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ABSTRACT

Relational modelling classically consider sparse and discrete
data. Measures of influence computed pairwise between tem-
poral sources naturally give rise to dense continuous-valued
matrices, for instance p-values from Granger causality. Due
to asymmetry or lack of positive definiteness they are not nat-
urally suited for kernel K-means. We propose a generative
Bayesian model for dense matrices which generalize kernel
K-means to consider off-diagonal interactions in matrices of
interactions, and demonstrate its ability to detect structure on
both artificial data and two real data sets.

Index Terms— Relational Modelling, Non-parametrics,
Infinite Relational Model, Granger Causality

1. INTRODUCTION

Consider the problem of analysing a large set of signal
sources Si ∈ S, i = 1, . . . , n each emitting a time-dependent
signal. In this work we consider discrete signals with real do-
main, Si : {1, 2, . . . , T} 7→ R, but this choice is not critical.
A concrete instance of the problem could be neural activity
in fMRI where each source correspond to a voxel.

An interesting problem in a temporal setting is discover-
ing influence amongst the signals, for instance when activity
in one group of voxels in the brain is highly informative of
activity in another group of voxels at a later time but not vice
versa. Notice this work only consider statistical claims of in-
fluence and we emphasize true claims of causal relation can
only be done after intervention studies or under strong domain
assumptions[1].

Typically the signals are first grouped according to simi-
larity (using a standard clustering method) or background in-
formation (for instance similarity of neural tissue, and then
the influence-analysis is applied on either the clusters of sig-
nals or the average of the signals within the clusters[2, 3]. By
a measure of influence we consider any real or vector val-
ued function such as Correlation or time-lagged correlation,
Granger causality, transfer entropy, etc.[4, 5]. Since it is the
influence-based analysis which is interesting, it is natural to

ask if the first step could be done away with. One difficulty
is the measure of influence W : S × S 7→ R will typically
be asymmetric and difficult kerneling. Motivated by kernel
K-means clustering we will show how the problem is more
naturally formulated as discovering structure in matrices, and
show how a natural generalization of a well-known model
from relational modelling can be used to directly cluster ac-
cording to the influence measure. These techniques are ap-
plied to North American temperature records and fMRI data.

2. METHODS

2.1. The kernel K-means objective and relational mod-
elling

Consider a partition of the set {Si}i into K clusters. Let z
be a n ×K matrix such that ziµ = 1 iff. data point i belong
to cluster µ and 0 otherwise. Let cµ = {j : zjµ = 1}. The
kernel K-means objective arise by considering a mapping of
each point into a Hilbert space φ : S 7→ H and minimizing
the objective:

1

n

n∑
i=1

∥∥∥∥∥∥φ(Si)−

 1

nµ

∑
j∈czi

φ(Sj)

∥∥∥∥∥∥
2

(1)

where nµ = |cµ| is the number of objects assigned to clus-
ter µ. The mapping φ is entirely characterized by the Gram-
matrix kij = 〈φ(Si), φ(Sj)〉 = k(Si, Sj) provided the map-
ping k is positive semidefinite[6]. Ignoring constant terms,
Kernel K-means become equivalent to maximizing[7]

K∑
µ=1

1

nµ

∑
i,j∈cµ

kij = diag((zTz)−1zTkz). (2)

For any z let I be a permutation of {1, . . . , n} which ”reorder
i according to cluster assignments” (see bottom panes of fig-
ure 1). Formally, if z′hµ = zI(h)µ then for all i < j < k:
z′iµp = z′kµ = 1 ⇒ z′jµ = 1. Reordering k according to
the same permutation give a matrix k′ij = kI(i)I(j), and the

