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In Stochastic blockmodels, which are among the most prominent statistical models for cluster analysis of
complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within
and between groups. A recent extension by Karrer and Newman incorporates a node degree correction to
model degree heterogeneity within each group. Although this demonstrably leads to better performance on
several networks it is not obvious whether modelling node degree is always appropriate or necessary. We
formulate the degree corrected stochastic blockmodel as a non-parametric Bayesian model, incorporating a
parameter to control the amount of degree correction which can then be inferred from data. Additionally, our
formulation yields principled ways of inferring the number of groups as well as predicting missing links in the
network which can be used to quantify the model’s predictive performance. On synthetic data we demonstrate
that including the degree correction yields better performance both on recovering the true group structure and
predicting missing links when degree heterogeneity is present, whereas performance is on par for data with no
degree heterogeneity within clusters. On seven real networks (with no ground truth group structure available)
we show that predictive performance is about equal whether or not degree correction is included; however, for
some networks significantly fewer clusters are discovered when correcting for degree indicating that the data

can be more compactly explained by clusters of heterogenous degree nodes.

I. INTRODUCTION

The stochastic blockmodel (SBM) [1-3] has become a
prominent tool for modeling group structure in complex net-
works [4]. However, as pointed out by Karrer and Newman
[5], the stochastic blockmodel has a tendency to group nodes
according to their degree such that high degree nodes group
together even though their patterns of interactions with the
remaining network may differ. This grouping thus reflects as-
pects of node degree rather than overall statistical patterns in
the network. To alleviate this issue, Karrer and Newman intro-
duced the degree corrected stochastic blockmodel (DCSBM)
[5]. In their model, additional parameters modeling node de-
gree heterogeneity are introduced allowing nodes of varying
degree to be clustered together, and they demonstrate that in-
cluding this degree correction reduces the tendency to group
nodes according to their degree distribution [5] . The param-
eters in the DCSBM model are inferred using maximum like-
lihood (ML) estimation and since closed form expressions for
the ML estimates of the additional degree correction parame-
ters are available, the computational complexity of the infer-
ence procedure is similar to inference in the SBM.

Although Karrer and Newman demonstrate on several net-
work datasets that degree correction leads to better perfor-
mance [5], it is not obvious whether including a degree cor-
rection is always appropriate on real network data. Further-
more, the number of groups used in the analysis is likely to
influence the results since groups of heterogenous node de-
gree can be reasonably modelled by a number of homogenous
subgroups. Not handling this issue in a principled manner
could potentially confound the results. Finally, an important
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subject of network modelling is validation. Although many
real networks are hypothesized to possess group structure, no
ground truth clustering is available which makes it difficult to
assess the goodness of the obtained clustering. A popular al-
ternative is to measure the predictive performance on held out
links in the network. In order to do this in a principled manner
the methods must be able to handle missing entries in the net-
work data as well as define a predictive distribution over the
missing entries.

In this paper we address these three important challenges
when modeling network data by the DCSBM:

e Can we infer the extent in which degree correction is
necessary?

e How can we determine the number of components?
e How can we predict links in the DCSBM?

In particular, we formulate a non-parametric Bayesian gen-
erative model for the DCSBM. The number of components
are inferred using the Chinese Restaurant Process which has
previously been used to determine the number of compo-
nents in stochastic blockmodels [6, 7]. Our generative model
is characterized by admitting a simple inference procedure
in which both the degree parameter and group interactions
can be analytically marginalized out such that inference re-
duces to estimating the assignments of nodes to clusters as for
the DCSBM. We address the link-prediction problem using
Markov chain Monte Carlo (MCMC) imputation. By infering
the hyper-parameter in the prior distribution of the parameters
that account for heterogenous node degree our model is able to
learn the extent to which a degree correction is necessary, pos-
sibly reducing to an uncorrected stochastic blockmodel. On
synthetic as well as seven real networks we demonstrate the
utility of our proposed model for determining the number of
components, link-prediction, and inferring the magnitude of
the parameter controlling degree correction.



