) SVD and reshape on V1.

V4U4U3U2U1

i1 i2 i3 i4 i5

(f) Iterating yields TT

Figure 3: The tensor train decomposition algorithm illustrated using tensor network dia-
grams.

from the index ordering function we had to introduce previously. Using a singular value
decomposition in practice, we can then low-rank decompose our matricized tensor like a reg-
ular matrix (Fig. 3c). The reshape step of the algorithm corresponds graphically to moving
one edge from the right to the left in our diagram as done in Fig. 3d. In the example we
move i2, so that the left side of the right-most tensor in the diagram is indexed by i2 and
the edge introduced by the low-rank decomposition, while the right side has the remaining
edges, except i1 which is now only connected to the single orthogonal matrix U1. Finally,
we can repeat the SVD to introduce a corresponding low-rank factor for i2 (Fig. 3e) and
so on until the entire matrix has been decomposed into contractions of simple factors as in
Fig. 3f.

Compared to CP and Tucker, it is less clear how to expand this into an algebraic
expression. Looking at Fig. 3f again, we note that each Un, while naturally a matrix-
structured variable as it was derived using a low-rank decomposition like SVD, can quite
naturally be thought of as having two legs on the left-hand side i.e. the leg that was bent
over that we have labelled in and the edge connecting it to the previous matrix. If we
reshape it to be an order-3 tensor with the two contracted edges and the edge in, we get
the so-called core tensors Gn which in index notation are reshaped matrices

Reshape(Un; (rn−1,Kn, rn))

with r0 = rN = 1. Using the cores, we can elegantly express the individual indexed elements
of the tensor as

TI = G1[i1]G2[i2] . . .GN [iN],

where we abuse notation slightly to define [Gn[k]]ij = [Gn]ikj to be the 2nd mode matrix
slices. This sequential construction of “carriages” linked together has led to naming the
decomposition the tensor train (TT) decomposition.

Evaluation of the tensor train requires N−1 matrix products, which would normally cost
O(r3

n) a piece, but since the first and last core have vector-shaped slices, we can calculate
the whole train using only matrix-vector products (O(r2

n)) by starting multiplication from
the left or the right.

6

MPS for Discrete Models

The central advantage of tensor trains is the number of operations that can be efficiently
implemented directly on the representation (Oseledets, 2011):

Contraction If we want to sum out index in, we can write the tensor in terms of its indices
and move the sum to the appropriate matrix core

Kn∑
in=1

TI = G1[i1] . . .

(
N∑

in=1

Gn[in]

)
. . .GN [iN].

Scaling Scaling every core Gn by αn is equivalent to scaling the tensor train by
∏N
n=1 αn.

Addition As can be verified using standard linear algebra, the TT decomposition Cn of
the addition of two TT-tensors with cores An and Bn can be found to be

C1[k] =
(
A1[k] B1[k]

)
, CN [k] =

(
AN [k]
BN [k]

)
, (8)

Cn[k] =

(
An[k] 0

0 Bn[k]

)
, n 6= 1 ∧ n 6= N. (9)

Multiplication Finally, the TT decomposition Cn of the element-wise multiplication of
two TT-tensors A and B with cores An and Bn is simply Cn[k] = An[k]⊗Bn[k], where
⊗ is the Kronecker product, as follows from

AIBI = TrAI TrBI = Tr[AI⊗BI] = Tr[(A1[i1]⊗B1[i1]) . . . (AN [iN]⊗BN [iN])]. (10)

These operations are sufficient for e.g. calculating the Frobenius norm of a tensor (Oseledets,
2011), but they also turn out to be extremely useful for probabilistic models as we will now
show. In probability theory there are a number of operations that are essential, such as
marginalization, normalization, and conditioning: These operations are fairly easy to carry
out on a probability tensor in TT format:

Marginalization We can find any desired marginal distribution by applying contraction
to the indices that we want to marginalize over. As a convenience, we define the
marginal core matrices

Mn =

Kn∑
in=1

Gn[in],

so that marginalization can be written as

p(x/n) =

Kn∑
in=1

TI = G1[i1] . . .Mn . . .GN [iN],

where x/n denotes the full set of random variables {xn}Nn=1, excluding the n’th ele-
ment.

7

Bonnevie and Schmidt

Normalization Given an unnormalized probability tensor (i.e. any non-negative tensor),
we can easily calculate the normalizing constant of the tensor by using the contraction
operation presented above on every index. As contraction is the same as marginal-
ization, we can write the normalization constant using the marginal cores defined
above

Z = M1 . . .MN .

Having computed the normalization constant, we can also normalize the tensor using
the scaling operation.

Conditioning Conditional distributions are likewise easily computed by fixing the core
slices corresponding to the observations, and marginalizing out all remaining indices
to compute the normalization constant.

As a further note of interest, we can also compute a large class of expectations, namely
all those where the quantity of interest can be written as another tensor train Q. The
expectation is then simply

E[QI] =
∑
I
TIQI , (11)

which is an element-wise product, followed by a complete contraction over all indices.

The main limitations of tensor trains are picking ranks, ordering the dimensions, and en-
suring non-negativity. The rank of the tensor train is a fundamental hyperparameter which
will effectively correspond to the expressiveness of the approximation. While most tensors
seem to not be full rank, it makes sense to choose this parameter based predominantly on
computational budget. While not pursued here, the ranks can also be compressed dynam-
ically using the rounding procedure laid out in the original paper, which offers guarantees
on approximation quality (Oseledets, 2011). There are no proper guidelines for ordering the
dimensions, although the result saying that a perfect approximation exists holds no matter
the ordering. It’s also possible to use a tensor ring decomposition instead, which makes the
tensor train invariant to cyclic permutations of the dimensions (Zhao et al., 2016). Non-
negativity is the most crucial problem, as it is a necessary constraint which has to hold
globally.

If all the cores are non-negative, the tensor will clearly be non-negative as well. From
a tensor decomposition point of view it is however unlikely that the best representation of
the tensor has only non-negative cores. Another construction that ensures non-negativity
is a squaring, such that the tensor train T̂ itself models the square root of the probability
tensor. By the algebra rules presented above, this implies a tensor train

TI = T̂ 2
I = (Ĝ1[i1]⊗ Ĝ1[i1]) . . . (ĜN [iN]⊗ ĜN [iN]). (12)

That is, the probability tensor can be guaranteed to be positive if each core matrix of the
probability tensor can be represented by a Kronecker product of a matrix with itself,

Gn[in] = Ĝn[in]⊗ Ĝn[in].

8

MPS for Discrete Models

i1 i2 i3 i4

(a) Matrix Product State

i2 i3 i4

(b) Contraction over i1

Ln

Gn

Gn

⇒ Ln+1

Figure 5: Iterative bubbling step

2.4 Matrix Product State

Interestingly, the tensor train decomposition has been developed independently within the
quantum mechanics community under the name of matrix product states (see Schollwöck
(2011) for a review of the history of its development). It falls within the larger umbrella
of tensor networks, a general framework for constructing arbitrarily complex hierarchical
tensor decompositions.

The matrix product state (MPS) literature contains a number of results not present in
the tensor train literature, which motivates its introduction here. In quantum mechanics,
the MPS T represents the quantum mechanical wave function of a combined quantum state
of N particles where each particle xn can be in one of Kn states. Following the probabilistic
interpretation of quantum mechanics via Born’s rule, the probability of the system being in
a configuration x is exactly the square of the MPS, similarly to the squaring construction
we employed above to ensure non-negativity. While an MPS is really synonymous with a
tensor train, we will use the term to describe squared tensor trains as probabilistic models,
in contrast with the more general tensor train. A problem with the squaring construction
as presented, is that it incurs a bit of a performance hit since we have to operate with cores
with squared ranks r2

n despite only being able to model the complexity of T̂ , the square
root of the tensor, with an effective rank of rn. The literature on MPS proposes a solution
for this, in the form of the bubbling algorithm, which can speed up the computation of
contractions (and thus normalization, marginalization, and conditioning) significantly for
particular cases (Bridgeman and Chubb, 2017; Robeva and Seigal, 2018).

9

Bonnevie and Schmidt

Instead of following the derivation of multiplication in equation (10), consider the sce-
nario where we want to contract a product of two tensor trains over i1:

K1∑
i1=1

A1[i1] . . .AN [iN]B1[i1] . . .BN [iN] = AN [iN]> . . .

(
K1∑
i1=1

A1[i1]>B1[i1]

)
. . .BN [iN]. (13)

Note that by transposition (possible since the quantity is scalar) we have gathered the
factors depending on i1 together. We can then analytically marginalize them out. Instead
of being forced to instantiate Kronecker products of the cores, as would be necessary when
calculating marginals of equation (12) so that a full contraction costs O(Nr4), the bubbling
algorithm only requires O(2Nr3) operations. If we then want to also marginalize over i2
we can write

K2∑
i2=1

A2[i2]>

(
K1∑
i1=1

A1[i1]>B1[i1]

)
A2[i2].

Returning to our squared tensor trains with cores Gn, we introduce the left marginal matrices
recursively as,

L1 =

K1∑
i1=1

G1[i1]>G1[i1], Ln =

Kn∑
in=1

Gn[in]>Ln−1Gn[in], (14)

so the contraction over indices i1, . . . , im can be written as∑
i1,...,im

T̂ 2
I = GN [iN]> . . .Gm+1[im+1]>LmGm+1[im+1] . . .GN [iN]. (15)

This is helpful, but only for a rather limited set of contractions and marginals. Fortunately,
we can define a similar series of right marginal matrices, by first noting that equation (15)
can be written as

Tr[LmGm+1[im+1] . . .
(
GN [iN]GN [iN]>

)
. . .Gm+1[im+1]>].

If we then marginalize over first iN , then iN−1 and so on, we can define the right marginal
matrices as

RN =

KN∑
iN=1

GN [iN]GN [iN]>, Rn =

Kn∑
in=1

Gn[in]Rn+1Gn[in]>,

and then finally, the contraction over i1, . . . , i` and iu, . . . , iN can be written as,∑
i1,...,i`

∑
iu,...,iN

T̂ 2
I = Tr[L`G`+1[i`+1] . . .Gu−1[iu−1]RuGu−1[iu−1]> . . .G`+1[i`+1]>].

As a future convenience, let Gba denote the consecutive product of cores from Ga[ia] to Gb[ib],
then we can also write the above statement as,∑

i1,...,i`

∑
iu,...,iN

T̂ 2
I = Tr[L`G

u−1
`+1RuG

u−1
`+1

>
].

10

MPS for Discrete Models

While this allows us to compute many marginals efficiently, a small caveat is that the
efficiency drops once we start to consider non-consecutive marginals since we can only use
the recursive formulas on the first and last indices. A final note is that we get a series of
identities relating the left and right marginal matrices to the partition function,

Z = Tr[LnRn+1] = LN = R1.

2.5 Canonical Representation

Another key feature employed in the MPS literature is the idea of a canonical set of cores.
As presented, the tensor train is not a unique representation as applying a so-called gauge
transform,

G̃n[in] = A−1
n Gn[in]An+1, (gauge transform)

does not change the value of the corresponding tensor, i.e., the tensors represented by Gn
and G̃n are identical for all choices of An. We can use this to strategically pick cores with
desirable properties.

Left- and right-canonical matrix product states constitute two classical forms of canon-
icity (Schollwöck, 2011), defined as,

Kn∑
in=1

Gn[in]>Gn[in] = I, ∀n, (left-canonical)

Kn∑
in=1

Gn[in]Gn[in]> = I, ∀n. (right-canonical)

Note that for left-canonical MPS’s, this implies that L1 = I, and by the definition in
equation (14), all Ln = I. Similarly, for right-canonical MPS’s it is true that all Rn = I.
As an immediate consequence, Z = LN = R1 = 1 so that the tensor is automatically a
probability tensor.

While the canonicity constraint might look complicated, it is actually easy to describe
the set of cores for which it holds true. Defining stacked core matrices,

U (L)
n =

 Gn[1]
...

