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Abstract—This work presents a conceptual framework for
learning an ontological structure of domain knowledge, which
combines Jaccard similarity coefficient with the Infinite Re-
lational Model (IRM) by (Kemp et al. 2006) and its ex-
tended model, i.e. the normal-Infinite Relational Model (n-
IRM) by (Herlau et al. 2012). The proposed approach is applied
to a dataset where legal concepts related to the Japanese
educational system are defined by the Japanese authorities
according to the International Standard Classification of Ed-
ucation (ISCED). Results indicate that the proposed approach
effectively structures features for defining groups of concepts in
several levels (i.e., concept, category, abstract category levels)
from which an ontological structure is systematically visualized
as a lattice graph based on the Formal Concept Analysis (FCA)
by (Ganter and Wille 1997).

Keywords-ontology learning; knowledge structuring; seman-
tic representation; unsupervised machine learning; Infinite
Relational Model; Formal Concept Analysis;

I. INTRODUCTION

One approach to clarify and distinguish the meaning of
different concepts within a specific domain is to characterize
concepts in the form of their categories and relations to other
concepts, i.e., using a domain specific ontology (concept
system) [1]. In recent years, several automated clustering
methods for learning a concept hierarchy (ontology) have
been introduced, e.g. [2], [3], [4]. In particular, [3] employs
a restructuring lattice theory, the so-called Formal Concept
Analysis (FCA) [5] that is widely used as a visual data
analysis tool in diverse research domains, e.g. [6] in ontol-
ogy merging, [7] in multilingual concept analysis, and [8],
[9] in social network structure visualization. These works
employing the FCA point out that the complexity of lattice
representing a hierarchical structure might cause difficulties
in interpreting contextual relations in large amount of input
data.

In this paper, we propose a statistical approach combining
Bayesian relational models, i.e. Infinite Relational Model
(IRM) [10] and its extension, the normal-Infinite Relational
Model (n-IRM) [11] for structuring domain knowledge be-
fore visualizing it with the FCA. The main contribution of
this work is to demonstrate the principle of this approach.

Thus, we apply this approach to a simple small-sized dataset.
The IRM has previously been applied in several different
areas, including learning ontologies [10], analyzing text
corpora [12], [13], collaborative filtering for movie recom-
mendation [12], and analyzing neuro imaging data [14].

The approach proposed in this paper is an extension of a
work presented in [15], a cross-categorization approach that
maps legal concepts between two different legal systems. In
this paper, we test applicabilities of the cross-categorization
approach to the automatic knowledge structuring of a single
dataset representing the Japanese educational system. We
further investigate how this approach combined with the
FCA contributes to identifying and visualizing contextual
relations.

In the following we describe the data we use in our
experiments and briefly review the statistical methods used
in the proposed approach. Next, we evaluate our clustering
method and discuss the FCA visualization of the results. We
conclude by discussing some strenghts and weaknesses of
the proposed approach.

II. METHODS

A. Data sources

To evaluate our proposed method, we used a data set1

from the UNESCO Institute for Statistics. In particular, we
used the part of the data relating to the Japanese educa-
tional system. The data comprises 54 Japanese educational
programmes. Each programme is associated with number of
features such as [ISCED level], [Theoretical starting age],
[Theoretical duration of the programme], and [Programme
specifically designed for adults], etc. Each of these features
were treated as categorical values and mapped to a 83-
dimensional binary feature matrix. For example, the educa-
tional programme with the English name Elementary school
had the feature [Theoretical starting age] equal to “6”,
which was mapped to a binary feature [Theoretical starting
age = 6] equal to “1”. Other educational programmes with

1The data is available from http://www.uis.unesco.org/education/
ISCEDmappings



different starting ages would have this feature equal to “0”.
Based on this, we formed a 54 × 83 dimensional binary
concept-by-feature matrix denoted R.

B. Similarity computation

A central component in our approach is to measure the
similarity between two concepts, each of which is repre-
sented by a set of binary features. To measure similarity
we use the Jaccard index [16] which can be formulated as
follows:

sim(x, y) =
|X

∩
Y |

|X
∪
Y |

. (1)

In the equation, x and y represent two concepts, and X
and Y denote their respective binary feature sets. In words,
the Jaccard index measures similarity as the ratio of the
number of shared features and the total number of distinct
features possessed by either concept. The Jaccard index
ranges between 0 and 1, where 0 indicates two concepts
with no shared features and 1 indicates two concepts with
identical features. In the present paper the concepts x and y
are Japanese educational programmes, and the binary feature
sets represent properties of these programmes. Computing
the Jaccard index between each pair of the 54 concepts
represented in the concepts-by-feature matrix, we formed
a 54× 54 concept-by-concept similarity matrix denoted W.
Due to the symmetry of the Jaccard index, this matrix was
symmetric by construction.

