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Abstract

Data-driven methods based on machine learning have the potential
to accelerate computational analysis of atomic structures. In this con-
text, reliable uncertainty estimates are important for assessing confidence
in predictions and enabling decision making. However, machine learning
models can produce badly calibrated uncertainty estimates and it is there-
fore crucial to detect and handle uncertainty carefully. In this work we
extend a message passing neural network designed specifically for predict-
ing properties of molecules and materials with a calibrated probabilistic
predictive distribution. The method presented in this paper differs from
previous work by considering both aleatoric and epistemic uncertainty in
a unified framework, and by recalibrating the predictive distribution on
unseen data. Through computer experiments, we show that our approach
results in accurate models for predicting molecular formation energies with
well calibrated uncertainty in and out of the training data distribution on
two public molecular benchmark datasets, QM9 and PC9. The proposed
method provides a general framework for training and evaluating neural
network ensemble models that are able to produce accurate predictions of
properties of molecules with well calibrated uncertainty estimates.

Keywords: Molecular property prediction, machine learning potential, uncer-
tainty quantification, uncertainty calibration, message passing neural network,
graph neural network, ensemble model.
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1 Introduction

Autonomous high-throughput computational analysis of atomic structures has
the potential to speed up the discovery of novel materials and chemical reac-
tions dramatically with applications in a wide range of research areas including
biotechnology and conversion and storage of renewable energy. This process can
be enabled and accelerated by data-driven methods based on machine learning
that are generally less computationally demanding than traditional quantum
mechanical methods such as density functional theory (DFT) [1, 2]. In this con-
text, reliable uncertainty estimates are important to assess confidence in pre-
dictions and thereby enable decision making and automation [3, 4]. In recent
years, graph-based models such as message passing neural networks (MPNNs),
that operate on atomic structures represented as graphs, have shown impres-
sive capabilities at predicting properties of molecules and materials with high
accuracy [5]. However, deep neural networks are known to produce badly cali-
brated uncertainty estimates on regression tasks [6, 7, 8, 9], especially outside
the training data distribution, which can lead to sub-optimal or incorrect results.
Because chemical space is too vast to represent in any training dataset [10, 11], it
is crucial to quantify and handle predictive uncertainty carefully in this setting,
for example by falling back to more accurate but computationally demand-
ing methods like DFT when uncertainty is high [12]. Consequently, predictive
algorithms that express reliable probabilistic uncertainty estimates can help
identify problematic instances and enable the design of new robust workflows
and applications in computational materials science, such as active learning and
autonomous high throughput screening [13, 14, 15, 16].

When quantifying uncertainty it is often useful to distinguish between epis-
temic and aleatoric uncertainty [17, 18]. Epistemic uncertainty, also known as
systematic uncertainty, arises from the model’s inability to fit the data distri-
bution and can in principle be reduced by observing more data or improving
the model. Aleatoric uncertainty, also known as statistical uncertainty, on the
other hand comes from inherent noise in the data and can therefore not be
reduced by observing more data. When the aleatoric uncertainty is constant
across all observations it is called homoscedastic aleatoric uncertainty and is
often not modelled explicitly. If the aleatoric uncertainty depends on the input,
and thus varies across the data distribution, it is called heteroscedastic aleatoric
uncertainty and can be estimated from the data by explicitly including it in
the model. Thus epistemic uncertainty is important for understanding when
predictions are reliable and aleatoric uncertainty captures noise in the data.
Consequently, it is necessary to consider both types of uncertainty to obtain
a complete picture of the predictive uncertainty and to achieve well calibrated
uncertainty estimates in and out of the training data distribution.

Uncertainty quantification for property prediction of atomic structures with
graph neural networks has received increasing interest in recent research. Scalia
et al. [19] evaluated and compared scalable uncertainty estimation methods
based on graph neural networks for molecular property prediction and found
that deep ensembles [20] and bootstrapping consistently outperformed Monte

2



Carlo Dropout [21] on multiple public benchmark datasets in terms of error
and uncertainty calibration. Hirschfeld et al. [22] compared several uncertainty
quantification methods, including graph neural networks, on four molecular
benchmark datasets, but did not find a method that performed consistently
well across datasets. Tran et al. [4] highlighted the importance of predictive
uncertainty in materials screening applications and reviewed methods for un-
certainty quantification and procedures for evaluating the quality of uncertainty
estimates including accuracy, calibration and sharpness. Soleimany et al. [16]
evaluated deep evidential regression as a method of uncertainty quantification
for molecular property prediction and demonstrated their approach in active
learning and virtual screening applications. Nigam et al. [23] provided an exten-
sive overview of different sources of uncertainty in molecular property prediction
in the context of drug discovery, many of which are also relevant in materials
science, and described the importance and perspectives of having good uncer-
tainty estimates in data driven decision making. Related work has studied the
use of Gaussian process regression models for molecular property prediction [24]
and molecular dynamics [25]. The method presented in this paper differs from
the previous work by considering both aleatoric and epistemic uncertainty, and
by recalibrating the predictive distribution to obtain more accurate uncertainty
estimates on unseen data.