Past work on the SBM and DCSBM has not treated the
problem of inferring components, presence of degree hetero-
geneity and link prediction under one unified framework. Al-
though Bayesian approaches to inferring components and link
prediction has a long history for the SBM [4, 6, 7], most work
on the DCSBM has been focused on other inference meth-
ods. As noted, Karrer and Newman [5] treated the prob-
lem of inference in the DCSBM from a ML perspective. A
related approach was taken by Peixoto [8] who considered
degree-correction as constraints on a blockmodel ensemble
and derived an entropy-based cost function. For the SBM,
a method relying on a minimum description length based ap-
proach to learning has been proposed giving rise to an effi-
cient maximization procedure [9]. The MDL approach by
Rosvall et al. [10] allows degree correction but is otherwise
analytically different from the DCSBM. For the DCSBM
minimum-description length based procedures was consid-
ered by Peixoto [11] to give an efficient MCMC-based infer-
ence procedure, see also [12] for additional discussion of this
approach and an application to the problem of estimating the
number of components. The belief propagation method of De-
celle et al. [13, 14] may also be applied to the DCSBM. More
related to our approach is that of Yan et al. [15] who consider
the problem of inferring the number of groups in the DCSBM
from a model-selection perspective.

While these approaches represent important contributions
to the problem of jointly modelling degree heterogeneity and
block structure, none of the current proposals are based on a
Baysian generative model and allow joint inference of degree-
correction, number of components and missing links using a
MCMC-based approach.

II. METHODS

Let A be the adjacency matrix of an undirected observed
network of n nodes such that A;; is the number of links be-
tween node ¢ and j. We allow a positive number of self-links
Ay; in our model definition (note that in the original formu-
lation of DCSBM [5] A;; is defined as twice the number of
self-links). The DSCBM model [5] for an undirected graph
assumes that the links between nodes 7 and j follow a Poisson
distribution

fori # j: A ~ P(emzizjﬂj)~ (1)

The parameter 7, controls the probability of links between
nodes in group ¢ and m, z; = { indicate node i is assigned
to group ¢ and 6; is a node specific parameter that regu-
lates this link probability and thus accounts for heterogenous
node degrees. The model is subject to the constraint that
>;02.00; = 1 for all groups ¢, i.e. the sum of the #; within
each group is one.

We presently propose a non-parametric Bayesian genera-
tive model that extends the DCSBM dubbed the Infinite De-
gree Corrected Stochastic Blockmodel (IDCSBM). Like the
DCSBM we also maintain node weights 6; to control the
degree, however, to arrive at a Bayesian formulation we as-
sume the weights within each group are drawn from a Dirich-

let distribution. More precisely, for each group ¢ containing
ny nodes, we introduce a ny-dimensional vector of weights
(¢i)z;—¢ drawn from a Dirichlet distribution and define 0, =
ng@; in eq. (1).

The scaling by n, makes the average degree of any given
node independent on the size of the group the node belongs to.
The full model now consists of (i) generating a random parti-
tion, (ii) generating the interaction between each group of the
partition 7, from a gamma distribution, (iii) for each group,
generate (¢;).,—¢ from a Dirichlet distribution and rescale
with ny, and finally (iv) use eq. (1) to generate the number
of links A;; between node 7 # j.

The full model is given generatively below. The symbols
D denote the Dirichlet distribution and G the gamma distribu-
tion. For analytical convenience the model assumes a particu-
lar parametrization of the self-links A;;, a point we will return
to later.

z ~ CRP(a), clusters, 2)
for{ >0 (¢i)zi:Z ~ D(71(7Lg))
0; = n,, i, relative degree, (3)
for/ <m Nem ~ G(K, A), link rate, )
fori < j Aij ~P(Oin.,2,05), link weight, (5)
fori=j Ay ~P G@?%zi) .