978-1-4673-1026-0/12/$31.00 c©2012 IEEE



Signals i, Si

Cluster signals (similarity) Construct influence graph

1

2

3

1 2 3

5

10

15

20

25

30

35

40

45

Construct influence matrix Wij

1 2 3

5

10

15

20

25

30

35

40

45

Cluster influence matrix

Fig. 1. Concept for analyzing influence amongst signals (left). Classical way (top) depend on clustering signals (top-middle)
and then discovering influence amongst the clusters (top-right). Proposed method (bottom) depend on constructing full matrix
of influence measure (bottom-middle) and discovering clusters within influence matrix (bottom-right).

objective (2) can now be seen as dividing k′ into K2 subma-
trices, each of size nµnν , and taking the sum of each of the
diagonal submatrices divided by nµ. In other words, the ob-
jective only consider what happens inside the diagonal blocks
induced by z, see figure 1 top.

Returning to the general case, consider a generic mea-
sure of influence W : S × S 7→ R, for instance Granger
causality[4]. Such relationships are usually asymmetric, and
more importantly, the interesting structure in the relationship
is exactly off diagonal (see figure 1 bottom): If a group of
signals are very similar, they do not provide any extra infor-
mation in order to forecast each other. Hence even if the map-
ping W could be kernelized by appropriate symmetrization
and eg. squared exponential mapping, one will loose the in-
teresting structure. Furthermore kernel K-means require pre-
specification of the number of components K.

To overcome these difficulties we propose explicitly mod-
elling the pmatrix of interactionsW as a dense relational ma-
trix using a Bayesian generative model inspired by the net-
work litterature[8]. Given z, W is naturally divided into K2

submatrices (figure 1, bottom). The elements of each nµnν
submatrix is assumed to be independently drawn from a nor-
mal distribution parameterized with mean mµν and precision
λµν = σ−2µν . Using a Chinese Restaurant Process[8] for z and
a Normal-gamma prior on the parameters of the multivariate
normal distribution we obtain the following generative pro-
cess (Normal-IRM,nIRM):

z ∼ CRP(γ0), Cluster assignment,

λµν ∼ Gamma(α0, rate = β0) precision,

mµν ∼ Normal
(
m0, (κ0λµν)−1

)
mean,

Wij ∼ Normal(mzizj , λzizj ) Observed data.

The joint likelihood of the generative model is given by:

p(W ,m,λ, z | m0, α0, β0, κ0, γ0) =

p(W |m,λ, z)p(m|λ,m0, κ0)p(λ|α0, β0)p(z|γ0)

An attractive feature of the joint likelihood is that the prior is
conjugate so thatm and λ can be integrated out[9] giving:

p(W , z | m0, α0, β0, κ0, γ0) =∫∫
dmdλ p(W |m,λ, z)

×p(m|λ,m0, κ0)p(λ|α0, β0)p(z|γ0) =[∏
µν

Γ(αµν)

Γ(α0)

βα0
0

β
αµν
µν

√
κ0
κµν

(2π)−
nµnν

2

]

×

[
γK0

Γ(n+ γ0)

K∏
µ=1

Γ(nµ)

]
(3)

with the definitions[9]:

αµν = α0 +
nµnν

2
(4a)

κµν = κ0 + nµnν (4b)

βµν = β0 +
C

(2)
µν

2
−

(
C

(1)
µν

)2
2nµnν

+
κ0(C

(1)
µν − nµnνm0)2

2(κ0 + nµnν)nµnν
(4c)

and pseudo-counts C(a)
µν =

∑
i∈cµ,j∈cν W

a
ij . As the name

implies, the model can be seen as the Infinite Relational
Model[8] with normal observations and normal-gamma pri-
ors instead of bernoulli observations and beta priors.