The main contribution of this paper is a complete framework for training and
evaluating neural network ensemble models that are able to produce accurate
predictions of properties of molecules with well calibrated uncertainty estimates
in and out of the training data distribution. Specifically, we extend a message
passing neural network regression model designed for predicting properties of
molecules and materials [26] with a probabilistic predictive distribution and
consider a deep ensemble of models [20] to express aleatoric and epistemic un-
certainty about predictions of molecular formation energies. The uncalibrated
predictive distribution is recalibrated post hoc to fit the error distribution on
unseen data to address model overconfidence from training and the expected
reduction in error from using an ensemble approximation. Through computer
experiments we show that our approach results in accurate and well calibrated
models on two public benchmark datasets for molecular property prediction,
QM9 [27] and PC9 [28], and additionally that out of distribution predictions
are also well calibrated when training on QM9 and testing on the more diverse
PC9 dataset.

The rest of the paper is organised as follows. The proposed method is
described in detail in section 2 and experiments and results are presented in
section 3. The main findings and perspectives are discussed in section 4 and
finally we conclude in section 5.
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2 Method

2.1 Message passing neural network model

In general, a message passing neural network (MPNN), as described in [5],
operates on a graph structure g with node features xv and edge features evw,
where v and w denote vertices in the graph. A forward pass through the neural
network consists of two phases: i) a message passing phase with T interaction
steps where messages are passed along the edges of the graph to update the
internal graph embedding, and ii) a readout phase where an output value ŷ is
computed from the final graph embedding.

We base our work on the SchNet with edge updates MPNN model, which was
previously introduced by the authors [26]. This model is in turn based on the
popular SchNet model, that was designed specifically for predicting properties
of molecules and materials [29]. We refer the reader to the cited literature for
specific details about this neural network architecture. It is worth noting that
the uncertainty quantification method proposed in the following sections does
not depend on the particular choice of neural network model and can thus be
adapted to use other models based on the specific application.

2.2 Extended model with predictive uncertainty

To capture both epistemic and heteroscedastic aleatoric uncertainty, we extend
the MPNN described in the previous section by constructing a deep ensemble of
neural networks [20] (without adversarial training) in the following way. Given
a regression task with a training dataset D = {gn, yn}Nn=1 consisting of N dat-
apoints with real-valued targets y ∈ R, we consider an ensemble of M neural
network models with parameters {θm}Mm=1, each with probabilistic predictive
distribution:

pθ(y|g) = N
(
µθ(g), σ2

θ(g)
)
, (1)

assuming a normal distribution of errors. Each network is constructed with two
outputs corresponding to the predicted mean µθ(g) and variance σ2

θ(g), where
the latter represents the predicted heteroscedastic aleatoric uncertainty [30].
The predicted variance is constrained to be positive by passing the second net-
work output through the softplus function, log(1 + exp(·)), and adding a small
minimum variance for numerical stability (e.g. 10−6).

2.3 Model training procedure

Each network in the ensemble is initialized with random parameters and trained
individually on the same training dataset using stochastic gradient descent to
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minimise the negative log likelihood (NLL) loss:

NLL(θ) =
1

N

N∑
n=1

− log pθ(yn|gn) (2)

=
1

N

N∑
n=1

1

2

(
1

σ2
θ(gn)

(
yn − µθ(gn)

)2︸ ︷︷ ︸
squared error

+ log σ2
θ(gn) + log 2π︸ ︷︷ ︸

constant

)
. (3)

The last term in equation 3 is constant since it does not depend on µθ(g) or
σ2
θ(g) and can be ignored for the purpose of training the model. Notice how for

constant variance (homoscedastic uncertainty) this is equivalent to minimising
the mean squared error (MSE) loss often used in regression. Notice also how
the predicted uncertainty acts as learned loss attenuation by letting examples
with high predicted uncertainty have smaller impact on the total loss, while the
log σ2

θ term discourages large uncertainties [18].
In practice, we found that training directly with NLL loss can be unstable

because of interactions between the mean and variance output in the loss func-
tion. To mitigate this, we initially train the mean output of the network before
introducing the variance terms by interpolating from MSE to NLL loss:

L(θ) = λMSE(θ) + (1− λ) NLL(θ) , (4)

where λ is set to 1 for a number of warmup steps and then decreased linearly
from 1 to 0 over a number of interpolation steps. The resulting loss function is
quite natural since the NLL loss includes the squared error term (see equation 3)
and as a result we found that model training becomes more stable and robust to
outliers in the training data. Additional measures exist to promote the stability
of training variance networks [30, 31, 32], but we found the method above to be
sufficient in our experiments.

2.4 Ensemble mixture

To produce the ensemble predictive distribution p∗(y|g) and capture epistemic
uncertainty, we follow the approach of [20] and make an ensemble approxima-
tion by combining the predictions of the M individual models as a uniformly-
weighted mixture of normal distributions:

p∗(y|g) =
1

M

M∑
m=1

pθm(y|g) , (5)

5



whose mean µ∗(g) and variance σ2
∗(g) are given by the following expressions:

µ∗(g) =
1

M

M∑
m=1

µθm(g) , (6)

σ2
∗(g) =

1

M

M∑
m=1

(
σ2
θm(g) + µ2

θm(g)
)
− µ2

∗(g) (7)

=
1

M

M∑
m=1

σ2
θm(g)︸ ︷︷ ︸

aleatoric uncertainty

+
1

M

∑
m

µ2
θm(g)− µ2

∗(g)︸ ︷︷ ︸
epistemic uncertainty

. (8)

The variance of the ensemble predictive distribution represents the total pre-
dicted uncertainty and can be decomposed into aleatoric and epistemic uncer-
tainty as shown in equation 8 above.