C. Relational Models

To analyze the two constructed data matrices, we em-
ployed two different relational models. The IRM was used
to analyze the bipartite concept-by-feature matrix, and the n-
IRM was used to analyze the unipartite concept-by-concept
similarity matrix. In the following we review these two
statistical methods.

1) Infinite Relational Model: The infinite relational
model (IRM) introduced by Kemp et al. [10] is a general
modeling framework that can be used to perform cluster
analysis on multiple types of relational data. Here we use
the IRM to compute a bipartite clustering of the binary
concept-by-feature matrix. The output of the IRM is a two-
mode-clustering of the concepts and the features: We let z(1)
and z(2) denote the cluster assignments of the two modes
respectively. Conditioned on the clustering, the binary data is
modelled by a Bernoulli distribution with a separate success-
rate parameter for each pair of clusters in mode 1 and 2: We
let ηℓm denote the probability that any concept belonging to
concept-cluster ℓ possesses any feature belonging to feature-
cluster m. The parameters in the model are thus the two sets
of cluster assignments as well as the feature probabilities.
The IRM is fully specifies by assigning prior distributions
over the clusters: The priors for the two cluster assignments
is a so-called Chinese Restaurant Process (CRP) [10], [17].

The CRP can be thought of a defining a probability distribu-
tion over partitionings of the data, and thus the CRP provides
a mechanism to automatically infer the number of clusters.
As a prior over the feature probabilities, a Beta distribution
is used. Thus, the generative model for the bi-partite binary
IRM can be compactly written as:

z(1) ∼ CRP(γ(1)) clustering first mode,

z(2) ∼ CRP(γ(2)) clustering second mode,

ηℓm ∼ Beta(β+
0 , β−

0 ) feature probabilities,

Rij ∼ Bernoulli
(
η
z
(1)
i z

(2)
j

)
feature assignments.

To summarize the generative model we i) first partition
the concepts and features into clusters, ii) next define the
probability of a feature in feature-cluster m appearing in
concepts in concept-cluster ℓ, and iii) finally generate the
concept-feature matrix by generating each binary feature
independently conditioned on the above quantities.

Both the CRP and the Beta priors have further hyper-
parameters which must be chosen in order to fully specify
the model. The hyper-parameter of the CRP is called the
concentration parameter and influences the expected number
of clusters: In our experiments using a rule of thumb, we set
the concentration parameter to the logarithm of the number
of entities, i.e. γ(1) = log(54) and γ(2) = log(83). The Beta
prior influences the expected number of active features: Here
we set β+

0 = β−
0 = 1, specifying a uniform prior over the

feature probabilities.
2) Normal-Infinite Relational Model: The Normal-

Infinite Relational Model (n-IRM) [11] is a recent extension
of the IRM in which the data matrix is modelled as following
a Normal rather than a Bernoulli distribution. We used
this to perform a cluster analysis of the concept-by-concept
similarity matrix, in which each entry is a real number
between zero and one describing the similarity between two
concepts. The output of the cluster analysis is a cluster
assignment z that groups the concepts. Conditioned on the
clustering, the n-IRM models the observed data matrix using
a Normal distribution with separate mean and precision
(inverse variance) parameters for each pair of concepts. We
let mℓm and λℓm denote the mean and precision of the
similarities between concepts in cluster ℓ and m. As prior
distribution over the cluster assignments we use a CRP and
as prior over the mean and precision parameters we use a
Normal-Gamma distribution. The generative model can thus
be summarized as:

z ∼ CRP(γ) clustering,

λℓm ∼ Gamma(α0, β0) precision,

mℓm ∼ Normal(m0, (κ0λℓm)−1) mean,

Wij ∼ Normal(mzizj , λ
−1
zizj ) similarity.