Gn[Kn]

, U (R)
n =

 Gn[1]>

...
Gn[Kn]>

, (16)

the constraints are simply U
(L)
n

>
U

(L)
n = I and U

(R)
n

>
U

(R)
n = I for left- and right-canonical

MPS’s, respectively. By inspection, the constraints are equivalent to the stacked matrices
being column-orthogonal. Recalling the algorithm used to construct tensor trains using
sequential SVD’s from section 2.3, this condition is natural: There we defined the cores as

reshapes of orthogonal matrices, and as it turns out, Un = PU
(L)
n for a permutation P , so

that the cores returned by the algorithm define a left-canonical MPS. The final step of the
algorithm returns a scalar coefficient, scaling the normalized tensor train appropriately.

Strict left/right-canonical form is only possible if we impose some constraints on the

ranks rn. For left-canonical matrices, U
(L)
n has shape Knrn−1×rn, so we need rn ≤ Knrn−1

11

Bonnevie and Schmidt

to hold to ensure that the matrix can be column-orthogonal. If we assume rn = Knrn−1

and K = Kn for all n, this leads to the following progression of ranks

1,K,K2 . . .K2,K, 1.

Since the maximal rank grows exponentially, this is further evidence that we need to impose
some additional low-rank assumption.

While canonicity is a computationally beneficial constraint to impose, it is not enough
to ensure uniqueness. For a left/right-canonical MPS, we can still preserve both canonicity
and the value of the MPS if we substitute Gn[in] for Q>nGn[in]Qn+1 for orthogonal matrices
Qn. Schollwöck (2011) gives a good introduction to a unique representation alternately
called the Vidal representation or the ΓΛ-representation as it defines (Vidal, 2003),

Gn[in] = Λn−1Γn[in],

where Λn is a diagonal matrix and Γn is the same size as Gn[in]. We additionally impose
the constraint that Gn[in] is left-canonical,

I =

Kn∑
in=1

Gn[in]>Gn[in] =

Kn∑
in=1

Γn[in]>Λ2
n−1Γn[in].

There are of course many such possible decompositions. To make the representation unique,
we note that,

TI = . . .Λn−1 (Γn[in]Λn)︸ ︷︷ ︸
G̃n

Γn+1[in+1] . . . ,

where G̃n describes an equivalent set of cores, defining the same tensor. It can then be
shown that we can simultaneously require that this alternative representation corresponds
to a right-canonical set of cores (Vidal, 2003; Schollwöck, 2011),

I =

Kn∑
in=1

Gn[in]Gn[in]> =

Kn∑
in=1

Γn[in]Λ2
nΓn[in]>.

This is a particularly powerful representation as it allows us to shift effortlessly between
left- and right-canonical core sets by simply collecting the Γ and Λ cores in different orders.
In particular, we can employ mixed-canonical representations, where Ln′ = I for all n′ ≤ n
and Rn′ = I for all n′ > n. A univariate marginal can then be computed in constant time
as

p(xn = in) = Tr[Gn[in]>Ln−1Gn[in]Rn+1] = Tr[Γn[in]>Λ2
n−1Γn[in]Λ2

n].

2.6 Sampling

An attractive feature in a probabilistic model is the ability to generate random samples. A
direct approach to generate samples is to use an ancestral sampling routine based on the
marginals and conditionals we have already discussed (Ferris and Vidal, 2012; Han et al.,
2018). We will sample sequentially from the left, starting with x1, then x2, and so on. x1

is simple to sample, as the marginal is readily available as

p(x1 = k) = Tr[G1[k]>G1[k]R2].

12

MPS for Discrete Models

G1kG1

R2

(a) Tensor network diagram for the
marginal of p(x1 = k).

G1x1x1G1

G2G2 k

R3

(b) Tensor network diagram for the con-
ditional of p(x2 = k|x1). The x1 ten-
sor is a one-hot vector of the sample.

Figure 6: Tensor networks of marginals and conditionals used in ancestral sampling.

Having sampled x1, we can then go on to sample x2|x1 from the appropriate conditional
distribution,

p(x2 = k|x1) ∝ Tr[G2[k]>
(
G1[x1]>G1[x1]

)
G2[k]R3],

and so on,
p(xn = k|x1, . . . xn−1) ∝ Tr[Gn[k]>CnGn[k]Rn+1], (17)

where the conditioning information of the past samples is summarized in a matrix

Cn = Gn−1[xn−1]> . . .G1[x1]>G1[x1] . . .Gn−1[xn−1].

This sampling routine offers an excellent argument for why canonical forms can be useful:
If we pick our MPS to be right-canonical, we can remove all of the right marginal matrices
Rn = I from the equations above, reducing the computational load.

3. Inference for the MPS

We consider a joint distribution p(X,Y) where Y is observed and X = {Xn}Nn=1 is a
set of unobserved discrete variables, such that the joint distribution can be studied as
a unnormalized probability tensor indexed by X. Calculating the posterior distribution
p(X|Y) by Bayes’ theorem,

p(X|Y) =
p(X,Y)

p(Y)
,

reduces to finding the evidence p(Y) which is the normalization constant. If the domain of
X is of moderate size, this is easily computed as the sum across all possible configurations,
but this calculation suffers under a combinatorial explosion as N grows large.

We can instead consider approximations based on a finite number of observations of the
probability tensor. As the tensor is unnormalized, the approximation problem is ill-posed.
Consider, for instance, the scenario where all elements but one have been evaluated; if the
final element is vanishingly small, the approximation is excellent, but if it has a value vastly
larger than the observed elements, it can be arbitrarily poor.

13

Bonnevie and Schmidt

Using an MPS as the approximate model alleviates this to a degree, as we limit our
search to sufficiently regular probability tensors that can be written as a low-rank MPS.
As such we hope to exploit that observing a minority of configurations will still inform us
heuristically about the value of similar configurations.

While we could approximate the tensor directly, this approach is naive to the fact that
the tensor represents a probability distribution, as witnessed by the fact that we would
need to normalize the tensor post hoc. Instead, we will employ variational inference which
minimizes a divergence on probability distributions. We use the Kullback-Leibler divergence
(also known as the relative entropy), which is a information theoretic measure of the amount
of information lost when using q(X) to approximate p(X|Y),

KL(q(X)‖p(X|Y)) = Eq
[
ln

q(X)

p(X|Y)

]
,

by solving the equivalent problem of maximizing the evidence lower bound (ELBO),

ln p(Y) ≥ L = Eq
[
ln
p(X,Y)

q(X)

]
.

This formulates the approximation as a maximization of an expectation over the MPS
distribution, and is invariant with respect to the unknown normalization constant p(Y).
If q is parametric with parameters θ, which we denote qθ for now, then the most common
gradient estimators are (Ranganath et al., 2014; Kingma and Welling, 2014)

∇θL =EX∼q

[(
ln
p(X,Y)

q(X)

)
∇ ln qθ(X)

]
= (18)

(score estimator)

Eε∼q0
[
∇θ ln

p(h(ε, θ),Y)

q(h(ε, θ))

]
. (19)

(reparametrization)

The score estimator is alternately known as the black-box gradient estimator or REIN-
FORCE (Ranganath et al., 2014), while the reparametrization estimator depends on find-
ing a function h(ε, θ) and distribution q0 such that X̂ = h(ε, θ) for ε ∼ q0 is identically
distributed to X ∼ qθ(X).

The reparametrization estimator is often considered superior as it has empirically lower
variance in many practical settings. Constructing a differentiable reparametrization for a
discrete distribution is however impossible, but it has recently been shown that the gradient
can be approximated with some fidelity using a relaxed differentiable version of the discrete
distribution.

3.1 Differentiable MPS

As we saw in section 2.6, ancestral sampling from the MPS involves sampling from cate-
gorical distributions. To reparametrize a categorical random variable k ∼ Categorical(p)
with probability vector p, we can employ the Gumbel-max trick which provides a non-
differentiable reparametrization (Gumbel, 1954)

wk = pk +Gk, k = argmax
k

(wk), (20)

14

MPS for Discrete Models

where Gk ∼ Gumbel(0, 1) are i.i.d. standard Gumbel random variables. Here, the argmax
is the non-differentiable component, and the Gumbel variables take the role of the non-
parametric random noise ε. To relax this non-differentiable component, we substitute it
with

onehot(argmax
k

wk) ≈ softmax(w/T),

with the fidelity of the approximation increasing as the temperature T → 0. This ap-
proximation is alternately known as Gumbel-softmax (Jang et al., 2017) or the concrete
distribution (Maddison et al., 2017).

While this allows us to (approximately) reparametrize every step of the ancestral sam-
pling process, it does not take into account that the categorical distribution of xn,

p(xn = k|x1, . . . xn−1) ∝ Tr[Gn[k]>CnGn[k]Rn+1], (21)

as seen in equation (17), depends conditionally on the exact samples xm,m < n from the
past, via the recursively-defined conditioning tensor,

Cn = Gn−1[xn−1]>Cn−1Gn−1[xn−1].

To get around this, we can define a relaxed conditioning matrix,

Ĉn =
K∑
k=1

x̂nkGn−1[k]>Ĉn−1Gn−1[k], (22)

which is based on a separate sequence of x̂n = onehot(x̂n) continuous random variables,
which we design to be Gumbel-softmax relaxations of the conditional sampling equation in
equation (21),

znk = log Tr[Gn[k]>ĈnGn[k]Rn+1] (23)

x̂n = softmax

(
1

T
(zn +Gn)

)
. (24)

where we have swapped the proper conditioning matrix C for the relaxed version and where
Gn is a vector of stacked i.i.d. Gumbel variables. As the conditioning matrix is a convex
combination, we can also impose a mixture interpretation of the approximate conditional,

p(x̂n = k|x̂1, . . . x̂n−1) ∝
K∑
m=1

x̂nk Tr[Gn[k]>
(
Gn−1[m]>Ĉn−1Gn−1[m]

)
Gn[k]Rn+1], (25)

which is a mixture of the different conditionals that would arise based on the sampled value
of xn, weighted by the normalized Gumbel-softmax variables x̂n. By continuing to expand
the conditioning matrices, we can get a mixture over all possible pasts x̂1, . . . , x̂n−1.

Note that in the low-temperature limit, this approaches the correct conditional sampling
steps. We name the sequential procedure generating the x̂n variables the differentiable MPS
(dMPS), as every step of it is differentiable.

15

Bonnevie and Schmidt

3.2 Unbiased Gradient Estimation

While using the dMPS as a direct substitute for the MPS during inference will often work
fine, the consecutive approximations mean that we are no longer solving the original prob-
lem, but some facsimile thereof.

To improve this approximation, we can make use of recently proposed efficient unbiased
gradient estimators for objectives involving discrete random variables, with the REBAR
estimator and its generalization RELAX at the forefront (Tucker et al., 2017; Grathwohl
et al., 2018). The RELAX estimator is unbiased and takes the form

∇θ Eq(x;θ)[f(x)] =E
[
(f(x)− Eq(z|x;θ)[cφ(z)])∇θ ln q(x; θ)

]
+ (26)

∇θ Eq(z;θ)[cφ(z)]− Eq(z;θ)
[
∇θ Eq(z|b;θ)[cφ(z)]

]
(27)

where f is a loss function or other scalar function of interest, cφ is a parametric control
variate, x ∼ q(x; θ) is the discrete variable sampled from the parametric probabilistic model
of interest q, and z is any random variable; ideally one strongly correlated with the original
variable x. The estimator typically works best when q(z; θ) and q(z|b; θ) can be assumed to
be reparametrizable.

In the original papers, z is picked to be a continuous reparametrization of x in the sense
that x = H(z) for some non-differentiable transfer function H(·). They then recommend
setting cφ(z) = f(H̃(z)) where H̃(z) is a differentiable approximation of H. RELAX further
advocates augmenting cφ as,

cφ(z) = f(H̃(z)) + c′φ(z),

where c′ is a neural network or other high-capacity model (Grathwohl et al., 2018).
To design a RELAX estimator for the MPS, we must find a continuous variable zn

that correlates with each of the xn = onehot(xn) discrete variables in our model. It would
be natural if we could use the differentiable relaxation x̂n, but this is not immediately
correlated with xn—in fact, the two define independent sequences of random variables. To
correlate the two, we take xn to be generated via a Gumbel-max reparametrization as in
equation (20), and we then tie the Gumbel noise used in each true sampling step to that
used for the matching relaxed sampling steps in equation (24). The corresponding coupled
graphical model is depicted in Fig. 7. This approach is strongly inspired by one presented
in the appendices of the original REBAR paper (Tucker et al., 2017).