2.5 Uncertainty calibration and sharpness

Intuitively, uncertainty calibration means there should be some kind of agree-
ment between the predicted distribution and the empirical distribution [7]. The
concept of calibration has been studied extensively in the area of classification,
where a classifier is said to be well calibrated if the predicted class probabil-
ity corresponds to the empirical probability that the instance belongs to that
class [33, 34, 35]. In other words, the classifier is expected to correctly predict
its error. A few recent works have aimed to develop a corresponding definition
of calibration in the area of regression [6, 7, 8]. Kuleshov et al. [6] propose that
a model is well calibrated if the quantiles of the predicted distribution corre-
sponds to the quantiles of the empirical distribution averaged over the data.
This approach is referred to as quantile-calibration by Song et al. [7] who pro-
pose an alternative definition which they call distribution-calibration, stating
that a model is well calibrated if for all predictions with the same predictive
distribution, the predictive distribution corresponds to the empirical distribu-
tion. They proceed to show that if a model is distribution-calibrated it is also
quantile-calibrated. Levi et al. [8] propose a definition where a model is well
calibrated if the predicted uncertainty corresponds to the expected empirical
error. Following [19], we will refer to this as error-calibration and we note that
for any unbiased model with an expected error of zero, error-calibration corre-
sponds exactly to distribution-calibration. Based on these definitions, we find
it useful and intuitive to interpret the predicted uncertainty as an indication of
the expected error.

Assessing the quality of uncertainty estimates in regression tasks directly
is not straight forward as the true uncertainties are generally unknown, but
we can instead assess the uncertainty calibration by evaluating metrics derived
from the definitions above [4, 6, 7, 8, 19]. The NLL is the standard metric for
evaluating the quality of probabilistic models by measuring the probability of
observing the data given the predicted distribution. However, in regression the
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NLL depends both on the predicted mean and variance (see equation 3), and
therefore it is useful to additionally evaluate the predicted uncertainty on its
own. To evaluate the error-calibration of a regression model we compare the
predicted uncertainties to the corresponding empirical errors on unseen data.
In practice we sort examples by their predicted uncertainty, divide them into
K equal sized bins and compute the predicted root mean variance (RMV) and
the empirical root mean squared error (RMSE) in each bin k. Plotting RMV
against RMSE shows if the predicted uncertainty corresponds to the empirical
error in each bin on average and a straight diagonal line corresponding to the
identity function indicates perfect error-calibration. The error-calibration can
be summarized by the expected normalized calibration error (ENCE), which is
analogues to the expected calibration error (ECE) often used in classification [8]:

ENCE =
1

K

K∑
k=1

|RMVk − RMSEk|
RMVk

. (9)

To additionally evaluate the quantile-calibration of a model, we compare the
quantiles of the predictive distribution to the quantiles of the empirical distri-
bution averaged over a set of unseen data [6]. Plotting the predicted quantiles
against the empirical quantiles shows if the predictive distribution corresponds
to the empirical distribution on average and again a straight diagonal line cor-
responding to the identity function indicates perfect quantile-calibration. The
quantile-calibration can be summarised by the sum of squared errors (SSE) be-
tween the predicted and empirical quantiles. To further evaluate the ability of a
model to rank predictions by uncertainty with respect to error on unseen data,
we sort predictions by uncertainty in decreasing order and plot the variation
in error as we leave out the most uncertain predictions [16, 19]. For a well
calibrated model, we expect the error to decrease monotonically as the most
uncertain predictions are omitted. However, we do not expect a perfect ranking
with respect to the errors since some highly uncertain predictions can still have
small errors.

Calibration alone is not sufficient to ensure that individual uncertainty es-
timates are informative [4, 6, 19, 33]. For example, a regression model that
predicts constant uncertainty corresponding to its average empirical error is
well calibrated in terms of ENCE and SSE but the uncertainty estimates are
clearly not very useful. In addition to being calibrated, it is generally desirable
for uncertainty estimates to be as small as possible and to have some variation.
This characteristic is often referred to as sharpness (or refinement) [4, 6, 19, 33].
To evaluate the sharpness of a regression model we compute the root mean pre-
dicted variance (RMV) on unseen data. A low RMV indicates the model on
average predicts low uncertainty and thus low expected error. Additionally, we
compute the coefficient of variation (CV) [8] of the predicted uncertainties on
unseen data:

CV =

√
1
N

∑N
n=1(σ∗(gn)− σ∗)2

σ∗
, (10)
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where σ∗(gn) is the predicted standard deviation (uncertainty) of instance n,

σ∗ = 1
N

∑N
n=1 σ∗(gn) is the mean predicted standard deviation and N in this

case iterates the test set. A high CV indicates large dispersion (heteroscedas-
ticity) and thus a high input dependence of the uncertainty estimates, whereas
a CV of zero indicates constant (homoscedastic) and thus uninformative uncer-
tainty estimates.

2.6 Uncertainty recalibration

Often the training of machine learning models does not ensure calibration when
the models are presented with unseen data. Thus there is a need to recalibrate
the predictive distribution to unseen data post hoc, which can be achieved by
applying a recalibration function, that maps the uncalibrated predictive distri-
bution to a well calibrated distribution. In our case, training each model with
NLL loss can result in overfitting of the uncertainty to the training data resulting
in overconfident predictions on unseen data [30]. On the other hand, applying
an ensemble approximation is expected to reduce the overall error, and should
thus lead to lower uncertainty. This is not reflected in the ensemble variance
(equation 8) which is strictly higher than the average of the individual variances.
Furthermore, there is nothing in the training procedure which ensures that the
ensemble variance (epistemic uncertainty) fits the error distribution.