As in our IRM analysis we set the concentration parameter
of the CRP to the logarithm of the number of concepts, γ =
log(53). The hyper-parameters for the mean and precision
were selected as m0 = 0, κ0 = 1, α0 = 10 and β−1

0 = 10
to yield a reasonably uninformative prior.

3) Inference by Markov chain Monte Carlo: Inference
in the IRM as well as the n-IRM models entail computing
(or more correctly approximating) the posterior distribution
of the cluster assignment parameters. For the IRM we use
the Markov chain Monte Carlo (MCMC) method described
in [14] which is based on Gibbs sampling combined with a
split-merge Metropolis-Hastings algorithm. In the n-IRM,
we used the MCMC inference procedure described by
Herlau et al. [11]. In all experiments we ran the MCMC
samplers for 1 000 iterations, and discarded the first 500
realizations for burnin. The outcome of the MCMC inference
is a set of posterior samples that represent the posterior
distribution of the cluster assignments: In the further analysis
and graphical display of the results we used the single
realization that attained the highest likelihood.

III. EVALUATION

Fig. 1 shows the clustering results obtained from the
proposed approach combining the n-IRM and the IRM. The
square plot called ”54 concepts: unsorted” in the middle
of Fig. 1 overviews similarity relations computed by the
Jaccard index, i.e., corresponds to the similarity matrix
W. The plot shows similarity scores of all combination of
54 educational concepts in the gray scale where similarity
scores close to 1 gets darker gray color. The other square plot
”Sorted concept clusters: C1-C7” below the ”54 concepts:
unsorted” plot shows sorted concept clusters obtained by
the n-IRM. The members of each concept clusters are listed
in the table above the plots. The stabilities of the obtained
concept clusters are, based on Normal Mutual Information
(NMI) measure [18], quantified as 0.93 in average and 0.02
in standard deviation for 10 times run. The NMI result
implies that the obtained clusters are fairly stable. By fixing
these C1-C7 as z(1) mode, the bipartite IRM is applied to the
original binary matrix R named as ”83 features: unsorted”.
The result of the bipartite IRM application is shown as
”Sorted feature clusters: FC1-FC12”. The members of each
feature clusters (FCs) are listed in the table at the upper-right
side of Fig. 1.The NMI scores for the obtained FCs are, 0.89
in average and 0.01 in standard deviation. The three tables
at the bottom of Fig. 1 show mean values and standard
deviations of the Jaccard indices within each intersection
between C1-C7, as well as density values (i.e. η) of each
intersection between C1-C7 and FC1-FC12. Thresholds set
for the respective type of values are highlighted in these
tables.

For the comparison purpose, we applied the bipartite IRM
directly to the binary matrix R, ”83 features: unsorted”,
consisting of 54 Japanese terms and 83 features. As shown

FC1:

f10, f15, f16, f17, f18, 
f19, f20, f22, f23, f28, 
f30, f36, f37, f41, f43, 
f43, f46, f47, f57, f58, 
f59, f60, f61, f62, f63, 
f64, f65, f71, f75, f76, 
f78, f79, f80, f81, f82

FC2:

f1, f2, f3, f7, f8, 
13, f21, f24, f25, 
f29, f31, f32, 
f33, f38, f40, 
f48, f49, f50, 
f51, f52, f53, 
f66, f67, f68, 
f77 f83

FC3: f5, f27, f35, f56
FC4: f4, f26, f34
FC5: f12, f45, f55
FC6: f69, f70, f72
FC7: f44, f54, f74
FC8: 39, f73
FC9: f11, f14
FC10: f6
FC11: f9