Conditioning on x, we can sample the Gumbel noiseGn conditioned on that information
(see appendix A for details), and using that we can run the coupled dMPS forward. Given
the continuous random variables X̂ = {x̂n}Nn=1, we will assume our control variate is,

cφ(X̂) = ln p(X̂,Y)− ln q(X̂) + c′φ(X̂),

This is not strictly correct as p and q are defined over discrete domains, but often there is a
direct way to relax both. For an MPS q, we can relax it by doing a weighted marginalization,

L̂1 =

K1∑
i1=1

x̂1i1G1[i1]>G1[i1], Ln =

Kn∑
in=1

x̂ninGn[in]>L̂n−1Gn[in]. (28)

This corresponds to standard indexing when the x̂n vectors are one-hot.

16

MPS for Discrete Models

x1 x2 x3 x4

G1 G2 G3 G4

x̂1 x̂2 x̂3 x̂4

Figure 7: Coupled sampler for RELAX reparametrization. We can sample the continuous
variables x̂i conditioned on the discrete xi.

3.3 Differentiable Normal Forms

Following the previous chapter, we can apply gradient-based optimization to the cores Gn[k],
but we are left with some challenges, such as how to handle normalization. If we constrain
the parameters to left/right-canonical cores, we not only get automatic normalization, but
also reduce the issue of non-identifiability. We saw in section 2.5 that the defining constraint
of left/right-canonical cores was equivalently stated in terms of an orthogonal matrix as in
equation (16). By inverting this argument, we can take any column-orthogonal matrix and
then define the cores (or their transposes, for right-canonicity) of an MPS to be equal to
the blocks of the auxiliary orthogonal matrix. The respective canonical constraint will then
be automatically maintained.

Given this, we need a differentiable parametrization of orthogonal matrices. There are in
general two overall strategies for constructing orthogonal matrices: i) map a latent quantity
through a map that has the orthogonal matrices as its image, or ii) construct a general
orthogonal matrix by multiplying members of some set of elementary matrices (Shepard
et al., 2015). The drawback of the former approach is that it tends to involve complex
matrix operations like matrix inverses and matrix exponentials, while the latter results in
long chains of repeated operations.

The Cayley transform (Shepard et al., 2015) says that

Q = (I −A)(I +A)−1

is orthogonal, when A is skew-symmetric, i.e., A> = −A. I +A is always invertible, and
is often well-conditioned as it has eigenvalues 1 + iλk, where iλk are the eigenvalues of the
skew-symmetric matrix.

Alternatively, to avoid the matrix inverse, we can express an arbitrary orthogonal matrix
Q ∈ O(k) as the product of K Householder reflections (Sun and Bischof, 1995),

Q =

K∏
k=1

H(vk), H(vk) = I − 2
vkv

>
k

v>k vk
, vk 6= 0.

The complexity of the representation is O(K3), so equal to the Cayley transform, but does
not involve matrix inverses. On the other hand, the algebraic inverses can also lead to
numerical issues, although we empirically observe that this is not common.

17

Bonnevie and Schmidt

4. Symmetry

Clustering and mixture models are often described in terms of a random label xn determin-
ing which cluster or mixture component each data point belongs to. As such, the individual
label spaces of all the variables xn can be identified with the same canonical label space of
K ≡ K1 = . . . = KN discrete labels.

Typically, the labels are indistinguishable in the prior leading to both the prior and the
posterior possessing a relabeling symmetry : given any permutation map σ(·) on the K labels,
the configuration given by x̂n = σ(xn) is exactly as probable as the original configuration
xn (so p(x) = p(x̂) for distribution p). In other words, for any particular partition of the
data, the common label assigned to the elements in each set is inconsequential, as long as
it encodes the same partition.

4.1 Marginals under Relabeling Symmetry

Mathematically, we can write distributions with relabeling symmetry as

p(x) =
∑

S∈SK(I)

ωS
χ(x ∈ LK(S))

K!
,

where
∑

S ωS = 1, χ is the indicator map which is 1 when its condition holds, and SK(I) is
the set of partitions of the set I into K non-empty parts, where each partition element S
is a set of disjoint subsets of I, with their union being I. LK(S) is the set of K! labellings
x of the partition S using K labels.

Relabeling symmetry has strong effects on the marginals of the distribution, as they by
definition are uniform. Conditioning on a partition S we can factorize the distribution as

p(x|S) =
K∑
k=1

χ(xj = k, j ∈ A)

K

χ(xI/A ∈ LK−1(S/{A}))
(K − 1)!

χ(xj 6= k, j /∈ A),

which holds for any choice of A ∈ S. If we choose A = N(n, S) where N(n, S) is the set of
indices grouped together with index n under partition S, then we can compute

p(xn = k) =
∑

S∈SK(I)

ωS
∑
x/n

p(x|S) =
∑

S∈SK(I)

ωS
χ(xj = k, j ∈ N(n, S))

K
=

1

K
,

where the second equality is true as we marginalize exactly over p(xI/A|S/{A}) for K − 1
labels, and the final equality is true by design.

Using the same type of arguments, we can find that the probability table of the bivariate
marginal can be written as a constant plus diagonal matrix

p(xn = k, xm = `) =

{
αnm, k = `,
1−Kαnm
K2−K , k 6= `,

where Kαnm is the co-occurrence (co-clustering) probability that xn = xm. In other words,
the distribution only distinguishes between whether the two points in question are clustered
together, or apart.

18

MPS for Discrete Models

4.2 Tensor Trains and Relabeling

In tensor language, we can say that a probability tensor has relabeling symmetry if its under-
lying distribution has it, and the relabeling symmetry means that the tensor is unchanged
under a simultaneous and identical permutation along each mode, i.e.,

T = T ×1 Pσ ×2 . . .×N Pσ

has to hold for each permutation σ, where Pσ is the matrix representation of σ, where
Pij = 1 if σ(j) = i, and zero otherwise. Adopting a general result from Kolda and Bader
(2009), we can vectorize to get the equivalent matrix expression(

P⊗Nσ − I
)

vec(T) = 0,

where we use P⊗Nσ =

N times︷ ︸︸ ︷
Pσ ⊗ . . .⊗ Pσ to denote a Kronecker power. So the vectorized tensor

has to live in the intersection of the null spaces of all of these massive KN ×KN matrices.
This statement can be made a bit more compact by noting that the set of all permutations
can be constructed from a smaller subset of generating permutations. A classical choice
is the set of all transpositions i ↔ j, swapping elements i and j, while the most compact
consists of just two elements: a transposition of the two first elements 0↔ 1, and the cycle
permutation σ(i) = i + 1 (mod K) that performs a circular shift of every index (Conrad,
2013; Miller, 1901).

Permutations on the coordinates of a tensor in a TT format are straightforward to
apply, giving rise to a permuted tensor which can also be represented in TT format, with
the cores being a reordering of the original cores: Ĝn[k] = Gn[σ(k)]. It is of interest to
consider whether we can encode knowledge about the posterior, such as the relabeling
symmetry, directly into the MPS approximation as this might reduce both redundancy in
representation and the risk of degenerate solutions.

In all generality, there is a trivial construction for making a tensor (or other function-like
object) invariant to a finite closed group of transformations σ ∈ Π, which is to construct a
new tensor by averaging over all the group elements

T̂I =
∑
σ∈Π

Tσ(I).

This approach has been used previously in the kernel literature to make invariant ker-
nels (Haasdonk and Burkhardt, 2007), and can be applied in the TT setting as well, as we
have rules for adding tensor trains together. The problem with this approach arises when
the cardinality |Π| is large, as the rank grows linearly with the number of terms in the sum,
and many groups of interest, including the set of permutations, possess a large number of
elements. As such it is more attractive if we can find representations that directly encode
the symmetries.

Limiting ourselves to K = 2, it is fairly simple to build tensor trains with symmetries
using structured cores. This case, while minimally complex in some sense, is of interest due
to its tight relationship to the concepts of bits and bit-strings. Huckle et al. (2013) consider
a number of bit-string symmetries, including bit-shift, reverse, and relabeling, the latter of

19

Bonnevie and Schmidt

which they name the bit-flip symmetry. For K = 2, it is characterized by the single swap
permutation 0↔ 1. They further show that if

Gn[1] = UnGn[0]Un+1 (29)

with U being a set of involutions where U2
n = I and UN+1 = U0 = 1, we can inspect the

value of the tensor at index I,

TI = . . . (UnGn[in]Un+1)(Un+1Gn+1[in+1]Un+2) . . . = (30)

. . .Gn [̄in]Gn+1 [̄in+1] . . . = TĪ , (31)

to see that the value at I is equal to that at index Ī where the bar indicates the application
of the bit-flip/swap permutation. The authors go on to show that for any tensor train
with relabeling symmetry, there exists a representation where the cores follow the above
relation (Huckle et al., 2013, Theorem 3.8). Note that the result is not air-tight: cores of
the form above lead to the symmetry, and for every tensor train with the symmetry, there
exists a set of cores with the properties above, but this does not directly exclude different
sets of cores describing the same tensor, but without the property. Indeed, in the proof of
theorem 3.8, they have to double the assumed rank to prove that the tensor train has a set
of cores obeying equation (29). In the next section we will pursue a more general theory of
symmetry. Our approach is inspired by the physics literature, where versions of MPS have
been developed that are invariant to various symmetries, in particular of the continuous
and spatial variety (Singh et al., 2010, 2011; Weichselbaum, 2012).

4.3 Representation Theory

In section 2.5, we noted that each tensor does not have a unique representation as a tensor
train, and that a family of gauge transforms,

Gn[k]→ A−1
n Gn[k]An+1,

leave the implicit tensor invariant, as the An matrices cancel. If we conjecture that this
is a necessary condition, such that the equivalence of two equal-sized tensor trains implies
that they are gauge transforms of each other, we get the consequence that for tensor trains
invariant to permutation, the permutation must be acting as a gauge transform (Bridgeman
and Chubb, 2017). In other words,

Gn[σ(k)] = A−1
n,σGn[k]An+1,σ. (32)

We note that An,σ cannot depend on k, by the definition of the gauge transform. We
can then also consider consecutive applications of multiple transforms, e.g.,

Gn[σ2(σ1(k))] = A−1
n,σ2A

−1
n,σ1Gn[k]An+1,σ1An+1,σ2 = A−1

n,σ2◦σ1Gn[k]An+1,σ2◦σ1 .

The last equality states that the matrix representation for the composite map σ2 ◦ σ1

should be equivalent to the product of the separate matrix representations for σ1 and σ2.
If we assume that the set of transforms we are interested in form a finite group G under
function composition, then the set of matrices obeying this relationship are exactly the

20

MPS for Discrete Models

matrix representations of said group. As permutations form groups, we can apply the above
idea to our cases of interest. In the matrix product state setting, the squaring procedure
means that the tensor train does not have to be strictly invariant; each matrix An,σ can be
multiplied by any root of unity factor (αn,σ)2 = 1. We will assume that this scaling factor
is 1 for simplicity.

Any finite group is isomorphic to a subgroup of the symmetric group S(K) by Cayley’s
theorem. Every element σ ∈ S(K) is a permutation on K elements, and we can define
the so-called permutation representation ρ : S(K)→ RK×K , consisting of the permutation
matrices ρ(σ) = Pσ. Specifically, this assumes a correspondence between element k and
canonical basis vector ek, so that Pσek = eσ(k) (where we use σ(k) to mean application
of the permutation operation). Similarly, we can define another equivalent matrix repre-
sentation by changing the basis as P̃σ = QPσQ

−1. We can furthermore construct matrix
representations of size nK × nK by using the direct sum ⊕ as

(Q1P
(1)
σ Q−1

1)⊕ (Q2P
(2)
σ Q−1

2) =

(
Q1 0
0 Q2

)(
P

(1)
σ 0

0 P
(2)
σ

)(
Q1 0
0 Q2

)−1

,

where the resulting matrix is likewise a representation. While we have maintained an explicit
basis above, note that this disappears under the gauge transform equivalence, so we will
assume that Q = I going forward.