In case the measure of influence is symmetric, one can
easily restrict the model to the upper triangular part Wij , i ≤
j and thus the products are restricted to only cover µ ≤ ν. The
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Fig. 2. Artificial data results. Results obtained by varying η for the two different types of structure (c)-(d) induced by B
using σ = 1

2 (see text). Simulations performed with the split-merge sampler described in the text. For each η-value the
NMI between planted/recovered structure is obtained by averaging over 40 runs using 20 Gibbs sweeps per run and 4 restarts
from random configurations with priors γ0 = α0 = κ0, β0 = m0 = 1. Notice the change in detection treshold between the
symmetric/asymmetric networks.

model was also extended to model multiple influence matrices
{W r}Rr=1 by sharing the assignments z, ie.

p({W r}Rr=1 | z) = p(z)

R∏
r=1

p(W r | z)

and use different sets of hyperparameters (α0, β0,m0, κ0) for
the diagonal blocks (µ = ν) and off-diagonal (µ 6= ν), all
of these extensions are trivial and details will not be given
here[8].

2.2. Efficient Implementation

Inference in the nIRM require some considerations both in
terms of speed and reasonable mixing. A key issue for larger
problems is memory consumption. Consider a single Gibbs
update of variable pi to initial assignment matrix z. Writing
z∗ = z0 + ∆ with ∆lm = δilδµm the Gibbs update equation
for z∗ become:

p(z∗ |W ) ∝ p(W , z0 + ∆).

From the form of the joint likelihood (3) and update equations
(4) it is only necessary to keep track of changes to the pseudo-
count matrices C(a) = zTW az, a = 1, 2.

(z0 + ∆)TW a(z0 + ∆) =
[
zT0W

az0 +W a
ii

]
+ zT0W

a
:,ie

T
µ + eµW

a
i,:z0

where notationW a denote the element-wise exponential,w:,i

is the ith column and eµ the µth canonical basis vector. Thus
considering each of the K+ 1 possible assignments of zi (the
last assignment denoting a new cluster) is equivalent to only
computing 2(K + 1)2 changed entries of C and the normal-
ization term in the product in equation (3). Furthermore, since
W only enters as products of the form z0W

a.
Caching these products lower the memory requirement

from O(n2) to O(nK). The cost of this procedure is that

the cached products z0W a need to be updated but only
when z∗i 6= zi, and when this occur one need to re-compute
row/column i of W . However, if these can be calculated
efficiently from the data, for instance in the case they can be
written as vector products (such as time-lagged correlation),
the savings can be very substantial since typically less than
10% of the assignments in z is updates in each sweep after
a few iterations. Using these techniques it was possible to
sample problems of up to 65′000 vertices where storage of
W would be infeasible.

2.2.1. Split-merge sampling

In practice Gibbs sampling works well for determining how
vertices should be assigned between existing clusters, but has
difficulties discovering new clusters since this often require
simultaneous change of multiple assignments.

To overcome this difficulty the split-merge sampling
framework proposed by S. Jain[10] was considered. The
key to the method is using the Gibbs sampler to produce
favorable split configurations. Draw two distinct vertices i, j
at random with assignments zi = µ, zj = ν. Construct a new
launch state z` by first letting z`i = µ, z`j = ν′ 6∈ {zh}h and
for all other h ∈ S = {h|zh = µ or zh = ν} assign z`i to ei-
ther µ or ν′ at random. All other elements are not reassigned.
Secondly perform q Gibbs sweeps on assignments z`i , i ∈ S
but constrained to only considering assignment to clusters µ
or ν′ to obtain the final launch state.

If zi = zj propose a split by performing one final re-
stricted gibbs sweep on z` to obtain z∗, store the Gibbs tran-
sition probability for the final sweep as T split = 1 and let
Tmerge = 1.
Alternatively propose a merge move by computing the Gibbs
transition probability of a single sweep on z` where each i ∈
S is constrained to be assigned to its original configuration, ie.
z∗i = zi, and let Tmerge denote the corresponding probability
and T split. The proposal is accepted with metropolis-hastings
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Fig. 3. Results of NCDC data set. Results obtained from the maximum-likelihood configuration after 100 gibbs sweep of the
assymetric formulation of the nIRM. Colors indicate the different clusters (K = 10), arrows indicate prominent directions of
interaction (in the sense of large mµνvalues, notice there is some difference across the years since these values are not shared).
Hyperparameters was choosen as γ0 = α0 = β0 = κ0 = 1, however we used different values of m0 on the diagonal: m0 = 0
if µ = ν and m0 = 20 if µ 6= ν to account for the strong off-diagonal nature ofW r, see also 4 for the year 1999.