J9, J10, J11, J12, J13, 
J14, J15, J16, J18, J19, 
J20, J21, J22, J23, J25, 
J26, J28

J35, J36, J37, J38, 
J39, J40, J41, J42, 

C1

C2

f64, f65, f71, f75, f76, 
f78, f79, f80, f81, f82

f51, f52, f53, 
f66, f67, f68, 
f77, f83

FC9: f11, f14
FC10: f6
FC11: f9

J35, J36, J37, J38, 
J39, J40, J41, J42, 
J43, J44, J45, J46, 
J47, J48, J49

J1, J2, J3, J4, J5, J6, 
J7, J8, J50, J51, J52, 
J53, J54

J30, J31, J32, J33, J34

J17, J24, J27, J29

C2

C3

C4

C5

Density FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 FC11

C1 0.007 0.005 0.014 0.962 0.500 0.940 0.961 0.028 0.361 0.053 0.579

C2 0.197 0.008 0.258 0.022 0.021 0.894 0.043 0.250 0.031 0.875 0.588

C3 0.022 0.145 0.019 0.024 0.098 0.951 0.268 0.286 0.037 0.067 0.267

C4 0.006 0.008 0.950 0.059 0.059 0.941 0.059 0.909 0.083 0.143 0.143

C5 0.007 0.019 0.056 0.923 0.071 0.923 0.071 0.900 0.900 0.167 0.167

J17, J24, J27, J29C5

Figure 2. Clustering results directly obtained by the IRM

in Fig. 2, the direct application of the bipartite IRM identifies
only five concept clusters C1-C5. The stabilities of the
obtained concept clusters computed by the NMI measure
resulted in 0.87 in average and 0.02 in standard deviation
for the concept clusters, and 0.81 in average and 0.01 in
standard deviation for the feature clusters. This implies that
the clustering result is slightly unstable compared to the
clusters obtained by the n-IRM computation.

When studying details of the diagonal line in the ”Sorted
concept clusters: C1-C7” plot in Fig. 1, C1 (upper sec-
ondary education concepts), C4 (Master level university
education concepts), C6 (short-term upper secondary educa-
tion concepts) and C7 (lower secondary education concepts)
clusters are colored in the darker gray, while C2, C3, and
C5 respectively consist of several smaller clusters within
the concept clusters. This phenomenon can be seen in
the tables where mean values of C1, C4, C6 and C7 are
higher (intuitively, all of them are above 0.65) and their
standard deviations are lower (all of them are below 0.2),
while mean values of C2, C3, and C5 are lower (below
0.55) and their standard deviatoins are higher (above 0.2).
This phenomenon can be identified in the ”Sorted concept
clusters: C1-C7” plot that the concept clusters C2, C3, and
C5 respectively contain several smaller sub-clusters. The
observation of the ”Sorted feature clusters: FC1-FC12” plot
further support this phenomenon that features belonging to
each feature cluster related to C2, C3, and C5 are more
scattered compared to the feature clusters related to C1,
C4, C6 and C7. The mean table further indicate that C1
has slightly related with C6, since the mean values of the
intersections between C1 and C6 is slightly higher compared
to the other intersections. This is also observable from the
”Sorted concept clusters: C1-C7” plot.

The clustering results indicate that the proposed approach
uncovers relations in several levels, e.g., cluster-cluster re-



'J9:Upper secondary school, full day general course ' 'f7:ISCED 6'

'J10:Upper Secondary school, day/evening general course' 'f8:ISCED NC'

'J11:Upper secondary school, correspondence general course' 'f13:programme orientation Pre vocational'

'J12:Upper secondary school, full day integrated course (general) ' 'f15:theoretical cumulative at ISCED 5: short'

'J13:Upper secondary school, day/evening integrated course (general) ' 'f16:theoretical cumulative at ISCED 5: medium'

'J14:Upper secondary school, full day specialized course ' 'f18:qualification structure at ISCED 5: 1st degree'

'J15:Upper secondary school, day/evening specialized course' 'f19:qualification structure at ISCED 5: intermediate'

'J16:Upper secondary school, correspondence specialised course' 'f21:qualification structure at ISCED 5: 3rd degree '

'J18:Secondary education school (upper division), full day general course' 'f22:qualification structure at ISCED 5: BA'

'J19:Secondary education school (upper division), day/evening general course' 'f24:qualification structure at ISCED 5: PhD'

'J20:Secondary education school (upper division), full day integrated course (general)' 'f29:Minimum entrance requirement (ISCED level or other) 5A 2nd'

'J21:Secondary education school (upper division), day/evening integrated course (general)' 'f30:Minimum entrance requirement (ISCED level or other) 5B'

'J22:Secondary education school (upper division), full day specialized course' 'f36:starting age: 20'

'J23:Secondary education school (Upper division) day/evening specialized course' 'f38:starting age: 24'

C1

'J23:Secondary education school (Upper division), day/evening specialized course' 'f38:starting age: 24'

'J25:School for Special Needs Education, upper secondary department, general course' 'f42:duration: 2+'

'J26:School for Special Needs Education, upper secondary department, Specialized course' 'f46:duration: 4'

'J28:College of technology, regular course ' 'f47:duration: 4+'