If we assume that our maximum TT rank is a multiple of K, all of the intermediate ranks
rn will be multiples of K as well, and we can use direct sums of the standard permutations
matrices to form representations An,σ = I ⊗ Pσ at every site. Note that their inverse is
given by their transpose.

To finalize the representation, we can select K elements σk ∈ S(K) where σk(1) = k, to
generate the cores

Gn[k] = (I ⊗ Pσk)Gn[1](I ⊗ Pσk)>,

implying that the representation is determined by the choice of matrix representation and
a single “free” Gn[1]. From equation (32), a constraint on Gn[1] is imposed, as it should
be invariant to σ where σ(1) = 1. For the standard permutation representation presented
above, the invariant subspace under this subgroup of permutations is the span of e1, and 1
which is invariant to all permutations. To ensure that the block-wise column- and row-space
is the subspace spanned by these vectors, we can write

Gn[1] = (I ⊗ V)Bn(I ⊗ V)>, V =
(
e1

1√
K

1
)
, Bn ∈ R

2
K
rn× 2

K
rn+1 .

Alternatively, we can use a projection matrix to the same effect, but the above representation
is less redundant.

21

Bonnevie and Schmidt

4.4 Left-Canonical Form for the Relabeling Symmetric MPS

Due to the design, we can construe the parameter matrix as a block matrix of 2× 2 blocks,
Bn =

∑
i,j eie

>
j ⊗Bnij , and use that to consider the inner product

Gn[k]>Gn[k] = (I ⊗ PσkV)B>n (I ⊗Ω)Bn(I ⊗ PσkV)> = (33)∑
ijrs

(eje
>
i ere

>
s ⊗ VkB>nijΩBnrsV

>
k) = (34)

∑
js

eje
>
s ⊗ Vk

rn/K∑
r=1

B>nrjΩBnrs

V >k , (35)

where Vk is the same as V , with e1 swapped for ek and Ω = V >V . If we standardize with
respect to Ω by setting B̃n ← (I ⊗ Ω1/2)Bn, we can write the left-canonicity condition
from section 2.5 as

I =

K∑
k=1

Gn[k]>Gn[k] =
∑
js

eje
>
s ⊗

K∑
k=1

Vk

rn/K∑
r=1

B̃>nrjB̃nrs

V >k .
This condition translates into the block-wise statement that for j = s, the right Kronecker
factor should be the identity matrix, and for j 6= ` it should be the zero matrix.

Let M =
∑rn/K

r=1 B̃>nrjB̃nrs. Splitting the products with Vk into rank-one elements
yields

K∑
k=1

VkMV >k =
K∑
k=1

(
M11eke

>
k +

M22

K
11> +

1√
K

(
M12ek1

> +M211e
>
k

))
= (36)

M11I +

(
M22 +

M12 +M21√
K

)
11>, (37)

This immediately gives us the condition that M11 = 1 for diagonal blocks j = s and M22 = 0
when j 6= s. Inspecting B̃n, this means that all columns with odd index should form an
orthonormal basis Qodd. For all blocks it should furthermore hold that

M22 +
1√
K

(M12 +M21) = 0,

which we can express in matrix form as

Q>evenQeven +
1√
K

(Q>evenQodd +Q>oddQeven) = 0⇒ (38)

H>H +
1√
K
H> +

1√
K
H + H̄>H̄ = 0, (39)

where we get the last equation by defining Qeven = QoddH + Q̄oddH̄, where Q̄odd is the
orthogonal subspace of Qodd, and H and H̄ are appropriately shaped coefficient matrices.
By completing the square, we can transform the condition into

(
√
KH + I)>(

√
KH + I) = I −KH̄>H̄. (40)

22

MPS for Discrete Models

Taking the SVD of H̄ = LSW> we can multiply by W> on both sides to get a diagonal
matrix on the right-hand side,

W>(
√
KH + I)>(

√
KH + I)W = I −KS2. (41)

Equation (40) has an inner product on the left-hand side, so equation (40) is implicitly
solved when

U ≡ (
√
KH + I)W (I −KS2)−

1
2 ,

is an orthogonal matrix. Via algebra, a family of solutions can be found as

H =
1√
K

(
U(I −KS2)

1
2W> +

(
U Ū

)(C1

C2

)
W̄> − I

)
,

where for U and W , the matrices Ū and W̄ are orthogonal to their counterparts, and
span the orthogonal complement of bases U and W , respectively. If we use U∗ and W∗ to
denote the concatenation of the two complementary bases into a full basis (square orthogonal
matrix),

H =
1√
K

(
U∗C∗W

>
∗ − I

)
, H̄ = LSW T , C∗ =

(
(I −KS)

1
2 C1

0 C2

)
,

fulfills the projected condition from equation (41) for arbitrary orthogonal U , W , L and di-
agonal S with |Sii| < 1

K . Plugging the result back into the original constraint from equation
(40), we get the final condition

I = C>∗ C∗ +

(
KS2 0

0 0

)
=

(
I (I −KS2)

1
2C1

C>1 (I −KS2)
1
2 C>1 C1 +C>2 C2

)
,

which reduces to two simplifying conditions: C1 = 0 and C2 has to be orthogonal.
For S = 0, there is no weight on the orthogonal subspace, and

H =
1√
K

(
UW> − I

)
,

where QW> is an arbitrary orthogonal matrix.
Just like with the original left/right-canonical forms, we cannot expect the above to

work with arbitrary choices of rank: the identity matrix has full-rank, and by adding K
rank-r matrices we can get at best a rank Kr matrix. Problematically, the above design
is intrinsically of lower rank than it should be: the coefficient matrix Bn is only rank
min(2

K rn,
2
K rn+1). Multiplying by K, we see that for the initial regime where rn < rn+1,

we have to ensure 2rn ≥ rn+1. Maximizing the possible rank by setting 2rn = rn+1, we get
the rank progression

1,K, 2K, 22K, . . . , 2nK, . . .K, 1.

Since this maximal rank is smaller than the maximal rank of the unconstrained problem, it
might be the case that this is not simply due to the relabeling symmetry constraints, but
that there exists symmetric tensors that are not expressible using the above representation.
Indeed, this appears to be the case empirically. A simple remedy is to augment the size

23

Bonnevie and Schmidt

of the core to the maximal rank achievable in the unconstrained setting by zero padding
the relabeling symmetric representation, and then add the same constant matrix to all core
slices. While this appears to remove the low-rank problem, we have been unable to find a
parametric canonical form for this augmented representation, which is left as future work.

5. Relationship to Probabilistic and Graphical Models

Whereas we have transformed the probabilistic model into a probability tensor and then
approximated it with the MPS in the sense of a tensor approximation, it is possible to do it
the other way around. In fact, there is a duality between tensor networks (the generaliza-
tion of MPS’s to more complex hierarchies of tensor products) and probabilistic graphical
models (Robeva and Seigal, 2018). This dual view lends additional insights: For example,
an efficient ordering of tensor contractions when computing e.g. a marginal or the normal-
ization constant can be found by using the classical junction-tree algorithm on the dual
graphical model (Robeva and Seigal, 2018). Prior to the explicit description of the duality,
it was also shown how graphical models (or the corresponding decomposed log-densities)
could be mapped to tensor networks (Novikov et al., 2014).

These two results highlight that we can in some sense characterize the MPS as a graphical
model for which inference is particularly efficient. We find that MPS’s bear resemblance to
observable operator models (Jaeger, 2000) as well as weighted finite automata and the class
of rational stochastic languages (Balle et al., 2015) which are formally distributions over all
sequences Σ∗ using some alphabet of states Σ where the distribution of x = (i1, . . . , iN) ∈ Σ∗

is computable as

pRSL(x) = v>0 Ai1 . . .AiNv∞

for some set of matrices Ak. The MPS is tremendously similar, except that it is a dis-
tribution over sequences of length N only and allows for the state matrices A, including
dimensionality, to vary with the index. If we truncate the model above to only be over
length N sequences, we can identify it with an MPS with the translation invariance prop-
erty, where Gm[k] = Gn[k] for all m,n (Schollwöck, 2011). Just like with the tensor trains,
it is difficult to determine if the model, for some choice of parameters, assigns positive
probability to all sequences, which lead to squaring constructions similar to the MPS to be
explored in the literature (Bailly, 2011).

A final interesting link comes from the most prominent member of the above model class
being the Hidden Markov model (HMM), which can be converted into the above form by
setting

Ai = Diag(Os,:)T (42)

for transitions Tij = p(zn+1 = j|zn = i), latent states zn ∈ Σ, and emission matrix Oij =
p(xn = j|zn = i) where Os,: denotes the s’th row (Jaeger, 2000). We highlight this as the
observable operator model is a generalization of the HMM, which is limited by equation (42)
constraining the shape of each Ak matrix (Jaeger, 2000). For instance, an HMM can never
have negative elements in its transition matrices.

24

MPS for Discrete Models

6. Experiments

In this section we will demonstrate the functionality of the matrix product state model when
used as a variational approximation for tensor-shaped distributions. Throughout, we will use
a stochastic block model (Nowicki and Snijders, 2001) posterior as our approximation target.
It is a model for community detection in networks, which is related to other clustering
problems. In particular, we assume an observed binary adjacency matrix Y ∈ {0, 1}N×N
for an undirected graph over N vertices. The stochastic block model for K communities is
then,

w ∼ Dirichlet(α1, . . . , αK),

(cluster proportions)

xi ∼ Categorical(w), ∀i ∈ 1, . . . , N,

(cluster assignments)

ηk` ∼ Beta(ak`, bk`), ∀k ∈ 1, . . . ,K, ` ∈ k, . . . ,K,
(link probabilities)

Yij ∼ Bernoulli(ηxi,xj), ∀i ∈ 1, . . . , N, j ∈ i+ 1, . . . , N.

(observed links)

Here, ηk,` describes the probability of a connection between community k and `, with
` ≥ k, and {αk}Kk=1, {ak`}Kk,`=1, and {bk`}Kk,`=1 are hyperparameters. We consider the label
symmetric setting αk = α, ak` = a, bk` = b∀k, ` ∈ 1, . . . ,K. This model cannot be written
as a probability tensor in its current form, as it contains continuous variables w and ηk`.
Fortunately, the model is in the conjugate exponential family, so we can integrate out w
and ηk`, leaving a posterior density over the discrete xi.

P (X|Y) ∝ B(α1 + n1, . . . , αK + nk)
∏
k`

B(mk` + a, m̄k` + b), (43)

where B is the (multivariate) Beta function, nk denotes the number of observations in
cluster k (computed from X), and mk`, and m̄k` denotes the number of edges and non-
edges respectively between nodes in cluster k and ` (computed from X and Y). If we
let each xi index a dimension of a tensor, we get a K × . . . ×K (unnormalized) posterior
probability tensor with N modes. This tensor will be our approximation target.

6.1 Influence of Rank

The rank of the matrix product state is the most significant tuning parameter, both in terms
of modeling capacity and computational complexity. Using the incremental SVD algorithm
defined in section 2.3, we are guaranteed to always be able to perfectly approximate any
tensor, if only we use a sufficiently high rank. In the worst case, each iteration involves the
SVD of a matrix with maximal rank, i.e. a matrix of size Ki ×KN−i in the i’th step, until
we hit step bN/2c, at which point the effective rank will start to decrease. The maximal
rank is attained at this tipping point, so the maximal rank required to express a tensor
with N modes of length K is KbN/2c. We plot this in Fig. 8a for different values of K. This

25

Bonnevie and Schmidt

2 4 6 8 10 12 14 16 18 20
Number of variables (N)

101

102

103

104

105

106
M
ax

im
um

 ra
nk

K=2
K=3
K=4

(a) Upper bound on rank

1 2 4 8 12 16
Rank

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

KL
 d
iv
er
ge

nc
e

size 4
size 6
size 8

(b) KL divergence for varying rank

Figure 8: (a) The upper bound on the rank of the true TT decomposition of any tensor with
N modes of dimensionality K. (b) The true KL divergence computed on three
small tractable models (Erdős-Rényi random graphs with 4, 6 and 8 vertices)
with approximations of varying rank. Errorbars denote standard deviation over
10 random graphs. Horizontal lines denote best mean-field solution.

is smaller than the number of elements in the tensor, but unfortunately scales in the same
exponential manner. As such, low-rank assumptions are a necessity.