In the above 1(,,) is a vector of ones with length ny, N =

Zle ng is the total number of nodes and L is the number
of groups. As a prior over the node partitions z we use the
Chinese Restaurant Process (CRP) parameterized by a single
parameter « controlling the distribution of group size [16]. A
potential advantage of the CRP over for instance a uniform
prior over partitions is that the CRP is consistent under pro-
jections whereas the uniform prior is not. The simplest exam-
ple is the case where z is a partition of two nodes assigned to
the same group (i.e. 23 = 2o = 1) and we consider a parti-
tion obtained by including a third node. In this case for the
CRP it holds: p(z1 = 20 = 1|a) = p(z1 = 20 = 1,23 =
lla) + p(z1 = 22 = 1, 23 = 2|a), however for the uniform
prior the left-hand side is % and the right-hand side %

Notice the role played by ~ in the Dirichlet distribution in
eq. (3). If ¥ — oo, we will have ¢; — n% for z; = £ or simply
0; — 1 for all ¢ (the limits are understood in distribution) and
the model is thus independent of degree in eq. (1). On the
other hand, for v — 0, within each group ¢ a single node, i*,
will have mass 6;~ = n, and the network become very nearly
entirely dominated by a few greedy nodes. We return to the
properties of the model in section II B. The advantage of a
Bayesian formulation is that we can not only infer 6;, but also
a distribution of the degree-correction variable -y representing
the appropriateness of modelling degree heterogeneity for the
network.

Collecting variables of the same type the joint density fac-
torizes as:

P(A, ., z|lo, v, K, )
= p(A|0,n, z)p(n|k, N)p(P|z,v)p(z|a). (6)



The model thus depend on parameters («, v, k, A). While one
could fix these at a particular value, a more principled ap-
proach we have taken is to introduce vague non-informative
priors and sample these as well [17]. Either choice has no
effect on the following derivation below. In our notation the
relevant densities are

IT(a) L (Chinese retaurant
plelo) = fiyy o LT G )
_ i—1 o le(%)
D(x|y) Wl:[xl » B( )—ma (®)
G|k, \) = G(; e G ) = AT (). O

The advantage of the present formulation is the use of the
Dirichlet distribution within each group, and the particular
parametrization of A;;, that allow the node weights as well as
group interactions to be integrated out analytically. To see this
we introduce the short-hand notation for between and within-
group link counts

Zi:z:—@, A’L] 14 # m
N+ _ j:z;fm Ng _ MeNm 14 # m
= ngn .
tm i<j: Ay L=m> " e f=m
Zi=Zzj=

(10)

as well as node degrees k; = Zj A;; and I%i =k +A; It
now follows by some algebra
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Inserting into eq. (6), collecting terms and exploiting the con-
jugacy of the Dirichlet and Gamma distributions to the Pois-
son distribution we can analytically marginalize (i.e., col-
lapse) ¢ and m) to obtain

DA Zlay.m,\) = /dnab P(AI0.1.2)p(nlr Np(B]27)p(z]a)
- 1 G (N, + K, Now + \)
Higj AU' Hi 24ii i< G(KL, )\)

B (v + hisit) 1] bty &
¢ B(v1(n,)) a)gr(ne). (14)

In the above derivation we exploit that ), _,60; = n, and
thus the derivation requires access to the entire network. As a
result, the inference of our generative model is reduced to de-
termining the posterior distribution of the assignment of nodes
to groups, z.

The assignment matrix z is inferred using standard Gibbs
sampling [6], and using the Bayesian framework we can treat
the hyperparameters -, @, A and « as random variables. In
particular, we will invoke the non-informative prior p(z)
x~! for all four parameters and infer them using random-
walk Metropolis updates of the form z* = exp(logx + z2),
z ~ N(0,0 = 0.1). For each Gibbs sweep over z, we per-
formed 20 Metropolis-Hastings updates of the hyperparame-
ters. While Metropolis-Hastings with random proposals is not
very computational efficient, we noticed throughout the ex-
periments this step had a small computational cost compared
to sampling z.

A. Imputation and link prediction

Missing (unobserved) links commonly occur in network
and predicting missing links is an important goal of network
modelling. Comparing the prediction of a model on unob-
served data to the actual value is furthermore a popular way
to validate a model. In addition the self-links A;; are often
unknown or, if the network cannot contain self-links such as
the case of a friendship network, they should be treated as
auxiliary variables that are integrated out.