J30:Upper secondary school, (full day, day/evening), advanced (general, integrated, specialized)' 'f48:duration: 5'

J31:Secondary education (Upper division), (full day, day/evening), advanced (general, integrated, specialized)' 'f49:duration: 5+'

J32:School for Special Needs Education, upper secondary department, advanced (general, specialized)' 'f57:cumulative ducatiion: 14'

'J33:Junior college, short!term course' 'f58:cumulative ducation: 14!15'

'J34:University, short!term course' 'f59:cumulative ducation: 15+'

'J36:Junior college, advanced course' 'f60:cumulative ducatiion: 16'

'J39:College of technology, advanced course' 'f61:cumulative ducation: 16+'

'J40:Specialised training college, post!secondary course' 'f62:cumulative ducation: 17+'

'J43:University, advanced course' 'f64:cumulative ducation: 18+'

'J53:Specialised training college, general course' 'f65:cumulative ducation: 19'

C2

FC1

p g g , g

'J54:Miscellaneous schools' 'f66:cumulative ducation: 21'

'J35:Junior college, regular course' 'f67:cumulative ducation: 21+'

'J37:Junior college, correspondence course' 'f68:cumulative ducation: 22'

'J38:College of technology, regular course ' 'f71:specifically designed for part!time attendance'

'J41:University, undergraduate ' 'f75:certification: associate degree '

J42:University, undergraduate of pharmacy, medicine, dentistry and veterinary medicine' 'f76:certification: associate'

'J44:University, undergraduate, correspondence course ' 'f77:certification: diploma (senmonshi)'

'J50:University, graduate school, Doctor''s course' 'f78:certification: advanced diploma (Kodo senmonshi)'

J51:University, graduate school, Doctor''s course of pharmacy, medicine, dentistry and veterinary medicine' 'f79:cerification_ Bachelor''s degree'

'J52:University, graduate school, Doctor''s course correspondence course' 'f80:certification: Master''s degree'

'J45:University, graduate school, Master''s course correspondence course' 'f81:certification: Professional degree'

'J46:University, professional graduate school, Professional course correspondence course ' 'f82:certification: Juris Doctor'

'J47:University, graduate school, Master''s course' 'f83:certification: Doctor''s degree'

'J48:University, professional graduate school, Professional course' 'f1:ISCED 0'

C3

C4

'J49:University, professional graduate school, Graduate law school' 'f2:ISCED 1'

'J1:Day nursery' 'f31:starting age: 3!5'

'J2:Kindergarten' 'f32:starting age: 6'

'J3:School for Special Needs Education, kindergarten department' 'f40:duration: 1!3'

'J4:Elementary school' 'f43:duration: 2!3'

'J5:School for Special Needs Education, elementary department' 'f50:duration: 6'

'J17:Upper secondary school, (full day/evening school), short!term course (general, integrated, specialized)' 'f51:cumulative ducatiion: 6'

J24:Secondary education (Upper division), full day, day/evening short!term (general, integrated, specialized)' 'f53:cumulative ducation: 10+'

J27:School for Special Needs Education, upper secondary department short!term (general, specialized)' 'f6:ISCED 5'

'J29:Specialized training college, upper secondary course' 'f17:theoretical cumulative at ISCED 5: long'

'J6:Lower secondary school' 'f20:qualification structure at ISCED 5: 2nd degree'

'J7:Secondary education school(lower division)' 'f23:qualification structure at ISCED 5: MA'

'J8:School for Special Needs Education, lower secondary department' 'f28:Minimum entrance requirement (ISCED level or other) 5A 1st'

'f37:starting age: 22'

C5

C6

C7

FC2

FC3

83 features: unsorted
g g

'f41:duration: 2'

'f63:cumulative duration: 18'

'f5:ISCED 4'

'f10:programme destination B'

'f27:Minimum entrance requirement (ISCED level or other) 3'

'f35:starting age: 18'

'f56:cumulative ducation: 13+'

'f3:ISCED 2'

'f25:Minimum entrance requirement (ISCED level or other) 1'

'f33:starting age: 12'

'f52:cumulative ducation: 9'

'f11:programme destination C'

'f14:programme orientation vocational'

'f45:duration 3 +'

FC5

FC4

FC6

83 features: unsorted
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'f55:cumulative ducation: 12+'

'f4:ISCED 3'