To give a brief demonstration of the model’s potential efficacy, we generated small
Erdős-Rényi random graphs with 4, 6 and 8 vertices. These are sufficiently small for us
to compute the true gradient and true posterior, making it possible to calculate the actual
KL divergence between the posterior and the approximation. We found the locally optimal
approximation using an off-the-shelf BFGS optimization routine and 10 random restarts,
and selected the solution with the smalles KL divergence. We did this for 10 random
instances for each vertex count. Fig. 8b shows the average KL divergence at the best run,
with the errorbars denoting the standard deviation across different random graphs. While
the tensors in question here are very small with only 16, 64 and 256 elements respectively,

Rank 1 Rank 4 Rank 8 Ground truth

Figure 9: Mosaics (tiled heatmap visualization) of approximations of the posterior distri-
bution when using varying rank. The underlying model is a stochastic block
model with three communities on a small network with eight vertices. Structural
complexity increases with rank, slowly approximating the complexity of the true
tensor.

26

MPS for Discrete Models

101 102 103

rank

10 4

10 3

10 2

10 1

100

101

102

103

tim
e

[s
ec

on
ds

]

slope=2.423

Figure 10: The time it takes to draw one sample (in seconds) as a function of the rank.
Reference line is a regression on the last five points.

the maximal ranks are 4, 8, and 16, but in this experiment the approximation already
appears quite trustworthy at around half that rank. Note that this result might depend a
lot on how the random graph is generated, especially for larger graphs.

For further demonstration, we fitted models of varying rank using BFGS (as above) and
unfolded the resulting tensors into a matrix. Naive unfoldings of a tensor have a tendency
to hide its structural regularity, in much the same way as a random permutation on e.g. an
adjacency graph can make even very regular graphs appear irregular. To form a structured
unfolding, we can group the random variables (for graph clustering, one for each vertex)
into two equally-sized ordered lists, which we then to use to index into the rows and columns
of the matrix, respectively. We associate the i’th element xi of the first list with the i’th

digit of a base K number, i.e. r =
∑N/2−1

i=0 xiK
i, which we can then use as a row index;

we can do the same for the second list and the column index. In this way, we can map
any configuration of the discrete random variables to an element in the matrix. We call
the resulting matrix the mosaic of the tensor. We show mosaics of differently ranked tensor
approximations in Fig. 9, compared to the true posterior tensor in the setting where we
have N = 8 vertices and K = 3 communities.

The trade-off is of course that high rank impacts the performance of the model. We
take an order-24 matrix product state representing a probability distribution over 24 binary
random variables and calculate the time it takes to draw one 24-dimensional sample, and
repeat the timing 10 times for different settings of the rank; the maximum rank for an
order-24 tensor with binary states employing canonical cores is 2048, so we check various
ranks between 2 and 2048. The timing results are illustrated in Fig. 10 which hints at
a super-quadratic growth rate, although the exact growth rate is somewhat obscured by
transient effects.

27

Bonnevie and Schmidt

10

0.1

10-3

10-5

10-7

10-9

V
a
ri

a
n

ce

Strategy

d
M

P
S

 (
T
=

0
.1

)

S
co

re

R
E
LA

X
 (

T
=

0
.1

)

V
a
ri

a
n

ce
 r

e
d

u
ct

io
n

Le
a
rn

e
d

 C
V

d
M

P
S

 (
T
=

0
.5

)

R
E
LA

X
 (

T
=

0
.5

)

(a) Variance of the gradient estimators.

0.10

0.08

0.06

0.04

0.02

0.00

S
q
u
a
re

d
 b

ia
s

Strategy

d
M

P
S

 (
T
=

0
.1

)

S
co

re

R
E
LA

X
 (

T
=

0
.1

)

V
a
ri

a
n

ce
 r

e
d

u
ct

io
n

Le
a
rn

e
d

 C
V

d
M

P
S

 (
T
=

0
.5

)

R
E
LA

X
 (

T
=

0
.5

)

(b) Most of our methods are unbiased, except
for inference using the dMPS directly.

Figure 11: Estimated squared bias and variance to true gradient with 20 000 gradient sam-
ples, each with 100 gradient draws per estimate. We register the estimated bias
and variance for each parameter—the boxplots summarize the distribution of
the estimates over the parameters. We use T to denote temperature used in
Gumbel-softmax.

6.2 Variance Reduction

We have detailed a number of ways to estimate the gradients and control their variance.
Keeping within the small N paradigm where the true gradient is tractable, we will demon-
strate that the gradients exhibit different characteristics even at this scale. In particular, we
take the graph to be an N = 4 cycle graph and look for K = 2 communities. We initialized
randomly, and took 20 BFGS steps to get into the basin of attraction. Empirically, we
observed that the gradients at random initializations were be extremely unstable, but we
observed that the gradient algorithms tend to escape this regime quickly.

Fig. 11 shows the variance and squared bias of various estimators and control variates,
including results for two temperatures of the Gumbel softmax. We took a 100-sample Monte
Carlo gradient estimator as our gradient estimator, and resampled the estimator 20 000
times to produce the statistical summaries. We used an MPS with a canonical core using
the Householder implementation which has 52 parameters. We calculated the summaries
for each partial gradient individually, letting the box plots describe the distribution of the
quantities across parameters. By using an unbiased estimate of the gradient variance along
an unbiased estimate of the squared residual with respect to the true gradient, we can get
an unbiased estimate of the squared bias by using the bias-variance trade-off identity.

28

MPS for Discrete Models

The score estimator, our baseline, stands out as the highest variance estimator. The
dMPS estimators employ a direct differentiation of a dMPS and are the simplest estimators
in our arsenal. We note that for both temperature settings we achieve a reduction in
variance, but the reduction is particularly significant for T = 0.5 which is in the same
league as the best estimators. This is offset by its significant bias, and there we see the
inverse relationship: the lower temperature estimator has significantly smaller bias. So the
dMPS estimators seem to exhibit a very explicit bias-variance trade-off.

Comparing estimators of equal temperature to each other, the two static RELAX es-
timators (without optimization over the variance-reducing parameters) match the dMPS
estimators in terms of variance, but as with all other RELAX-based estimators we see that
they are unbiased. To be clear, these estimators use the dMPS as control-variate, without
any added parametric component, which goes some way in explaining the correlation with
that approach.

The models labeled variance reduction performs stochastic optimization on the vari-
ance by using the variance gradient estimator described in the REBAR and RELAX pa-
pers (Tucker et al., 2017; Grathwohl et al., 2018). We optimize for 40 000 steps using the
AMSgrad algorithm which has improved convergence properties compared to Adam (Reddi
et al., 2018).

The most advanced estimator we investigate is the learned CV model where we extend
RELAX by using the control variate,

ν(ln p(x, z)− ln qMPS(z) + αf̂(z)),

where the two first terms make up the dMPS-based control variate, while f̂ is a flexible
function (a neural network) with everything scaled by a coefficient ν (Grathwohl et al.,
2018). Due to the structure of our problem, we settle for using an MPS with canonical
cores of maximum rank 2 instead, scaled by α. This works quite well, yielding the best
unbiased estimator of the whole selection. It might be possible to improve upon this further
by using a higher-rank MPS in the control variate, but there are certainly some complexity
trade-offs.

A few empirical observations about training the variance reduced estimators are worth
mentioning. That RELAX is better with high-temperature estimators goes against the
intuition that we should strive for a control variate that is as close as possible to the true
objective; apparently the increased variance we incur from a low temperature is too high a
price. In fact, when we optimize for the temperature, we often see it increasing to values of
1 or higher, which is significantly above what we would otherwise expect based on model-
fitting intuitions and the literature on Gumbel-softmax where temperatures around 0.5
are usually recommended (Maddison et al., 2017; Jang et al., 2017). The scalar weight ν
multiplied onto the control variate is on the other hand quite stable, and almost always
converges to 1. The few times ν diverged, it was usually preceded by the temperature
dropping to a very low value, causing high variance gradients and unstable training. In
general, we advocate keeping both the temperature and the scaling parameter from dropping
too close to 0.

29

Bonnevie and Schmidt

6.3 Biased vs Unbiased Gradients

The earliest of the recent bout of papers on gradient-based learning of discrete distributions
hinged mostly on relaxations such as the Gumbel-softmax trick we employed to form the
dMPS, which naturally introduced bias into the inference (Maddison et al., 2017; Jang et al.,
2017). Although they had some success in their applications, we will make the case that
the bias can be quite harmful.

In particular, we ran a dMPS versus an MPS trained with RELAX gradients and a
learned control variate on an N = 9 graph (specifically the first 9 nodes of Zachary’s karate
network) taking K = 2. We used canonical cores, a gradient estimator based on 1 000
samples, and optimized using AMSgrad. We tracked the true ELBO, which is tractable due
to the size of the graph, as well as the differentiable and stochastically estimated version of
the ELBO targeted by the dMPS. Both of these learning curves appear in Fig. 12. Note that
similar behavior was noted in several experimental runs, with this one picked for illustrative
purposes.

We notice in particular that while the dMPS appears to perform exceedingly well accord-
ing to its own biased metric, its behaviour with respect to the true objective is concerning,
as it dips to its lowest point around iteration 500, before rebounding and leveling off at a
higher level, around iteration 800. Most importantly, this seems to indicate that the biased
objective is running counter to the true objective in some subtle way.

We can pick this observation apart by taking the entire 512 element posterior probability
tensor, and compare it to the approximate posteriors. We plot the true probability against
the approximation for all tensor elements individually in the plots in Fig. 13. The two first
subfigures correspond to the iterations marked with vertical lines in Fig. 12, and the third
subfigure is at convergence. We note that at iteration 500 the approximation is somewhat
sound, with the approximation roughly in the right range of values and a good fit to the
highest value mode. Then at iteration 800, we see that pretty much all of the probability
mass is concentrated at the single highest mode. The unbiased gradient meanwhile finds a
reasonable approximation, especially with respect to the more significant high probability
states.

6.4 Experiments on Zachary’s karate network

In this section we approximate the posterior of a stochastic block model applied to the
venerable karate graph (Zachary, 1977). This is a 34 vertex social graph with K = 2 gold
standard communities. We use uniform priors, αk = 1, ak` = 1 and bk` = 1 since informed
priors can have a large impact on the posterior’s concentration.

The undirected graph has a total of

(
34
2

)
= 561 possible edges, and we assume that we

only observe 400 of these vertex pairings, leaving a test set of 161 to allow us to evaluate
the model by its prediction on held-out data.

As a baseline, we also solved it using a mean-field approximation, employing KL-
corrected bounds (Hensman et al., 2012) and an out of the box L-BFGS optimization to
efficiently find local optima. We ran it 500 times to establish the global optimum with some
certainty.

30

MPS for Discrete Models

n
e
g
a
ti
v
e

(a) The true ELBO (not stochastically esti-
mated).

n
e
g
a
ti
v
e

(b) The stochastic loss function employed by
the dMPS.

Figure 12: Learning curves for two MPS models: Differentiable matrix product state
(dMPS) and RELAX with control variates (learned CV) with biased and un-
biased gradients respectively. We report the true loss, and the implicit loss of
the biased method. Horizontal lines correspond to snapshots at iteration 500
and 800 in Fig. 13.

(a) Iteration 500. (b) Iteration 800. (c) At convergence.

Figure 13: Difference between the estimated q and the true posterior at all 512 positions
of the probability tensor for differentiable matrix product state (dMPS) and
RELAX with control variates (learned CV). Black points correspond to the true
posterior.

6.4.1 Initialization and Warm Starts

A central issue with graphs of any meaningful size is that due to the combinatorial explo-
sion of possible states, they can be quite sensitive to initialization. One advantage of our
problem is that we can in many cases easily find local optima or efficiently computable ap-
proximations, in particular in the settings where we can calculate the analytical ELBO for

31

Bonnevie and Schmidt

a mean-field model. To each mean-field solution qi(X) =
∏N
n=1 qi,n(xn), we can associate a

tensor Ti which is the outer product of the marginal probability vectors, as in equation (2).