Several approaches to post hoc recalibration of regression models have been
proposed in the literature [6, 7, 8, 24]. A straightforward, yet robust, method
is to simply scale the predicted uncertainty estimates by a scaling factor s2n
optimised to minimise the NLL on a held out calibration dataset [8, 24], which
has the advantage that it does not influence the mean prediction µ∗(gn) and
the calibrated predictive distribution remains a normal distribution:

p∗s2(yn|gn) = N
(
µ∗(gn), s2nσ

2
∗(gn)

)
. (11)

In the simplest case, all uncertainty estimates are scaled by the same scaling
factor, however, we achieved better results by applying a non-linear scaling
function. Specifically, to obtain the scaled uncertainty estimates we apply an
isotonic regression model1 fφ(·) to fit the empirical squared errors (yn−µθ(gn))2

on a held out calibration dataset:

s2nσ
2
∗(gn) = fφ(σ2

∗(gn)) ⇔ s2n =
fφ(σ2

∗(gn))

σ2
∗(gn)

. (12)

Thus, the recalibration function fφ(·) takes as input the uncalibrated uncer-
tainty σ2

∗(gn) and outputs the scaled uncertainty s2nσ
2
∗(gn). The isotonic regres-

sion approach results in a monotonic increasing scaling function and thus has
the desired property of being non-linear while maintaining the overall ordering
of the uncertainty estimates.

1We use the implementation of isotonic regression available from the scikit-learn Python
package [36]: sklearn.isotonic.IsotonicRegression.
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3 Experiments and results

3.1 Datasets

In our experiments we consider two publicly available datasets: QM9 [27], which
is a widely used benchmark for machine learning predictions of molecular proper-
ties, and the more recent PC9 [28], that contains a more diverse set of molecules
selected with the same general constraints as QM9. The QM9 dataset consists of
133,885 small organic molecules in equilibrium state with up to 9 heavy atoms
(C, O, N, F) besides hydrogen. For each molecule, the dataset contains sev-
eral quantum chemical properties calculated at the B3LYP/6-31G(2df,p) level
of theory including total energy U0, which incorporates the vibrational zero
point energy (ZPE) [27]. We additionally compute the total energy without the
ZPE, E = U0 − ZPE, to enable comparison with PC9, that does not include
U0. The PC9 dataset [28] consists of 99,234 molecules extracted from the Pub-
Chem database [37] by applying the constraints of QM9 outlined above and was
found to represent a more diverse set of molecules than QM9. PC9 includes
properties calculated at the B3LYP/6-31G(d) level of theory including total en-
ergy E. Structures that appear in both datasets were identified by comparing
International Chemical Identifiers (InChI) [38] (see supplementary material A
for details). We found that 21,777 molecules from QM9 are also in PC9 and
21,619 molecules from PC9 are also in QM9 (since QM9 contains duplicate
InChi strings the numbers are not identical). In line with previous work, we
consider the atomisation energies (the energy remaining after subtracting the
energies of the constituent atoms) in our experiments, rather than the actual
total energies. Thus in subsequent sections, U0 and E will be used to refer to
the respective atomisation energies.

3.2 Experimental setup

To evaluate the proposed method, we performed computer experiments of pre-
dicting atomisation energies on the QM9 and PC9 datasets. In each experiment,
we trained an ensemble of M = 5 message passing neural network models ex-
tended to predict uncertainty as described in section 2. The models were trained
individually using the same hyperparameters and data splits, but with random
parameter initialisation and random shuffling of the training data to induce
model diversity. Following previous work [26], the networks were constructed
with T = 3 interaction steps, a cutoff distance of 5.0 Å for generating the
molecular graphs, and an embedding size of 256. We used the PyTorch imple-
mentation of the AdamW optimizer [39] with an initial learning rate of 0.0001,
an exponential decay learning rate scheduler, and a weight decay coefficient of
0.01. Each model was trained for up to 3,000,000 gradient steps with a batch
size of 100. The first 1,000,000 steps were used for warmup training using only
MSE loss (λ = 1) and then the loss was interpolated linearly from MSE to NLL
on the next 1,000,000 steps (see equation 4). The validation set was used for
early stopping with NLL criterion and was also used as calibration set for fitting
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Dataset Error (eV) Calibration Sharpness

Train Test y MAE RMSE NLL ENCE SSE RMV CV

QM9 QM9 U0 0.0094 0.0313 -3.1593 0.0484 0.0958 0.0275 1.8939
QM9 QM9 E 0.0101 0.0342 -3.0759 0.0720 0.1083 0.0270 1.7293
PC9 PC9 E 0.0199 0.0844 -2.5956 0.0650 0.1177 0.0612 2.2011
QM9 PC9 E 0.4192 0.7410 0.8107 0.0220 0.4129 0.7441 0.6294
PC9 QM9 E 0.1165 0.1737 -0.5366 0.0312 0.0175 0.1781 0.5597

Table 1: Test results of ensemble models (M = 5) trained to predict atomisation
energy properties on the QM9 and PC9 datasets. Mean absolute error (MAE)
and root mean squared error (RMSE) are presented in electron volt (eV). The
uncertainty calibration in each experiment is summarised by the mean negative
log likelihood (NLL), expected normalised calibration error (ENCE), and sum of
squared errors (SSE). The uncertainty sharpness is summarised by the root mean
variance (RMV) and coefficient of variation (CV) of the predicted uncertainties.

the recalibration function fφ as described in section 2.6.