ratio:

min

{
1,

T split

Tmerge

p(W , z∗)

p(W , z)

}
which ensure detailed balance[10]. The number of intermedi-
ate gibbs sweeps q is a parameter of the model, here q = 1.
While the above method significantly enhance the ability to
discover new clusters by splitting, the probability of merge
moves tend to be low, and so a variation of the above method
where split-configurations are proposed randomly was also
implemented[10].

3. SIMULATIONS

We tested the feasibility of the method on both artificial and
real data. Constructing the artificial data was done by choos-
ing n and K and a random assignment matrix z assigning n

K
vertices to each cluster.

Secondly the structure of the data was constructing by
choosing an underlying K × K structure matrix indicating
which clusters interact, here we choose a symmetric interac-
tion matrix by lettingB be theK×K identity matrix and sim-
ulated an off-diagonal interaction by lettingB be the identity
with the columns circularly permuted to the right (see figure
2).

Finally the difficulty of the problem is determined by an
order parameter η ∈ [0, 1] such that η = 0 denote an im-
possible task and η = 1 the easiest case. The matrix W is
constructed as

Wij = εij + ηBzizj and εij ∼ Normal(0, σ)

and two examples can be seen in figure 2 (c)-(d), both for the
symmetric and asymmetric matrices.

As a measure of performance we use the normalized mu-
tual information (NMI) which can be interpreted as the frac-
tion of the total amount of information in the recovered struc-
ture z which can be learned from knowing the planted struc-
ture z̃.[11]. The NMI is defined as

NMI(z, z̃) =
2I(z, z̃)

H(z) +H(z̃)

where I(z, z̃) =
∑
µν p(µ, ν) log p(µ,ν)

p(µ)p(ν) , H(z) = I(z, z)

is the entropy and the distribution p(µ, ν) is the probability a
randomly selected observation i in cluster µ in the planted
cluster structure z is in cluster ν in the inferred structure
z̃[11].

Notice if the two variables are independent the NMI is
zero and if they are identical the NMI becomes 1. NMI has
been shown to be an efficient measure of partitions in the type
of problem considered here [11]. It has become a standard
in assessing the quality of communities in artificial relational
data [12, 13, 14].

In line with [14] we choose K = 4 and let n take val-
ues 64, 128, 256 from random initial configurations and us-
ing multiple restarts, the results can be seen in figure 2. As
expected the model undergoes a phase transition as η is in-
creased for both the symmetric (where only Wij , i ≤ j is
modelled) and the asymmetric nIRM. Surprisingly, the results
show different threshold values for η (asymmetric graphs de-
tected earlier) but slightly lower total detection rate for high
values of η. This may be due to the asymmetric graphs con-
taining twice as many observations and hence obtain lower
local minima.
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Fig. 4. Enlargement of NCDC weather results for the year
1999, see figure 3 for description

3.1. NCDC Weather Data

We attempted the model on weather data from the National
Climate Data Center (NCDC)1. We used temperature data
from the years 1995− 1999 for stations in USA. Since some
of the stations did not have data for all days, stations with
less than 300 observations for any given year was removed
and missing observations imputed by linear interpolations us-
ing only the stations own time series. This exclude artificial
spatial correlations. After this 879 stations remained.

For each pair of stations a Granger causal analysis[4] was
performed using the Econometrics Toolbox[15] on the lagged
signal Ŝi(t) = Si(t)− St−1. Granger causality fit a model of
the type

Ŝi(t) =

L∑
τ=1

aij,lŜi(t− τ) +

L∑
τ=1

a′ij,lŜj(t− τ) + Eij(t)

and test if the primed coefficients (obtained by OLS) are
jointly different from zero using an F-test of the null hy-
pothesis aij,τ = 0, τ = 1, . . . , L [16]. The corresponding
p-values for year r was recorded as Wijr. It is easy to see
from the definition Wiir = 0 and the corresponding matrices
are strongly non-negative and asymmetric.