We could combine all the mean-field solutions in a mixture T̄ = 1
S

∑S
i=1 Ti, and compute

the norm 〈
T − T̄ , T − T̄

〉
= 〈T , T 〉+

1

S2

S∑
i,j=1

〈Ti, Tj〉 −
2

S

S∑
i=1

〈T , Ti〉 ,

which is computable as all of the inner products are expectations per equation (11). Un-
fortunately, due to the high dimensionality of the tensors, this problem appears to be
numerically problematic as distances break down due to the curse of dimensionality.

As a light proxy, we propose using the sum of log expectations,

S∑
i=1

log 〈T , Ti〉 .

Intuitively, if Ti is close to a one-hot encoding, maximizing the expectation 〈T , Ti〉 en-
courages the model to put as much mass as possible on that index. Summing over the
expectations with respect to all states aims to then find a compromise that puts mass on
all the indices, but if the expectations are just summed the optimal solution will be to put
maximum mass on the index with highest weight. The logarithm tries to balance this by
making it disproportionately disadvantageous to put zero mass on any of the states. This
target is amenable to off-the-shelf optimizers like BFGS. Since there is still some chance of
collapsing onto the S states, we recommend performing early stopping after 30 steps.

Another alternative to random initialization is to start in the maximum entropy state.
The entropy of the entire MPS is difficult to calculate, but since we can compute the
marginals efficiently we can use the marginal entropy as a proxy, encouraging that no label
preferred a priori.

In Fig. 14 we visualize the learning curves generated by initializing using these two
strategies. We also consider a boosted version of the expectation-based initialization, where
we only maximize the objective with respect to the 20 entries with highest predictive like-
lihood.

In Fig. 14a we have inverted the ELBO to get a minimization problem, and we see that
all curves implement a decreasing behavior as expected, although the expectation strategy
behaves oddly in the initial transient phase. The initial state of the entropy initialization
is not surprisingly a rather poor initialization with respect to the ELBO, but it seems to
decrease to the level of the others gracefully.

The entropy initialization likewise under-performs on predictive likelihood in Fig. 14b.The
best predictive likelihood achieved by any of the mean-field optima is −59 which is achieved
by the boosted method, which was specifically designed to be close to that state, but we
see that this is not a stable point and the boosted strategy dives down to the same level as
the other curves. This is in line with the mean-field solution with the best bound having a
rather mediocre predictive performance, so this is indicative of a model mismatch.

From the marginal entropy plot in Fig. 14c, we see that all of the states start in fairly
entropic solutions, despite having very different empirical behavior. We also see that the
inference procedure drives all of them towards low entropy configurations, with the lower

32

MPS for Discrete Models

(a) ELBO for the different ini-
tialization strategies.

(b) Predictive likelihood on
test set. Line denotes the
mean-field model with best
ELBO.

(c) Marginal entropy. Lines
denote maximum possible
entropy (top) and entropy
where each marginal puts
0.9 on a single entry.

Figure 14: Learning curves for three different initialization strategies based on maximizing
the marginal entropy (labelled entropy), maximizing the sum of log expectations
overall (expectation) or for the 20 entries with highest predictive likelihood (ex-
pectation 20 best).

Figure 15: Loss as a function of iteration number for three restarts of rank 16 MPS on
Zachary’s karate network.

reference line being the entropy of a mean-field model where every marginal puts 0.9 prob-
ability mass on a single entry, and divides the rest evenly. This is discouraging, as we had
hoped the flexibility of the MPS would allow us to find solutions with high marginal entropy.

33

Bonnevie and Schmidt

6.4.2 Induced Covariance

Next, we ran a rank 16 MPS with canonical cores, warm starts using the expectation
strategy, and AMSgrad with a 0.01 learning rate. We plot three restarts in Fig. 15. We
note that run 1 surpasses the other two runs by a fair margin, so we selected that for further
inspection. As a rule, we generally observe quite noisy transient phases during optimization,
but eventually it levels out.

We have no good easily computable metric to evaluate the degree to which dependencies
have been encoded in the approximate posterior. To get a local measure we will consider
the covariance matrix of each one-hot categorical variable pair xn and xn′ , with element
(k, k′) of the covariance matrix given by,

Cov(xnk, xn′k′) = E[xnkxn′k′]− E[xnk]E[xnk′].

If k = k′, and the respective covariance element is positive, this means that those two points
are likely to get sorted into the same cluster. We can take this a step further by computing
the co-location matrix,

E
[
XX>

]
,

where [X]nk = xnk. Given any sample instantiation X̂, the quantity X̂X̂> gives a binary
matrix where each element is 1 if two elements share a label in X̂. Taking the expectation
then gives us the co-location probability of how likely two elements are clustered on average.
Both of these quantities can be estimated. The expectations here are computable using the
tensor train framework, as we can compute the marginal distribution of the two variables,
or use the tower property to express it in terms of a conditional expectation. It is often
simpler to just sample it though, which is what we will do going forward, using 10 000
samples.

We visualize the covariance matrix in Fig. 16a. The blocks are indexed by label, so
the upper left block is covariance between xi0 and xj0, the upper right block is between
elements xi0 and xj1, and so on. For saliency, we have deducted the corresponding covariance
matrix of the marginal distribution, which is only non-zero on the diagonals of each of these
blocks. So all of the observed covariance is due to the higher-rank modeling. We note that
one group exhibits relatively high positive correlation, making it likely that these elements
group together. When we look to the corresponding co-location matrix in Fig. 16b, we
see that there are some elements that almost always get clustered together, but we also
see that the elements for which we observed high covariance are the elements that are
somewhat uncertainly labeled. The strong blocks correspond to elements that have highly
concentrated marginals, giving them an almost certain assignment. This is a consequence
of most of the local optima we find concentrating around a single symmetry mode. The
uncertain elements then get randomly assigned to each of these blocks, but the covariance
tells us that they are assigned as a group. This is not the case for mean-field models,
where all uncertain elements must be randomly assigned without consideration for other
elements, which encourages these rank-1 mean-field solutions to collapse unto a specific
hard clustering.

34

MPS for Discrete Models

(a) Covariance matrix for restart 1. Blocks
corresponds to labels. Marginal covari-
ance has been deducted.

(b) Co-location matrix for restart 1.

Figure 16: Covariance and co-location matrices for restart 1, estimated using 10 000 sam-
ples.

6.4.3 Permutation Invariance

We now run a similarly sized MPS with a set of permutation-invariant cores. As we are
working with K = 2 we can use the bit-flip symmetry core (Huckle et al., 2013), although
we will have to explicitly normalize it as we do not have a canonical self-normalizing version
of that core available. After 20 000 iterations, we get the covariance and co-location plots
of Fig. 17.

Contrasted with the canonical core set from before, the covariances exhibited in Fig. 17a
are a lot stronger; note that the color scale has been extended to cover the new range of
values. Compared to Fig. 17b, we also note that the co-location is near-identical to that
of a covariance block, which is of course a direct consequence of the permutation-invariant
representation modeling everything through covariance alone. Another consequence is that
the diagonal blocks of the covariance matrix are now identical, since the two labels are
interchangeable. More distressingly, we note that the upper left corner seems to hardly
be modeled at all, which is especially odd as this part of the model was assigned labels
with very high certainty. This could be an issue with model capacity, but it could also
be a local optima problem: if we want to put the points of the upper left corner in one
cluster, it might be problematic if the K clusters have already been “spent” clustering the
lower left corner in a partition that is not consistent with the remaining points. Either
way, it should be clear that permutation-invariant cores have a large effect on the produced
posterior approximations and that the choice of core leads to qualitative differences.

6.5 Ambiguity and comparisons with sampling methods

The most common strategy for approximating discrete models is to employ sampling meth-
ods. While methods like Hamiltonian Monte Carlo are seeing widespread use, they rely

35

Bonnevie and Schmidt

(a) Covariance matrix for the permutation-
invariant core. Blocks corresponds to la-
bels. Marginal covariance has been de-
ducted.

(b) Co-location matrix for the permutation-
invariant core.

Figure 17: Covariance and co-location matrices for the permutation-invariant kernel, esti-
mated using 10 000 samples. Note that the color scale for covariance has been
extended.

on continuous sample spaces, making them inapplicable in the discrete setting; instead,
discrete sampling methods are often variants of the Gibbs sampler, which can be both fast
and effective in many practical situations. Unfortunately, it can also have exponential mix-
ing time in others and can get stuck in local configurations. Alternatives like split/merge
samplers (Jain and Neal, 2004) have been employed to help with these issues, at the cost of
added complexity, but navigating a large combinatorial space successfully remains a matter
of some luck (Albers et al., 2013; De Sa et al., 2015).

Taking the karate graph as our test case again, we run a collapsed Gibbs sampler for
better mixing (Liu, 1994) and compare it against MPS models of rank 1, 2, 4 and 8. We
run each for 15000 steps and average over 5 random restarts. We run the Gibbs sampler
for 1000 warmup iterations and then for 15000 iterations, using all non-warmup samples to
calculate a log-predictive likelihood; we repeat 10 times and average to get our benchmark.

The learning trajectories of the MPS’s are depicted in Fig. 18, where we first note
that they all eventually surpass the benchmark. Second, the lower-rank models actually
terminate at a higher likelihood than the higher-rank models, although this is likely just
a consequence of the larger more complex models being harder to optimize, a hypothesis
supported by the generally slower convergence and more erratic trajectory of the high-rank
models.

As a further challenge, we propose an ambiguous community detection problem illus-
trated by a graph with 4 vertices, one for each community, arranged in a square pattern as
depicted in Fig. 19. Each community has a high probability of 0.8 of a self-connection, and
is well-connected with its neighbours with probability 0.5 of a connection. The community
diagonally across from it in the square is weakly connected with probability 0.2. If we

36

MPS for Discrete Models

0 2000 4000 6000 8000 10000 12000 14000
Iterations

−66.0

−65.5

−65.0

−64.5

−64.0

−63.5

−63.0

−62.5

−62.0

pr
ed

ict
iv

e
lo
g-
lik
el
ih
oo

d

MPS rank=1
MPS rank=2
MPS rank=4
MPS rank=8
Gibbs

Figure 18: MPS models, averaged over 5 restarts, competing against a benchmark on the
karate network set by averaging over the log-predictive likelihood of 10 Gibbs
sampler runs.

consider a misspecified scenario where we look for only 2 communities, then the problem
becomes ambiguous as any split into 2 times 2 neighbours is equivalent. We generate data
from this model artificially, taking exactly 10 points from each community and searching for
a graph that is as close as possible to having the correct edge statistics to rule out statistical
flukes.

Running a collapsed Gibbs sampler on this new case, we take 1000 warm-up samples
followed by 10000 samples that we then use to compute co-location plots like before. Eight
such runs are illustrated in Fig. 20a. We have laid out the communities in clockwise order
with respect to the graph in Fig. 19 so that adjacent blocks are also neighbours with 0.5
probability of connecting. These runs demonstrate that the Gibbs sampler does get stuck in
local configurations as there are evidently at least two qualitatively different patterns, with
runs 5 and 6 exemplifying one of them. Run 4 demonstrates some uncertainty, but never
connects the second and third community (in the center, with negative (blue) correlation).

Our method, illustrated in Fig. 20b, is unfortunately not in a much better position, and
also seems to get stuck in one of the symmetric modes. This example used a model of rank
8 which should be able to capture multiple modes, at least partially, but the stochastic
optimization routine used in this paper invariably converges to a local mode. As we know
that the MPS can indeed model any non-negative tensor, including the ambiguous graph
model presented here, this failure demonstrates that there are remaining challenges with
optimization. One option is that the optimization employed is flawed. It is recognized that
stochastic gradient descent can have an intrinsic regularizing effect, which might bias it
towards certain modes and solutions. Since we evaluate the loss using points sampled from

37

Bonnevie and Schmidt

0.5

0.5

0.5

0.5

0.2 0.2

0.8 0.8

0.80.8

Figure 19: The ambiguous graph community structure. Vertices depict communities, edge
labels denote connection probabilities.