3.3 Prediction of U0 on QM9 with random split

In this first experiment, we trained an ensemble to predict the atomisation
energy U0 of the QM9 dataset. Following previous work [5, 26, 29], we randomly
split the data into a training set of 110,000 molecules, a validation set of 10,000
molecules, and a test set consisting of the remaining 13,885 molecules. Figure 1
shows the trade off between error and ensemble size of up to M = 10 models
on the validation set. As expected, using a larger ensemble reduces the error,
however, a reasonably low error was achieved with an ensemble of M = 5
models and not much is gained beyond that, so we choose to use ensembles of
this size throughout our experiments. The test set results for an ensemble of
M = 5 models are presented in the first row of table 1. The ensemble achieved
a MAE = 0.0094 eV which is comparable to previous work using a similar
model [26] (MAE = 0.0105 eV), which indicates we did not lose any accuracy
by extending the model to predict uncertainty.

After training the ensemble model, the ensemble predictive distribution was
recalibrated by fitting an isotonic regression recalibration function (see sec-
tion 2.6) on the validation set and applying it on the test set resulting in an
average scaling factor of 0.2965 (SD = 0.5346) on the test set (where SD denotes
the standard deviation). Even though each individual model in the ensemble is
expected to have increased error when presented with unseen data, the ensem-
ble approximation significantly improved the overall error in this case resulting
in a recalibration function that effectively shrinks the uncertainty of the pre-
dictive distribution. Uncertainty calibration plots are presented in figure 2 and
uncertainty calibration and sharpness metrics are included in the first row of
table 1. The error-calibration plot (figure 2a) shows that in general the model
assigns higher uncertainty to instances with higher error as desired. Hence the
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Figure 1: Trade off between error and ensemble size evaluated on the QM9
validation set when predicting atomisation energy U0: (a) mean absolute error
(MAE) measured in eV and (b) mean negative log likelihood (NLL). The models
are sorted by NLL in increasing order (best first). Reasonably low errors can
be achieved with an ensemble size of M = 5 models.

uncertainty estimates are highly input dependent and have high dispersion as
also indicated by a high CV. Overall the model is well calibrated in terms of
error-calibration since the predicted uncertainties correspond closely to the ex-
pected empirical errors on average resulting in a low ENCE. The rightmost
point in the plot, representing the bin with the highest uncertainty estimates,
includes instances with relatively large errors, placing this point far from the
rest. However, the model correctly assigns high uncertainty to these instances,
thereby identifying them as problematic. The error-calibration plot also reveals
that for low uncertainty predictions the epistemic uncertainty is relatively low,
indicating a high level of agreement among the individual models of the ensem-
ble, and consequently the aleatoric uncertainty is responsible for the majority
of the total uncertainty in these cases. On the other hand, the high uncertainty
predictions have relatively high epistemic uncertainty, corresponding to a high
level of disagreement among the individual models, indicating these molecules
are out of distribution and therefore the predictions are also more likely to have
high error. The quantile-calibration plot (figure 2b) shows that the percentiles
of the predicted distributions corresponds well to the empirical distribution on
average resulting in a low SSE, and the symmetry at the 0.5 percentile indicates
that the error distribution is not skewed and the model is not biased. In the
confidence curve (figure 2c), the downwards slope indicates that the uncertainty
estimates provide a meaningful ranking of the predictions with respect to the
error. Interestingly, leaving out the 10% most uncertain predictions results in a
significant decrease in error, indicating a potentially large benefit from including
these molecules in the training data to improve the error on similar examples in
the future following an active learning methodology. Considering only the most
confident predictions results in a lower average error as desired.

Learning curves for this experiment are presented in figure 3 showing test set
metrics as a function of the amount of training data when predicting U0 on QM9.
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Figure 2: Evaluation of uncertainty on the QM9 test set when predicting atom-
isation energy U0. The error-calibration plot (a) shows empirical root mean
squared error (RMSE) as a function of predicted uncertainty measured by root
mean variance (RMV) computed in bins. The quantile-calibration plot (b) com-
pares predicted percentiles and empirical percentiles averaged over the test data.
The confidence curve (c) shows the variation in mean absolute error (MAE) as
a function of the uncertainty threshold.

As expected, the errors decrease with more training data. Interestingly, good
calibration in terms of the ENCE was obtained with relatively small training
datasets and the ENCE does not vary significantly when adding more data, while
the sharpness of uncertainty estimates measured by the CV clearly increases
with the amount of training data, making the uncertainty estimates more input
dependent and thus more informative.

3.4 Prediction of E on QM9 with random split

Complementary to the first experiment, we trained an ensemble to predict the
atomisation energy E of the QM9 dataset using the same data split. This allows
for more direct comparison with results from subsequent experiments using the
PC9 dataset. The test set results are presented in the second row of table 1.
The ensemble model achieved a MAE = 0.0101 eV, which is a little higher than
when predicting U0, indicating that predicting E is slightly harder. A similar
finding was reported in [28] using a SchNet [29] model.