For the IDCSBM the (marginalized) expression for z in
eq. (14) requires access to all entries in the adjacency ma-
trix and so it is not possible to marginalize over missing data
simply by ignoring the corresponding terms in the likelihood
function. To overcome this difficulty we marginalize over
missing entries by formulating a Markov chain Monte Carlo
algorithm jointly over the parameters and the missing links.
This is done by sampling z and the hyperparameters using
Gibbs sampling and random-walk Metropolis Hastings, and
then conditionally on A and z drawing values of 7y, and
(¢i); conditional on the full matrix A and assignments z
and conditionally on these values draw the values of A cor-
responding to the missing links from the Poisson distribution
eq. (5). This corresponds to imputing the missing values from
their predictive distribution in each step of the MCMC al-
gorithm and, assuming convergence of the Markov chain, is
equivalent to marginalizing out the missing links. We use this
framework both to handle self-links but also for link predic-
tion in general. Another popular method to predict missing
data is simply replacing missing entries of A with 0 [4, 5, 18],
however as the diagonal of A is often fully missing, and the
poisson rate for A;; is proportional to 62, this approach would
create an undesirable bias for 0;.

B. Properties of the model

An important property of the model is that it can accurately
learn the degree distribution of the data and the link-density



v 0.50

0.95 4

E 0.90 4

2 0.85 1

<
0.80 4
075

1071 10° 10! 102 103 1071 100
~y planted

(a)

~y planted

(b) (©)

10 102 108 1071 10° 10! 102 103
~ planted

FIG. 1: (Color online) IDCSBM and ISBM results on simulated networks. The plots show the normalized mutual information
(NMI), the ratio of estimated to true number of components Ly, as well as the area under curve (AUC) of the receiver operator
characteristics as computed by running the proposed methods on networks produced from the generative model of the IDCSBM
with different values of A and . The fully drawn lines indicate results for the IDCSBM, dotted lines indicate results for ISBM.

between the groups. Suppose Ay is an observed network and
let z be any fixed cluster. Conditional on Ay and z we may
compute the posterior over 1, 8 and check if these distribu-
tions accurately reflect relevant properties of Ag. First notice
from eq. (11) the posterior distributions of 7, 8 are

p(nfm‘AOaz):g(nhn | N;n+ﬁnym+)\) (15)

0; 0; -
p((e)zi—AAO?z) :D<(W)Zi_‘€ | 71ng+(ki)zi=€> (16)

n

Recall for two Poisson distributed random variables X ~
P(a), Y ~ P(b) their sum is Poisson with rate a + b:
X +Y ~ P(a+10). This, along with the derivation eq. (11),
allows us to compute various properties of the model.

First consider the total interaction strength between two
groups ¢ and m. The interaction ), j 0zi=002;=mAij,
considered as a random variable, is then distributed as
P(nemNem,). If X ~ P(A) then E[X] = A and so the average
between-group interaction is (the expectation is with respect
to p(-[ Ao, 2))

Ngm(NZn + /{)

E | D0zt Ay | =E [Nomtim] = === (17)

For analytical simplicity, we will consider the degree plus the
diagonal element. To this end define the degree of node ¢ as
d; =3 j A;ij + Aj;. Since each A;; is Poisson distributed the
degree too is a Poisson random variable. If z; = ¢ then d;’s
distribution is given by

i~ iNez; 05 +2 5

J#i

:P<9i2mmnm>. (18)

We may now compute the average, again with respect to Ag

and fixed z:
B0 —E (6,3 ngmnm]
ki + 7 N} 4
= nl — nm
Zj:zj=€ kj + yne m Nep + A
N + 5

R N€m25zm
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Assuming the groups are fairly large, and in the low limit of
the prior v, the sum will be 1 to first order. The derivations
eq. (17) and (19) show in the limit of large systems the relative
influence of the prior terms will vanish and the model will
accurately capture the between-group link density as well as
the node degree.

III. RESULTS AND DISCUSSIONS

We analyze synthetic datasets generated from our model as
well as seven real networks from the literature.

A. Synthetic data

In our synthetic simulation studies we generated networks
of N = 80 nodes from our generative model with the param-
eters k and « fixed at x = 0.5 and @ = 4 and under different
values of A and ~.