(a) Gibbs sampling

(b) MPS

Figure 20: Co-location diagrams for 8 runs of 10000 samples (1000 warmup) of a Gibbs
sampler on the ambiguous graph problem. White is 0.5, red is above, blue is
below. Note the two distinct patterns, reflecting that the sampler is not mixing
adequately. The MPS approach likewise collapses to a mode.

the model itself, it seems plausible that SGD might ignore points with near-zero probability
of being sampled under the initial q, leading to SGD-induced mode collapse.

7. Related Work and Further Reading

As matrix product states have seen wide-spread use in quantum mechanics, there is a
large literature on the topic. Unfortunately, for readers outside the physics community,
the presentation can be impenetrable, which is one of the motivating reasons behind the

38

MPS for Discrete Models

present manuscript. For general introductions to the topic, we recommend Schollwöck
(2011) which covers the mechanics and mathematics well and is quite pedagogical. The
thoroughly illustrated introduction by Bridgeman and Chubb (2017) complements it nicely.
For some more esoteric and physics-oriented introductions, interested readers might want
to consult Perez-Garćıa et al. (2007); Orús (2014b); Biamonte and Bergholm (2017) or the
review on applications to many-body quantum systems by Cirac et al. (2020).

While we have focused on solving non-linear variational inference problems, the physics
community has developed good solutions for solving rayleigh quotients and linear objectives.
The central workhorse is the DMRG algorithm (White, 1993) that solves the objective by
optimizing over one core tensor at a time, which reduces the optimization to an eigenvector
problem; see also (Hubig et al., 2015; Stokes and Terilla, 2019). In the extended two-
site DMRG (Holz et al., 2012) each step optimizes over two cores jointly, which makes
it possible to apply SVD to deduce the appropriate rank of the core tensors dynamically.
The introductions Bridgeman and Chubb (2017) and Schollwöck (2011) both offer excellent
introductions to the DMRG algorithm. The ideas from the DMRG algorithm can also be
applied to tensor trains (Holtz et al., 2012).

In the tensor literature, the tensor train has also been growing in popularity, starting
with its publication in Oseledets (2011). The literature on tensor trains has proven less
relevant for this presentation, due to the more algebraic focus. We note that other results
from the physics literature have started to percolate over, such as the tensor ring decom-
position (Zhao et al., 2016), which is known as a MPS with periodic boundary condition in
quantum mechanics (Schollwöck, 2011).

As noted previously, we are not the first to consider the relationship between matrix
product states and probabilistic models. Arguably, this relationship is a bit of a false di-
chotomy, as its application in quantum mechanics means that it has always had a statistical
interpretation, by virtue of the way a quantum mechanical wave function is related to a
probability distribution by way of Born’s rule. The more explicit connections to probabilis-
tic models, and graphical models in particular, were pioneered by Novikov et al. (2014) and
culminated recently in a duality result (Robeva and Seigal, 2018).

There have also been a several ventures into applying tensor trains and matrix product
states in machine learning applications, including generative modeling and density estima-
tion (Han et al., 2018; Cheng et al., 2019), anomaly detection (Wang et al., 2020), image
classification (Stoudenmire and Schwab, 2016; Selvan et al., 2020; Cheng et al., 2021),
language modeling (Pestun and Vlassopoulos, 2017), sequence/time series analysis (Miller
et al., 2020; da Costa et al., 2021), and optimization (Alcazar and Perdomo-Ortiz, 2021).
Theoretical results on the generalization error (Bradley et al., 2020) and the expressive
power (Glasser et al., 2019) in tensor networks are also being developed. Finally we high-
light the relation of MPS models to sum-product networks (Poon and Domingos, 2011;
Sanchez-Cauce et al., 2021; Peharz et al., 2019) which generalizes all tractable probabilistic
graphical models.

8. Conclusion

In this paper, we have attempted to lay the groundwork for how matrix product states can be
used as an approximate model in variational inference. Part of our contribution is that this

39

Bonnevie and Schmidt

text should serve as a pedagogical gateway for people in the machine learning community
interested in this topic, by offering an introduction to the topic, relevant references to the
existing literature, and translating some of the physics-oriented results into a notation that
is more relatable to machine learning researchers.

The main challenge of integrating the MPS into a variational inference setting is finding
ways to estimate gradients in a robust manner. As a first step, this requires finding a
differentiable representation for the MPS, which is a bit different from other papers where
the model is often learned by way of repeated application of singular value decompositions
like in the tensor train algorithm we originally described in section 2.3 (Oseledets, 2011), or
the density-matrix renormalization group (DMRG) method popular in physics (Schollwöck,
2011). We note that Han et al. (2018) propose a hybrid approach, combining the iterative
procedure of the DMRG, gradient steps, and SVD. This is one of the things that could
be pursued in future work, although we were worried that local updates might make the
model more likely to converge to local modes. This worry is motivated by the passing
similarity with Gibbs sampling, which can become trapped due to its inability to make
global changes (Jain and Neal, 2004).

There are some remaining mysteries when it comes to representations. We consider a
differentiable ΓΛ-representation to be an important target for future research as it would
make marginalization operations exceedingly expeditious, and allow direct parametric con-
trol over the form of the marginals. Further exploration of symmetry representations is
another thing we believe would be fruitful; although modeling symmetry modes wastes
some of the model’s capacity, we conjecture that factoring in symmetry constraints reduces
the search space and thus helps with exploring the model space. One could also attempt
to find representations that only concentrate on a single symmetry mode, but we have not
looked into this. We found that many of our representations depended on orthogonal ma-
trices with their own differentiable parametric forms, where we have one unresolved issue
as the orthogonal matrices do not form a connected manifold, i.e. there does not exist a
parametric representation capable of modeling all orthogonal matrices with both positive
and negative determinant (Shepard et al., 2015). A final missing piece is the opportunity to
use complex valued representations which is standard in the physics community. One might
hope that using complex numbers translates directly into added model capacity, simply by
virtue of the increase in parameters, without increasing the rank. Additionally, since we
only need to model the square root of the true probability tensor, allowing complex values
gives us an infinite number of alternative solutions; when the tensor train is real-valued,
we can flip signs in the elements of the tensor train without affecting the square. With
complex-valued tensor trains we can multiply any element with any root of unity without
affecting it. On the other hand, the constructive argument means that it always suffices to
use real-valued tensors.

Optimization remains a challenge. While we found that our stochastic gradients per-
formed admirably considering the difficulty of the problem, more work could be put into
finding good warm start procedures based on e.g. locally optimal mean-field solutions like
we used. Another avenue would be to extend the coordinate-ascent updates of DMRG and
Han et al. (2018) to the full variational problem. Finally, we think there could be merit
in pursuing Riemannian optimization as the tensor trains span a sub-manifold of the space
of all tensors, and the gauge invariance means that we are often using highly redundant

40

MPS for Discrete Models

parameterizations. Some progress has already been made in this direction (Steinlechner,
2016). Numerical issues also remain problematic, as we are forced to work in the non-log
domain to exploit the MPS structure. Whether this can be fully circumvented by technical
means is an open question. One could also imagine hybrid models where we also model the
log-probability with an MPS in conjunction with the normalized model.

The MPS methods are designed to scale well, although the O(R3) scaling in the max-
imum rank eventually gets prohibitive. Scaling in N is linear for many operations, which
is a big difference from most other factorization schemes. The trade-off is that few of the
MPS and TT operations come cheaper than O(N), e.g. both evaluation and sampling scale
as O(N). We did a full-fledged implementation in Tensorflow, parallelizing where possible,
but performance could still be quite slow. Additionally, running it on a GPU often made
the whole thing slower, despite most operations being standard linear algebra routines. It
is possible that the large computational graphs and the long chains of small matrix opera-
tions is a poor fit for Tensorflow. Also, from inspection, the main bottleneck appears to be
the existing implementation of Einstein summation, which has not been fully optimized in
Tensorflow yet. In summary, it should be possible to make a high-performance versions of
the MPS.

There is also room for exploring some of the more advanced architectures from the ten-
sor networks literature. The tensor ring (Zhao et al., 2016), known as an MPS with periodic
boundary conditions in the physics literature (Schollwöck, 2011), is a straightforward exten-
sion of the tensor train which makes the tensor invariant to cyclic reordering of the cores,
but it lacks a canonical representation, as well as the efficient normalization scheme of equa-
tion (13), forcing the explicit computation of Kronecker products of the cores. Even more
advanced architectures like PEPS and MERA could also prove useful, although few of the
analytical formulas available for the MPS carry over (Orús, 2014b,a). Another interesting
avenue is the idea of implementing the cores as their own tensor trains, possibly allowing
the extension of the MPS ideology to larger ranks (Hübener et al., 2010). Note that tensor
trains can also be used to speed up standard matrix multiplications considerably (Oseledets,
2011; Novikov et al., 2015).

41

Bonnevie and Schmidt

Appendix A. REBAR for categoricals

The current best method for constructing a low-variance unbiased discrete gradient estima-
tor is the REBAR estimator which constructs a control variate with coupled randomness.
If we denote the discrete random variable b and the cost function f , then the target is to
estimate ∇E[f(b)]. Given a source of randomness p(ε) and a continuous reparametrization
z = g(ε, θ) such that b = H(z) after passing through a gating function H, REBAR builds a
control variate using a dummy reparametrization z′ ∼ p(z|b) likely to have high correlation
with the original.

If b is a categorical variable Cat(α), a natural reparametrization follows via the Gumbel-
max trick. The procedure is simply:

εi ∼ U [0, 1],

zi = lnαi − ln(− ln(εi)) ∼ Gumbel(lnαi, 1),

b = arg max(z).

Going the other way and sampling from p(z|b) is slightly more complicated. It turns out
that

zb ∼ Gumbel

(
ln

N∑
i=1

αi, 1

)
,

zi|zb ∼,TruncatedGumbel (lnαi, 1, zi ≤ zb) , ∀i 6= b.

The Gumbel has pdf and cdf

fG(x;µ, 1) = exp(−(x− µ)− exp(−(x− µ))), (44)

FG(x;µ, 1) = exp(− exp(−(x− µ))). (45)

so the truncated cdf is conveniently just

FTG(x;µ, 1, x ≤ t) =
FG(x;µ, 1)

FG(t;µ, 1)
.

Finding a reparametrization then just becomes a question of applying the inverse transform
sampler of the truncated Gumbel to a uniform variable u, and as

F−1
G (p;µ, 1) = µ− ln(− ln(p)),

we have
x = F−1

TG(u) = F−1
G (FG(t)u) = µ− ln(− lnFG(t)− lnu).

If we instead want to reparametrize in terms of a Gumbel variable z, we can use that
u = FG(z) (running the inverse transform sampler in reverse) and then substitute in to get

x = µ− ln(− lnFG(t)− lnFG(z)) = µ− ln
(
e−(t−µ) + e−(z−µ)

)
.

which can finally be reduced to x = − ln
(
e−t + e−z

)
.

42

MPS for Discrete Models

References

K. J. Albers, A. L. A. Moth, M. Mørup, and M. N. Schmidt. Large scale inference in the
infinite relational model: Gibbs sampling is not enough. In Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE, Sept. 2013. doi: 10.1109/MLSP.2013.6661904.

J. Alcazar and A. Perdomo-Ortiz. Enhancing combinatorial optimization with quantum
generative models, Jan. 2021. arXiv:2101.06250.

R. Bailly. Quadratic weighted automata: Spectral algorithm and likelihood maximization.
Asian Conference on Machine Learning (ACML), 20:147–162, 2011.

B. Balle, P. Panangaden, and D. Precup. A canonical form for weighted automata and
applications to approximate minimization. In Symposium on Logic in Computer Science
(LICS), volume 2015-July, 2015. doi: 10.1109/LICS.2015.70.

J. Biamonte and V. Bergholm. Tensor networks in a nutshell, July 2017. arXiv:1708.00006.

C. Bishop. Pattern recognition and machine learning. Springer, New York, 2006.

T.-D. Bradley, E. M. Stoudenmire, and J. Terilla. Modeling sequences with quantum states:
a look under the hood. Machine Learning: Science and Technology, 1(3), 2020. doi:
10.1088/2632-2153/ab8731.