The uncertainty estimates were likewise recalibrated by fitting a recalibra-
tion function on the validation set and applying it on the test set resulting in
an average scaling factor of 0.3116 (SD = 0.3966) on the test set, effectively
shrinking the predictive distribution similarly to the first experiment. Uncer-
tainty calibration plots for this experiment are included in the supplementary
material in figure B1. As in the first experiment, we found that the model suc-
ceeds at assigning uncertainty estimates that correlates with the expected error
and the model is well calibrated in terms of ENCE and SSE.

12



0 1100009000070000500003000010000
Training set size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Er
ro
r (
eV

)

RMSE
MAE

(a)

0 1100009000070000500003000010000
Training set size

0.0

0.5

1.0

1.5

2.0 CV
ENCE

(b)

Figure 3: Learning curves showing test set metrics as a function of training
set size on the QM9 dataset when predicting U0. (a) The mean absolute error
(MAE) and root mean squared error (RMSE) improve with more data as ex-
pected. (b) The calibration in terms of expected normalised calibration error
(ENCE) does not vary significantly, while the dispersion of uncertainty esti-
mates measured by the coefficient of variation (CV) increases with the amount
of training data.

3.5 Prediction of E on PC9 with random split

Next, we trained an ensemble to predict the atomisation energy E of the more
diverse PC9 dataset. The data was split randomly into a training set of 80,000
molecules, a validation set of 10,000 molecules, and a test set consisting of
the remaining 9,234 molecules. The test set results are presented in the third
row of table 1. The ensemble model achieved a MAE = 0.0199 eV which is
approximately twice as high as when predicting E on QM9. We attribute this
increase in error to PC9 representing a more diverse set of molecules, making the
task more difficult, and additionally to the smaller size of the training dataset.
A similar increase in error between QM9 and PC9 was reported in [28] using a
SchNet [29] model.

The uncertainty estimates were recalibrated by fitting a recalibration func-
tion on the validation set and applying it on the test set resulting in an average
scaling factor of 0.2938 (SD = 0.6449) on the test set, effectively shrinking the
uncertainty of the predictive distribution similarly to the two previous exper-
iments. Uncertainty calibration plots for this experiment are included in the
supplementary material in figure B2. The model succeeds in assigning uncer-
tainty estimates that correlates with the expected error and the model is well
calibrated in terms of ENCE and SSE. As in the two previous experiments,
some instances among the predictions with the highest uncertainty have rela-
tively large errors and account for a large part of the overall error as shown by
the error-calibration plot. The confidence curve shows that leaving out the 20%
most uncertain predictions almost halves the MAE, indicating a good ranking
ability in this experiment.
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3.6 Generalisation from QM9 to PC9

In this experiment we examine the effect of testing an ensemble of models trained
on QM9 on the more diverse set of molecules found in PC9 and especially
how it affects the uncertainty estimates as we anticipate larger errors. When
constructing the data splits, we utilize the fact that the datasets are overlapping,
using the 112,108 molecules that are unique to QM9 as the training set and the
21,777 structures from QM9 that are also present in PC9 as the validation set.
Then we compute a linear correction on the 21,619 structures from PC9 that
are present in QM9 to account for the different level of theory used to calculate
the energy properties. Following [28], the linear correction was performed by
fitting a Huber regression model (coefficient = 1.0038, intercept = 1.1428) on the
predicted and observed energies. Finally, we use the remaining 77,615 molecules
exclusive to PC9 as the the test set and apply the linear correction to the
predictions. The test set results are presented in the fourth row of table 1.
The ensemble model achieved a MAE = 0.4192 eV, which is comparable to the
findings reported in [28] using a SchNet [29] model. The relatively high error is
caused primarily by out of distribution instances, and indicates that the model
has problems generalising under domain shift, and secondly by the different level
of theory used to calculate the energies in the two datasets, which was shown
to produce large errors (see figure 3 in [28] for details).

As in the previous experiments, the predictive distribution was recalibrated
by fitting a recalibration function on the validation set and applying it on the
test set resulting in an average scaling factor of 135.0313 (SD = 31.5991) on
the test set. The large average scaling factor reflects the large increase in error
caused by the more diverse dataset and different level of theory used to calcu-
late the energies as mentioned above. Uncertainty calibration figures for this
experiment are presented in the supplementary material figure B3. Interest-
ingly, the uncertainty estimates produced by the model are still well calibrated
in terms of error-calibration as indicated by the low ENCE and thus the model
correctly assigns high uncertainty to instances with large errors as desired. The
error-calibration plot additionally shows a larger contribution of the epistemic
uncertainty to the total uncertainty in more cases compared to the other experi-
ments, confirming that many of the examples are regarded as out of distribution
by the model as hypothesised. The quantile-calibration plot and the relatively
high SSE shows that the predicted percentiles do not fit the empirical per-
centiles averaged over the dataset in this experiment. This is primarily because
the errors are not normally distributed in this particular case as was also re-
ported in [28]. As illustrated by the confidence curve, the uncertainty estimates
provides a good ranking with respect to error among the high uncertainty esti-
mates. However, among the low uncertainty estimates there is little variation in
the predicted uncertainties and the ranking is therefore uninformative resulting
in a flat confidence curve. The lack of variation in the uncertainty estimates
also results in low sharpness in terms of CV.
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3.7 Generalisation from PC9 to QM9