'f26:Minimum entrance requirement (ISCED level or other) 2'

'f34:starting age: 15'

'f69:no work based element '

'f70: not specifically designed for adults '

'f72:not specifically designed for part!time attendance'

'f44:duration: 3'

'f54:cumulative ducatiion: 12'

'f74:certification: certificate of graduation'

'f39:duration: 1+'

'f73:certification: certificate of completion'

FC11 'f12:programme orientation General'

FC12 'f9:programme destination A'

FC7

FC8

FC9

FC10

5
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Mean C1 C2 C3 C4 C5 C6 C7 Density FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 FC11 FC12

C1 0.725 0.165 0.137 0.155 0.233 0.429 0.340 C1 0.006 0.006 0.007 0.023 0.014 0.414 0.962 0.943 0.962 0.028 0.579 0.579

C2 0.165 0.528 0.222 0.172 0.232 0.343 0.203 C2 0.036 0.010 0.089 0.474 0.022 0.022 0.029 0.971 0.029 0.917 0.077 0.154

C3 0.137 0.222 0.278 0.183 0.165 0.138 0.151 C3 0.149 0.048 0.149 0.340 0.026 0.026 0.034 0.862 0.034 0.050 0.091 0.364

C4 0.155 0.172 0.183 0.672 0.168 0.123 0.185 C4 0.064 0.021 0.929 0.037 0.045 0.045 0.059 0.824 0.118 0.083 0.143 0.857

C5 0.233 0.232 0.165 0.168 0.486 0.217 0.254 C5 0.005 0.426 0.095 0.037 0.045 0.045 0.059 0.941 0.353 0.250 0.143 0.143

C6 0.429 0.343 0.138 0.123 0.217 0.955 0.187 C6 0.006 0.053 0.029 0.045 0.056 0.500 0.929 0.929 0.071 0.900 0.167 0.167

C7 0.340 0.203 0.151 0.185 0.254 0.187 0.889 C7 0.008 0.034 0.038 0.059 0.929 0.071 0.091 0.909 0.545 0.250 0.800 0.800

SD C1 C2 C3 C4 C5 C6 C7

C1 0 154 0 033 0 035 0 052 0 034 0 103 0 095 M l l 0 400

Sorted feature clusters: FC1 ! FC12

S
o
rt
e
d

 c
o

C1 0.154 0.033 0.035 0.052 0.034 0.103 0.095 Mean value equal or over:  0.400

C2 0.033 0.254 0.075 0.089 0.045 0.062 0.044

C3 0.035 0.075 0.202 0.063 0.043 0.030 0.035 Standard Deviation equal or over: 0.200

C4 0.052 0.089 0.063 0.131 0.045 0.031 0.050

C5 0.034 0.045 0.043 0.045 0.344 0.025 0.035 Density value equal or over: 0.400

C6 0.103 0.062 0.030 0.031 0.025 0.045 0.032

C7 0.095 0.044 0.035 0.050 0.035 0.032 0.079

Figure 1. Clustering results obtained by the n-IRM combined with the IRM



lations, sub-cluster relations within a concept cluster etc. as
well as feature structures influencing each cluster formation.
This implies that the information obtained from the proposed
approach is useful for visually constructing a concept hier-
archy, which is demonstrated in the next section.