J. C. Bridgeman and C. T. Chubb. Hand-waving and interpretive dance: an introductory
course on tensor networks. Journal of Physics A: Mathematical and Theoretical, 50(22):
223001, May 2017. doi: 10.1088/1751-8121/aa6dc3.

S. Cheng, L. Wang, T. Xiang, and P. Zhang. Tree tensor networks for generative modeling.
Physical Review B, 99(15), 2019. doi: 10.1103/PhysRevB.99.155131.

S. Cheng, L. Wang, and P. Zhang. Supervised learning with projected entangled pair states.
Physical Review B, 103(12), 2021. doi: 10.1103/PhysRevB.103.125117.

I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete. Matrix product states and projected
entangled pair states: Concepts, symmetries, and theorems, Nov. 2020. arXiv:2011.12127.

K. Conrad. Generating sets. Technical report, University of Conneticut, Department
of Mathematics, 2013. URL kconrad.math.uconn.edu/blurbs/grouptheory/genset.

pdf.

M. N. da Costa, R. Attux, A. Cichocki, and J. M. T. Romano. Tensor-train networks for
learning predictive modeling of multidimensional data, Mar. 2021. arXiv:2101.09184.

C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré. Rapidly mixing gibbs sampling for a class
of factor graphs using hierarchy width. In Advances in Neural Information Processing
Systems. 2015.

A. J. Ferris and G. Vidal. Perfect sampling with unitary tensor networks. Physical review.
B, Condensed matter, 85(16):165146, Apr. 2012. doi: 10.1103/PhysRevB.85.165146.

43

kconrad.math.uconn.edu/blurbs/grouptheory/genset.pdf
kconrad.math.uconn.edu/blurbs/grouptheory/genset.pdf

Bonnevie and Schmidt

I. Glasser, R. Sweke, N. Pancotti, J. Eisert, and I. Cirac. Expressive power of tensor-network
factorizations for probabilistic modeling. In Advances in Neural Information Processing
Systems, 2019.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Backpropagation through
the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations (ICLR), 2018.

J. E. Gumbel. Statistical theory of extreme values and some practical applications. National
Bureau of Standards Applied Mathematical Series, 33, 1954.

B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine
learning. Machine learning, 68(1):35–61, July 2007. doi: 10.1007/s10994-007-5009-7.

Z. Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang. Unsupervised generative modeling
using matrix product states. Physical Review X, 8(3), 2018. doi: 10.1103/PhysRevX.8.
031012.

J. Hensman, M. Rattray, and N. D. Lawrence. Fast variational inference in the conjugate
exponential family. In Advances in Neural Information Processing Systems. 2012.

S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor op-
timization in the tensor train format. SIAM Journal of Scientific Computing, 34(2):
A683–A713, Jan. 2012. doi: 10.1137/100818893.

S. Holz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor op-
timization in the tensor train format. SIAM Journal on Scientific Computing, 34(2):
A683–A713, 2012. doi: 10.1137/1008188.

E. Hoogeboom, J. W. Peters, R. van den Berg, and M. Welling. Integer discrete flows and
lossless compression. In Advances in Neural Information Processing Systems, 2019.

R. Hübener, V. Nebendahl, and W. Dür. Concatenated tensor network states. New journal
of physics, 12(2):025004, Feb. 2010. doi: 10.1088/1367-2630/12/2/025004.

C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf. A strictly single-site dmrg
algorithm with subspace expansion. Physical Review B, 91:155115, 2015. doi: 10.1103/
PhysRevB.91.155115.

T. K. Huckle, K. Waldherr, and T. Schulte-Herbrüggen. Exploiting matrix symmetries and
physical symmetries in matrix product states and tensor trains. Linear and Multilinear
Algebra, 61(1):91–122, Jan. 2013. doi: 10.1080/03081087.2012.663371.

M. C. Hughes and E. Sudderth. Memoized online variational inference for dirichlet process
mixture models. In Advances in Neural Information Processing Systems. 2013.

H. Jaeger. Observable operator models for discrete stochastic time series. Neural computa-
tion, 12(6):1371–1398, June 2000. doi: 10.1162/089976600300015411.

44

MPS for Discrete Models

S. Jain and R. M. Neal. A Split-Merge markov chain monte carlo procedure for the dirichlet
process mixture model. Journal of computational and graphical statistics, 13(1):158–182,
2004. doi: 10.1198/1061860043001.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-Softmax. In
International Conference on Learning Representations (ICLR), Apr. 2017.

D. P. Kingma and M. Welling. Auto-Encoding variational bayes. In International Confer-
ence on Learning Representations (ICLR), 2014.

T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 2009. doi: 10.1137/07070111X.

T. Kuśmierczyk and A. Klami. Reliable categorical variational inference with mixture of
discrete normalizing flows, June 2020. arXiv:2006.15568.

S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society:
Series B, 50(2):157–224, 1988. doi: 10.1111/j.2517-6161.1988.tb01721.x.

J. S. Liu. The collapsed gibbs sampler in bayesian computations with applications to a
gene regulation problem. Journal of the American Statistical Association, 89(427):958–
966, Sept. 1994. doi: 10.1080/01621459.1994.10476829.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In International Conference on Learning Representa-
tions (ICLR), 2017.

G. A. Miller. On the groups generated by two operators. Bulletin of the American Mathe-
matical Society, 7(10):424–426, 1901.

J. Miller, G. Rabusseau, and J. Terilla. Tensor networks for probabilistic sequence modeling,
Mar. 2020. arXiv:2003.01039.

T. Minka. Divergence measures and message passing. Technical report, Microsoft Research,
2005.

A. Novikov, A. Rodomanov, A. Osokin, and D. Vetrov. Putting MRFs on a tensor train.
In International Conference on Machine Learning (ICML), pages 811–819, Jan. 2014.

A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. Tensorizing neural networks. In
Advances in Neural Information Processing Systems. 2015.

K. Nowicki and T. Snijders. Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96(455):1077–1087, 2001. doi: 10.1198/
016214501753208735.

R. Orús. Advances on tensor network theory: symmetries, fermions, entanglement, and
holography. The European physical journal. B, 87(11):280, Nov. 2014a. doi: 10.1140/
epjb/e2014-50502-9.

45

Bonnevie and Schmidt

R. Orús. A practical introduction to tensor networks: Matrix product states and projected
entangled pair states. Annals of physics, 349:117–158, 2014b. doi: 10.1016/j.aop.2014.
06.013.

I. Oseledets. Tensor-Train decomposition. SIAM Journal of Scientific Computing, 33(5):
2295–2317, Jan. 2011. doi: 10.1137/090752286.

R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp, K. Kersting, and
Z. Ghahramani. Random sum-product networks: A simple and effective approach to
probabilistic deep learning. In Uncertainty in Artificial Intelligence (UAI), 2019.

D. Perez-Garćıa, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product state
representations. Quantum Information and Computation, 7(5-6):401–430, 2007. doi:
10.26421/qic7.5-6-1.

V. Pestun and Y. Vlassopoulos. Tensor network language model. Oct. 2017.
arXiv:1710.10248.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In Inter-
national Conference on Computer Vision (ICCV), 2011. doi: 10.1109/ICCVW.2011.
6130310.

R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In Artificial
Intelligence and Statistics (AISTATS), 2014.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In Interna-
tional Conference on Learning Representations (ICLR), 2018.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning (ICML), 2015.

E. Robeva and A. Seigal. Duality of graphical models and tensor networks. Information
and Inference: A Journal of the IMA, June 2018. doi: 10.1093/imaiai/iay009.

R. Sanchez-Cauce, I. Paris, and F. J. D. Vegas. Sum-product networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021. doi: 10.1109/TPAMI.
2021.3061898.

U. Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of physics, 326(1):96–192, Jan. 2011. doi: 10.1016/j.aop.2010.09.012.

R. Selvan, S. Ørting, and E. B. Dam. Locally orderless tensor networks for classifying
two- and three-dimensional medical images. Journal of Machine Learning for Biomedical
Imaging. Special Issue: Medical Imaging with Deep Learning, 2020. arXiv:2009.12280.

R. Shepard, S. R. Brozell, and G. Gidofalvi. The representation and parametrization of
orthogonal matrices. The journal of physical chemistry. A, 119(28):7924–7939, July 2015.
doi: 10.1021/acs.jpca.5b02015.

46

MPS for Discrete Models

S. Singh, R. N. C. Pfeifer, and G. Vidal. Tensor network decompositions in the presence of a
global symmetry. Physical review. A, 82(5):050301, Nov. 2010. doi: 10.1103/PhysRevA.
82.050301.

S. Singh, R. N. C. Pfeifer, and G. Vidal. Tensor network states and algorithms in the
presence of a global U(1) symmetry. Physical Review B: Condensed Matter and Materials
Physics, 83(11):115125, 2011. doi: 10.1103/PhysRevB.83.115125.

M. M. Steinlechner. Riemannian optimization for solving high-dimensional problems with
low-rank tensor structure. PhD thesis, École polytechnique fédérale de Lausanne, 2016.

J. Stokes and J. Terilla. Probabilistic modeling with matrix product states. Entropy, 21
(12), 2019. doi: 10.3390/e21121236.

E. M. Stoudenmire and D. J. Schwab. Supervised learning with tensor networks. In Advances
in Neural Information Processing Systems, 2016.

X. Sun and C. Bischof. A Basis-Kernel representation of orthogonal matrices. SIAM
Journal on Matrix Analysis and Applications, 16(4):1184–1196, 1995. doi: 10.1137/
S0895479894276369.

Y. W. Teh, D. Newman, and M. Welling. A collapsed variational bayesian inference al-
gorithm for latent dirichlet allocation. In Advances in Neural Information Processing
Systems. 2007.

D. Tran, K. Vafa, K. K. Agrawal, L. Dinh, and B. Poole. Discrete flows: Invertible generative
models of discrete data. In Advances in Neural Information Processing Systems, 2019.

G. Tucker, A. Mnih, C. J. Maddison, D. Lawson, and J. Sohl-Dickstein. Rebar: Low-
variance, unbiased gradient estimates for discrete latent variable models. In Advances in
Neural Information Processing Systems, 2017.

G. Vidal. Efficient classical simulation of slightly entangled quantum computations. Physical
review letters, 91(14):147902, Oct. 2003. doi: 10.1103/PhysRevLett.91.147902.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, Jan. 2008. doi:
10.1561/2200000001.

J. Wang, C. Roberts, G. Vidal, and S. Leichenauer. Anomaly detection with tensor net-
works, June 2020. arXiv:2006.02516.

A. Weichselbaum. Non-abelian symmetries in tensor networks: A quantum symmetry space
approach. Annals of Physics, 327(12), 2012. doi: 10.1016/j.aop.2012.07.009.

S. R. White. Density-matrix algorithms for quantum renormalization groups. Physical
review. B, Condensed matter, 48(14):10345–10356, Oct. 1993. doi: 10.1103/PhysRevB.
48.10345.

Z. Xu, Y. Ke, and Y. Wang. A fast inference algorithm for stochastic blockmodel. In
International Conference on Data Mining (ICDM), pages 620–629, 2014.

47

Bonnevie and Schmidt

W. W. Zachary. An information flow model for conflict and fission in small groups. Journal
of anthropological research, 33(4):452–473, 1977. doi: 10.1086/jar.33.4.3629752.

Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. Tensor ring decomposition. June
2016. arXiv:1606.05535.

48

	Introduction
	Probability Tensor Decomposition
	Tensor Network Diagrams
	Probability Tensors
	Tensor Trains
	Matrix Product State
	Canonical Representation
	Sampling

	Inference for the MPS
	Differentiable MPS
	Unbiased Gradient Estimation
	Differentiable Normal Forms

	Symmetry
	Marginals under Relabeling Symmetry
	Tensor Trains and Relabeling
	Representation Theory
	Left-Canonical Form for the Relabeling Symmetric MPS

	Relationship to Probabilistic and Graphical Models
	Experiments
	Influence of Rank
	Variance Reduction
	Biased vs Unbiased Gradients
	Experiments on Zachary's karate network
	Initialization and Warm Starts
	Induced Covariance
	Permutation Invariance

	Ambiguity and comparisons with sampling methods

	Related Work and Further Reading
	Conclusion
	REBAR for categoricals