Now going in the opposite direction, in this last experiment we examine the
effect of applying an ensemble of models trained on PC9 to the less diverse set
of molecules in QM9. Analogous to the previous experiment, we use the 77,615
molecules that are unique to PC9 as the training set and the 21,619 structures
from PC9 that are also present in QM9 as the validation set. Similarly to the
previous experiment, we compute a linear correction on the 21,777 structures
from QM9 that are also present in PC9 by fitting a Huber regression model
(coefficient = 0.9994, intercept = −0.6830) on the predicted and observed en-
ergies. Finally, we use the remaining 112,108 molecules exclusive to QM9 as
the test set. The test set results are presented in the fifth and final row of
table 1. The ensemble achieved a MAE = 0.1165 eV, which is comparable to
the findings reported in [28] using a SchNet [29] model. While high compared
to the experiment of predicting E on QM9 above, the error is significantly lower
than the previous experiment of training on QM9 and testing on PC9 as might
be expected when going from a more diverse dataset to an overlapping and less
diverse dataset. Some of the error may be attributed to the different level of
theory used to calculate the energies in QM9 and PC9, respectively.

The uncertainty estimates were recalibrated by fitting a recalibration func-
tion on the validation set and applying it on the test set resulting in an average
scaling factor of 6.2404 (SD = 1.4109) on the test set, which like the error is
also significantly lower than the previous experiment. Uncertainty calibration
figures for this experiment are included in the supplementary material B4. Sim-
ilarly to the previous experiment, the uncertainty is well calibrated in terms of
error-calibration shown by a low ENCE. However, in this experiment less of the
total uncertainty is contributed to the epistemic uncertainty, indicating most
cases are not regarded as out of distribution by the model as hypothesised. In
this case the uncertainty is also well calibrated in terms of quantile-calibration
indicated by a low SSE further indicating there are not as many out of distribu-
tion examples. While the model is well calibrated, there is less variation in the
uncertainty estimates in this case resulting in a low CV. The lack of sharpness
gives the model a poor ranking ability compared to the other experiments as
shown by the less steep slope of the confidence curve.

4 Discussion

Through five computer experiments we have shown that the proposed ensemble
approximation and recalibration method achieves good accuracy and uncer-
tainty calibration on two publicly available benchmark datasets for molecular
property prediction. In the first three experiments, random data splits were used
to train ensemble models to predict atomisation energies on the QM9 and PC9
datasets, respectively. The result of predicting energy U0 on QM9 is comparable
with previous work by the authors using the same base model [26], meaning we
did not loose accuracy by extending the model to include predictive uncertainty.
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We saw a small increase in the error when predicting E on QM9 which is con-
sistent with results reported in [28]. The error when predicting E on the more
diverse PC9 dataset was almost twice as high compared to QM9, which is also
consistent with results reported in [28], indicating that the additional chemical
diversity observed in this dataset makes the prediction task harder. In all three
random split experiments, the proposed method produced well calibrated un-
certainty estimates characterised by highly correlated average uncertainties and
errors as well as highly correlated predicted and empirical quantiles, as shown
in the calibration plots in figure 2 and additionally in the corresponding fig-
ures in supplementary material B, and further summarized by low ENCE and
SSE values presented in table 1. The error-calibration plots further show that
for the test examples with high error the epistemic uncertainty is high relative
to the aleatoric uncertainty, indicating high variance among the predictions of
the individual models in the ensemble. This means that the ensemble model
is good at identifying instances that are out of distribution and therefore have
high expected error, and exemplifies why it is useful to be able to distinguish
between epistemic and aleatoric uncertainty in the predictions. In addition to
being well calibrated, the uncertainty estimates were also sharp, as shown by
combined low RMV and high CV values, indicating the predicted uncertainty
estimates are highly input dependent and thereby informative.

In the fourth experiment, we aimed to generalise from QM9 to the more
diverse PC9 dataset by training on QM9 and testing on molecules exclusive to
PC9. The analysis of the PC9 structures presented in [28] showed that some
molecules included in PC9 are chemically different from molecules in QM9,
making this experiment a difficult out of distribution prediction task. Addi-
tionally, the properties of the datasets where computed at different levels of
theory (B3LYP/6-31G(2df,p) in QM9 and B3LYP/6-31G(d) in PC9), which
we accounted for with a linear correction, following [28]. The error we ob-
served in this experiment was quite high, but comparable to what is reported
in [28]. Importantly, the uncertainty estimates of our model were still well error-
calibrated, meaning the model correctly identified the high error instances by
assigning them high uncertainty, which means the out of distribution cases can
be detected and handled. The error-calibration plot (figure B3a) shows that
epistemic uncertainty was responsible for the majority of the total uncertainty
in the high error cases in this experiment, correctly identifying these cases as
problematic and out of distribution. The model does not have good quantile-
calibration since the errors in this experiment are not normally distributed as
also shown in [28]. In the fifth and final experiment, we went in the opposite
direction and trained on PC9 to predict the molecules exclusive to QM9. This
should be an easier task, since QM9 is similar to but less diverse than PC9. As
expected, the error we observed is significantly lower than in the previous exper-
iment and comparable to what was reported in [28]. The model produced well
calibrated uncertainty estimates in terms of both error- and quantile-calibration
but achieved poor sharpness, which means the uncertainty estimates were less
informative in this case. Figure 3 indicates that perhaps better sharpness can
be achieved with more training data. Interestingly, the two generalisation ex-
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periments resulted in the best overall error-calibration of all the experiments
in terms of ENCE despite having the largest errors (see table 1). They also
achieved the poorest sharpness measured by CV. Furthermore, in the learning
curve experiment presented in figure 3 we observed that good calibration was
achieved even for small training set sizes where the error is relatively high and
that sharpness seems to increase with the amount of training data. This il-
lustrates how calibration is orthogonal to accuracy [20] and further shows the
importance of measuring sharpness in addition to calibration to ensure uncer-
tainty estimates are not only well calibrated but also informative.