Each such network was analyzed using out Infinite Degree
Corrected Stochastic Block Model (IDCSBM) as well as the
corresponding infinite SBM (ISBM) without degree correc-
tion. In figure 1 the normalized mutual information (NMI),
the ratio of true number of components to estimated number
of components L, = <ﬁ> and the area under curve (AUC)
of the receiver operator characteristic are given (error bars in-
dicate standard deviation of the mean where the deviation is
computed over 10 restarts of the sampler). In the analysis we
ran the samplers for 1000 iterations and discarded the first half
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FIG. 2: (Color online) IDCSBM and ISBM results on the seven real network. To the left is shown AUC scores on held-out links
and to the right the number of inferred groups L, results are averaged over 10 random restarts. The degree corrected and
non-corrected method perform roughly similar with a tendency for the degree-corrected model to find fewer groups.

as burnin. The AUC scores were computed by treating 5% of
the links and a similar number of non-links as missing.

From the plot of the NMIs we see that the degree corrected
model (IDCSBM) better recovers the true generated group
structure than the uncorrected model (ISBM) and as expected
the performance of the two methods converge as -y increases
corresponding to networks which does not exhibit degree het-
erogeneity. Furthermore, the IDCSBM recovers the correct
number of groups whereas the [ISBM generates more than the
true number of groups in order to account for the effect of
a skewed degree distribution. The predictive performance as
quantified by the AUC scores are more or less similar with a
tendency of slightly better predictions for the IDCSBM. As
expected this is most notable for small values of . We further
observe that structure is better recovered when the contrast in
the interactions are high as influenced by the values of A. This
too can be expected since very sparse networks presumably
has little recoverable structure.

B. Real data

We analyzed the following seven networks

e Football: Undirected unweighted network of American
football games between 115 Division IA colleges in the
Fall 2000 [19].

e Hagmann: Undirected weighted network of the number
of links between 998 brain regions as estimated by trac-
tography from diffusion spectrum imaging across five
subjects [20]. Le., the graph of each subject has been
symmetrized, thresholded at zero and the five subject
graphs added together.

e USPower: Undirected unweighted network of 4941
nodes representing the topology of the Western States
Power Grid of the United States compiled by [21].

e Caltech: The Caltech39 social network of 769 students
from the Facebook100 dataset (available at http://

datahub.io/dataset/facebookl100).

e Yeast: The interaction network between 2361 proteins
of yeast [22].

e Lesmis: Undirected and weighted graph of the co-
appearences of 77 characters in Les Miserables by Vic-
tor Hugo [23].

e NIPS: Undirected weighted network of the num-
ber of co-authorships between 234 authors of pa-
pers presented at the Neural Information Processing
Systems 1-12 (available at http://www.cs.nyu.
edu/~roweis/data.html).

In figure 2 is shown the results for the IDCSBM and the
ISBM on the seven networks in terms of AUC score treating
5% of the links (and a similar number of non-links) as miss-
ing. Furthermore, the numbers of estimated components by
the two models are given. The samplers were run for 1000 it-
erations (half discarded as burnin) and the results are averaged
over 10 restarts.

From figure 2 it can be seen that in general the performance
in predicting link as quantified by the AUC scores are on par
for the IDCSBM and ISBM. However, as observed also in the
synthetic study the IDCSBM model extracts less components
than the ISBM for the Hagmann, Caltech, and Lesmis net-
works. Thus, the model allocates less groups when compared
to the ISBM that allocates additional clusters in order to com-
pensate for its lack of ability to explicitly account for degree.