IV. VISUALIZATION

As mentioned in the introduction, the FCA [5] is a
convenient tool for visual data analysis. The FCA considers
a relation that connects objects and features possessed by
the objects. A formal concept of the context is defined as
C = (G,M, I) where G and M respectively refer to a set of
objects and a set of features, and I denote relations between
G and M . For example, in case of the FCA lattice ”FCA: C5
cluster internal structure” in Fig. 4, the context C5 is repre-
sented as G: (J1, J2, J3, J4, J5) and M : (f1, f2, f31,.... f73,
f74) with sets of their individual relations I . When an object,
e.g., ”J4: Elementary school” belonging to G (expressed as
g ∈ G) has the feature ”f2: ISCED1” (m ∈ M), this specific
relation is expressed as gIm. The set of features B ⊆ M ,
e.g., (”f2: ISCED1”, ”f32: starting age 6”, ”f50: duration
6”, ”f51: cumulative duration 6”, ”f69: no work based el-
ement”, ”f70:not design for adults”, ”f72: not designed for
part-time attendance”, ”f74: certification of graduation”)
shared by a set of objects, e.g., (”J4: Elementary school”,
”J5: School for Special Needs, elementary”), is defined as
Á = {m ∈ M | gIm for all g ∈ A}. In the same way,
the set of objects A ⊆ G (”J2: Kindergarten”, ”J3:
School for Special Needs Education, kindergarten”) shared
by all features, e.g. (”f1: ISCED0”, ”f31: starting age:3-
5”, ”f40: duration:1-3”, ”f41: duration:2-3”, ”f41: dura-
tion:2”, ”f44: duration:3”, ”f69: no work based element”,
”f70:not design for adults”, ”f72: not designed for part-time
attendance”, ”f73: certification: certificate of completion”),
is expressed as B́ = {g ∈ G | gIm for all m ∈ B}. [5]
calls A and B as the extent and the intent of the concept
(A,B) in their literature. A formal concept of the context
(G,M, I) is represented by (A,B) defined as A ⊆ G,B ⊆
M, Á = B, B́ = A. The set of all formal concepts in context
(G,M, I) is depicted as a complete lattice called Gallois
lattice. The algorithms for depicting a Gallois lattice are
described in details in literatures in [5] as well as in [19].

Fig. 3 shows a lattice graph directly produced from the
matrix R consisting of 54 Japanese educational terms and
their 83 features, drawn by a tool called Concept Explorer
(ConExp) [20] 2. It means the context C is represented as
G: (J1, J2, .... J54) and M : (f1, f2, f3, .... f83) with their
relations I . Thus in the drawn lattice graph in Fig. 3, the
white labels and the gray labels respectively refer to objects
and features. Each node in the lattice graph is considered as
formal concept. When a node is blue and black color, both
objects and features are attached to the concept. If a node

2http://conexp.sourceforge.net/

is white and black color, only objects are attached to the
concept. A concept is supposed to inherit features from the
upper connected edges. Thus it is possible to analyze what
features are possessed by a specific concept by tracing the
ascending paths in the lattice graph. As pointed out by [6],
[8], [9], the drawn lattice graph in Fig. 3 is rather complex
and it is difficult to overview the expressed relations.

On the other hand, the diagrams in Fig. 4 are produced
based on our proposed approach, i.e., information extracted
in Fig. 1 explained in the previous section. In Fig. 4,
the lattice graph called ”FCA: Overall cluster structure”
is created based on the values in the density table in
Fig. 1. In order to draw the lattice graph, the density values
equal or above 0.4 are considered as true. The ”FCA:
Overall cluster structure” graph in Fig. 4 illustrates the
results obtained from the n-IRM in an appropriate way
that e.g. C1 (upper secondary education concepts), C7
(lower secondary education concepts) and C4 (Master level
university education concepts) are indirectly connected by
sharing FC12 (”f9: programme destination A”), while C7
and C1 is distinguished from C4 by commonly sharing FC9
(”f44: duration 3”, ”f54: cumulative duration: 12”, ”f74:
certification of graduation”) and FC11 (”f12: programme
orientation general”). The difference between C1 and C7
are that C1 commonly shares FC7 (”f4: ISCED 3”, ”f26:
minimum entrance ISCED 2”, ”f34: starting age 15”) and
FC6 (”f11: programme destination C”, ”f14: programme
orientation vocational”, ”f45: duration 3+”, ”f55: cumu-
lative duration 12+”) with C6, whereas C7 possesses FC5
(”f3: ISCED 2”, ”f25: minimum entrance ISCED 1”, ”f33:
starting age 12”, ”f52: cumulative duration 9”).

As indicated in the SD table in Fig. 1, C2, C3, and C5 are
relatively uneven clusters consisting of smaller sub-groups of
concepts. Thus the sub-structures within each concept cluster
are analyzed by applying the FCA. More specifically, the
FCA is applied to sub concept-feature matrices consisting of
the members of each concept cluster (C2, C3, and C5) and
their features, where the dots scattered in the ”Sorted feature
clusters: FC1-FC12” in Fig. 1 are considered as true values.
The three lattices, ”FCA: C2 cluster internal structure”,
”FCA: C3 cluster internal structure”, and ”FCA: C5 cluster
internal structure” in Fig. 4 illustrate the internal structure
of each concept cluster.