The effectiveness of the ensemble approximation in the proposed method,
and thus the quality of the epistemic uncertainty estimates, depends on training
a diverse set of models to ensure variance of predictions beyond the training data
distribution. In this work we rely on random initialisation of network parameters
and random shuffling of the training data to induce model diversity, but other
more deliberate methods exist. Bootstrapping, i.e. re-sampling the training
set with replacement, is a popular technique for inducing diversity in ensemble
models, but some evidence suggests that this method is less appropriate for deep
models as they typically perform better with more training data [20]. We tried to
apply bootstrapping in our experiments, but did not observe any improvements
in terms of error or calibration, so we left it out for simplicity. Another more
recent approach to induce diversity is to use randomized prior functions [40],
which we consider an interesting direction for future work.

A major advantage of the proposed method is its ability to quantify and dis-
tinguish between epistemic and aleatoric uncertainty in the predictions. Both
types of uncertainty are necessary to asses the total uncertainty and thus for
obtaining well calibrated uncertainty estimates in and out of the training data
distribution. Modelling aleatoric uncertainty explicitly is important for cap-
turing heteroscedastic noise in the data and thereby making input dependent
predictions of the noise wheres capturing epistemic uncertainty is especially im-
portant in tasks where it is expected to encounter out of distribution instances.
Chemical space is so vast that it is not feasible to gather enough training data
to cover the entire domain [10, 11]. Thus, identifying cases beyond the training
data distribution where the model is not expected to be accurate is critical.
For example, distinguishing between epistemic and aleatoric uncertainty can be
utilised in a screening system for atomic structures. If the epistemic uncertainty
of a prediction is low, the aleatoric uncertainty indicates the expected error. If,
on the other hand, the epistemic uncertainty is high, there is a high level of dis-
agreement in the ensemble and therefore low confidence in the prediction, and
the system can automatically fall back to a more accurate and computationally
expensive method such as DFT [41]. In an active learning setting, the epistemic
uncertainty is important for detecting out of distribution candidates that can
be included in the training data to make the model generalise better on a wider
domain. The specific confidence thresholds for decision making can be tuned
depending on the data, application and computational resources available.
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5 Conclusion

In this work we have explored a complete framework for obtaining well calibrated
uncertainty estimates for accurate molecular property prediction by using a deep
ensemble of message passing neural networks and post hoc recalibrating the un-
certainty estimates to unseen data. Our experiments on two publicly available
benchmark datasets have showed that the method is able to produce well cali-
brated uncertainty estimates in and out of the training data distribution such
that on average the model assigns high uncertainty to high error examples. A
major advantage of the proposed approach is that the uncertainty estimates can
be decomposed into epistemic and aleatoric uncertainty, which provides impor-
tant information for decision making, crucial in for example high throughput
screening and active learning applications. Additionally, the proposed method
does not depend on the particular architecture of the neural network model,
and can thus easily be adapted to use other domain-specific models and new
improved models as research in model development advances.
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Supplementary material:

Calibrated Uncertainty for Molecular Property Prediction
using Ensembles of Message Passing Neural Networks

A InChi comparison details

The overlapping set of structures that appear in both the QM9 [27] and PC9 [28]
datasets were identified by comparing International Chemical Identifiers (InChI)
strings [38]. The InChI strings for both datasets were computed using the Open
Babel command line tool (obabel v. 3.1.0):

$ obabel [input_file.xyz] -o inchi -xr -O [output_file.inchi]

or similarly for multiple files:

$ for f in *.xyz;

> do obabel $f -o inchi -xr -O ../inchi/${f:0:-3}inchi;

> done

Then the InChi strings were truncated as to not differentiate between stereoiso-
mers (structures with the same chemical formula and connectivity). Specifically,
the /b, /t, /m, and /s layers of the InChi strings were removed. When compar-
ing the truncated InChi strings of the two datasets, we found that that 21,777
molecules from QM9 are also in PC9 and 21,619 molecules from PC9 are also in
QM9. The numbers are not identical since QM9 and PC9 contains a different
amount of duplicate truncated InChi strings, so a structure from one dataset
can appear multiple times in the other dataset.

In [28] it was reported that 18,357 structures from PC9 also belong to QM9,
based on comparing InChi strings computed with the Open Babel software. We
were not able to reproduce this number using any combination of InChi layers,
so we instead used the method and result described above in this section.
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B Additional results
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Figure B1: Evaluation of uncertainty on the QM9 test set when predicting E:
(a) error-calibration plot, (b) quantile-calibration plot, and (c) confidence curve.
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Figure B2: Evaluation of uncertainty on the PC9 test set when predicting E:
(a) error-calibration plot, (b) quantile-calibration plot, and (c) confidence curve.
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Figure B3: Evaluation of uncertainty when training on QM9 and testing on
PC9: (a) error-calibration plot, (b) quantile-calibration plot, and (c) confidence
curve.
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Figure B4: Evaluation of uncertainty when training on PC9 and testing on QM9:
(a) error-calibration plot, (b) quantile-calibration plot, and (c) confidence curve.
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