Another way to examine this effect is to look at the degree
distribution within each group. Since the groups have vastly
different sizes it is hard to summarize this effect into a single
number, however if we consider a fixed group structure z and
a single group £ of size ny we may compute the empirical
mean E[k,] = n% > i:»,—¢ ki and standard deviation std k] =

\/n% iz, —e(ki — E[k¢])? of the degree within this group.
In figure 4 we plotted the average of the empirical standard
deviation of the degree distribution as a function of group size,

that is, for each point (k,y) in figure 4, y is an estimate of
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FIG. 3: (Color online) Inferred values of () for the artificial (left) and for the real (right) networks. The box plots show the
inferred mean of ~y for each of the 10 (or 50) MCMC chains (on artificial/real networks). For the artificial network (left), the
networks are grouped according to the planted value of X (controlling link density), and each of the eight boxes in a group
corresponds to a planted value of ~, the planted values indicated by the horizontal lines. In the limit of good sampling the boxes
should lie on the dotted lines. As shown, the sampler infer the correct value of degree-correction for the artificial networks
except for very sparse networks (A = 0.5). For the real networks the model infer very different degrees of node heterogeneity.
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FIG. 4: (Color online) Variance of degree heterogeneity for
the ISBM and IDCSBM for the Hagmann dataset. Each point
(k,y) is an estimate of the standard deviation of the degree
distribution for nodes in a group ¢ of size n, = k, see main
text for details.

E [std[k¢]]where the expectation is conditional on n, = k.
This quantity is easily estimated based on the last 500 states
of a MCMC chain. The error bars are the standard deviation
of the mean of each point based on 10 random restarts of the
sampler.

As can be seen, the IDCSBM discover larger groups of
nodes confirming our previous findings in figure 2 and, more
importantly, the variance of the degree distribution within
groups is larger than for the ISBM for all groups sizes. This
show the compensation for degree heterogeneity not only af-
fect a few large groups the IDCSBM lump together and the
ISBM split apart, but groups of all sizes.

To better understand the role of v, we examined the be-
haviour of the mean value of 7, (), across the random restarts
of the chains both for the artificial and real datasets (see fig-
ure 3). For the artificial datasets (figure 3a) we grouped the
networks according to the value of A and v used to generate

the networks and plot the value of () across the 50 restarts.
Consistent with the other findings, the model has more diffi-
culties recovering the true value of v for very low link density
(A = 0.5) or when the planted value of y is very high, here 200
as the highest value. The later finding may be related to this
value not being favoured by the prior. However the sampler
generally recovers the planted value of v well across chains.

For the real networks (figure 3b), the recovered values of
(v) across chains show quite high variability for some of the
larger networks indicating they may exhibit mixing times sig-
nificantly longer than the 1000 iterations used here. Notice
that since high values of « is associated with a nearly vanish-
ing effect of the degree, we see the model correctly identifies
the skewed degree distribution of the social network Caltech
and Yeast, while indicating the effect of degree for the (very
strongly) community-structured network Football and the spa-
tially embedded USPower network is vanishing.

IV. CONCLUSION

In this paper we extended the degree corrected stochastic
block model (DCSBM) [5] to a non-parametric Bayesian gen-
erative model (the IDCSBM). The advantage of the proposed
model being that the number of blocks, i.e. the distribution of
the number of groups can be inferred, extending the model to
an infinite representation similar to what has previously been
done for the regular stochastic block model [6, 7]. By ex-
ploiting the model is formulated generatively we have derived
a Markov chain Monte Carlo algorithm which handles miss-
ing links explicitly by marginalizing over missing entries. We
have further shown we can learn the parameter ~y in the pro-
cess and thereby determine the extent to which networks can
use the degree correction parameter 8 introduced in the degree
corrected stochastic block model. We have shown analytically
that under wide conditions the model will be able to accurately



model between-group link density as well as node degree.

On synthetic and real networks we demonstrate that the ID-
CSBM can result in a more compact representation of network
structure. The IDCSBM also tends to use fewer components
than the ISBM while accounting equally well for the networks
as quantified by the AUC link prediction scores. On synthetic
data with degree-heterogeneity we have shown the proposed
model, which corrects for degree skewness, is able to infer
the parameters controlling degree heterogeneity correctly and
obtain both a more compact and accurate representation. As
expected, this also translates into improved link prediction.
On real network data, we have shown that a model which cap-

tures degree skewness does not dominate a model which does
not in terms of link prediction, however the IDCSBM is able
to consistently learn vastly different values of + and thereby
the presence or absence of degree heterogeneity.
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