For example, the ”FCA: C2 cluster internal structure”
graph in Fig. 4 shows that the objects ”J30: Upper
secondary school, advanced”, ”J31: Secondary education
school, upper division, advance”, ”J32: School for Special
Needs, upper secondary, advance” and ”J34: University,
short-term” are grouped together by sharing a feature ”f5:
ISCED4” and other features attached to its ascending edges.
In the same way, ”J53: Specialized training college, gen-
eral” and ”J54: Miscellaneous school” are grouped by shar-
ing ”f8: ISCED-NC” and features attached to its ascending
edges. Whereas ”J36: Junior college, advanced” is directly



Figure 3. Lattice representing the original object-feature matrix

connected with ”J39: College of technology, advanced”
by sharing features ”f59: cumulative duration 15+”, ”f36:
starting age 20”, ”f30: minimum entrance requirement-
5B” and their ascending features, these two concepts J39
is distinguished from J36 by possessing ”f10: programme
destination B”. In this way, each uneven concept cluster can
be scrutinized by visually inspecting the lattice graphs. One
notable point is that the sub-clusters identified in the ”Sorted
concept clusters: C1-C7” plot in Fig. 1 are sub-groups or a
group of concepts that are closely connected in the lattices
shown in Fig. 4.

V. DISCUSSION

The results presented in the previous sections indicate that
the concept clusters obtained by the n-IRM applied to the
Jaccard index scores are fine-grained and stable compared to
the results obtained from the direct application of the IRM
to the concept by feature matrix R. The”Sorted concept
clusters: C1-C7” plot combined with the ”Sorted feature
clusters: FC1-FC12” plot in Fig. 1 overviews a knowledge
structure at several levels, at the levels of individual con-
cepts, sub-groups of concepts existing in a specific concept
cluster, feature structures forming each concept cluster and
more abstract concept cluster levels. These relations and
structures are effectively visualized by ConExp, a publicly
available automatic lattice creation tool. The lattice graphs
created from the results of our proposed approach in Fig. 4
enable us to visually inspect relations between concepts
and features in a more systematic manner, compared to

the lattice graph directly created from the original concept-
feature matrix shown in Fig. 3.

One notable point in this work is that thresholds of the
density values for generating the ”FCA: Overall cluster
structure” graph are arbitrarily selected. By changing the
thresholds, the shape of the lattice graph is substantially
influenced. One of the challenges is how to identify appro-
priate thresholds. In this respect, an extended FCA such as
Fuzzy Formal Concept Analysis [21] could be one of the
possible alternative solutions to be considered in the future.

In this paper, we combined the n-IRM with the Jaccard
index that equally consider all features possessed by an
object. Another notable point is that our proposed approach
accommodates any feature-based similarity measures, e.g., a
similarity measure that differentiates degrees of importance
of a feature possessed by an object. For example, in our
previous work [15], we employed a Bayesian generalization
model by [22] which considers a feature possessed by many
concepts as less important, and vice versa. The clustering
results obtained by the n-IRM was substantially influenced
by the employed similarity measures. Thus further investi-
gation is needed to identify what type of similarity measure
is appropriate for what type of applications. Another future
challenge would be to integrate the steps combining the
unipartite n-IRM and the bipartite IRM. By integrating these
steps, the unsupervised knowledge structuring performance
is expected to be optimized. Finally, the dataset employed in
this work has been simple and relatively small. Hence it is
necessary to test the proposed approach with different sizes
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Figure 4. Lattices representing an overall structure of concept- and feature clusters and internal structures within each concept cluster



and types of datasets for validating the applicability of our
approach in different scenarios in the future.

VI. CONCLUSIONS

In this paper, we presented a conceptual framework
for learning a hierarchical structure of domain knowledge,
which combines the Jaccard index with the IRM and n-
IRM models. The results presented in this paper indicate that
the proposed approach effectively clusters relations between
concepts and features, and structures domain knowledge at
several levels, i.e., at the levels of individual concepts, sub-
groups of concepts existing in a specific concept cluster,
feature structures forming each concept cluster, and more
abstract concept cluster levels. These structures and relations
were visualized as lattice graphs created by the Formal
Concept Analysis (FCA) [5]. In contrast to the direct ap-
plication of the FCA to the original dataset, the proposed
approach combined with the FCA contributes to effectively
identify and visualize contextual relations hidden in the
dataset consisting of Japanese educational concepts and their
characteristic features.
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