Results of running the model for 1000 Gibbs sweeps can
be seen in figure 3 and 4. The clustering with the largest
likelihood is illustrated by different colors (around 10 clus-
ters are discovered), and the interactions are illustrated using
the posterior mean of the R K ×K matrices m. For each ν,
µ = argmaxκmκν was computed and an arrow drawn from
µ to ν, ie. connecting each region to the other region which
”influence” it the most.

Four of the W -matrices are permuted according to z and
can be seen in figure 3, notice the clusters are completely

1NCDC data freely available from
http://www.ncdc.noaa.gov/cgi-bin/res40.pl

dominated by the off-diagonal interactions, in other words,
when spatially proximate weather stations are clustered to-
gether, it is not a-priori because their signals are similar, but
because they has the same interaction profile towards other
weather stations. In this light it is interesting the connectivity
profile (see arrows in figure 4) tend to clusters which are spa-
tially close, since their within-cluster densities mµµ are often
very low (see matrices in figure 3). This indicate the method is
able to discover the spatial resolution (size of clusters) where
Granger causality is informative at a cluster-level.

Another interesting feature is the large degree of similar-
ity between the recovered patterns across the years, and the
presence of an ”overall direction of flow” from the north-
eastern states and directly west towards North/South Dakota,
and a West-North direction from Florida towards California
and Alaska.

3.2. Functional MRI

We applied our method to resting state fMRI data obtained
from the Berlin dataset of FCON1000, see reference for de-
tails on pre-processing[17]. For each of the 26 subjects we
extracted a single slice containing 2180 voxels and for each
voxel the time series was normalized to zero mean and unit
variance. Due to the noisy nature of the fMRI time series we
applied linear time-lagged correlation to obtain 26 asymmet-
ric relations.

The nIRM typically produced∼ 60 clusters. In figure 5 is
the maximum-likelihood clustering obtained after 100 Gibbs
sweeps. Arrows are drawn using similar method as in the
NCDC data using the averaged correlation across all subjects

The method parcellate the brain into spatially homoge-
neous regions with some degree of left/right symmetry, but
a more in depth study is required to reliably interpret the re-
sult in terms of clinical relevant structure due to the issues
surrounding causal discovery in fMRI [18]. In particular tem-
poral variations (both within the same subject and across pop-
ulations of subjects) of the hemeodynamic response to neural
activity is bound to pose a problem and may explain varia-
tions in time-lagged correlation across the subjects.[18]

3.3. Discussion

Simulations on real data sets indicate the proposed method is
able to discover seemingly relevant structure. Comparing the
method to kernelK-means, the method is able to model much
more general matrices and in this sense offer a generalization.
Furthermore, being based on the CRP, it allow automatic in-
ference of the number of clusters as well as predicting the
value of unobserved entries in W . However, a point of criti-
cism is a group of signals which interact in a similar manner
to another group of signals necessarily must share some com-
mon property. Provided it is possible to construct a kernel
function which capture this property kernelK-means will ap-
ply well to the data.



Fig. 5. Results on fMRI data, see text for details.

Finally it is possible to extend to the method by replacing
the normal-gamma prior with a Normal-Wishart prior. Do-
ing this Wij is a vector rather than a scalar, and the clusters
will capture non-trivial covariance structure, but we defer this
extension to future work.

4. CONCLUSION

We have proposed a method for inferring influence structure
amongst signal sources. This was done by constructing a re-
lational model for dense networks. We demonstrated the fea-
sibility of the model in terms of recovering both symmetric
and asymmetric structure on artificial data, and demonstrated
such structure is present in real data.
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