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Abstract

Many statistical methods for network data
parameterize the edge-probability by at-
tributing latent traits to the vertices such
as block structure and assume exchangeabil-
ity in the sense of the Aldous-Hoover rep-
resentation theorem. Empirical studies of
networks indicate that many real-world net-
works have a power-law distribution of the
vertices which in turn implies the number of
edges scale slower than quadratically in the
number of vertices. These assumptions are
fundamentally irreconcilable as the Aldous-
Hoover theorem implies quadratic scaling of
the number of edges. Recently Caron and
Fox [2014] proposed the use of a different
notion of exchangeability due to Kallenberg
[2006] and obtained a network model which
admits power-law behaviour while retaining
desirable statistical properties, however this
model does not capture latent vertex traits
such as block-structure. In this work we re-
introduce the use of block-structure for net-
work models obeying Kallenberg’s notion of
exchangeability and thereby obtain a model
which admits the inference of block-structure
and edge inhomogeneity. We derive a simple
expression for the likelihood and an efficient
sampling method. The obtained model is not
significantly more difficult to implement than
existing approaches to block-modelling and
performs well on real network datasets.

Preliminary work. Under review by AISTATS 2016. Do
not distribute.

1 Introduction

Two phenomena are generally considered important
for modelling complex network. The first is commu-
nity or block structure where the vertices are parti-
tioned into non-overlapping blocks (denoted by ` =
1, . . . ,K in the following) and the probability two ver-
tices i, j are connected depend on their assignment to
blocks:

P
(
Edge between vertex i and j

)
= ξ`m

where ξ`m ∈ [0, 1] is a number only depending on the
blocks `,m which i, j belongs to. Stochastic block mod-
els (SBMs) were first proposed by White et al. [1976]
and today form the basic starting point for many im-
portant link-prediction methods such as the infinite
relational model [Xu et al., 2006, Kemp et al., 2006].

While block-structure is important for link prediction
the degree distribution of edges in complex networks
has also attracted a deal of attention [Barabási and
Albert, 1999, Newman et al., 2001, Strogatz, 2001]. In
many large networks the degree distribution is often
found to follow a power-law [Newman, 2010]

P
(
Fraction of nodes with k edges

)
∼ k−γ (1)

where γ ≈ 2.5. Explaining this scaling has lead to
many important models of network growth where edges
and vertices are typically added in a sequential fashion.
A notably example is the preferential attachment (PA)
model of Barabási and Albert [1999].

Models such as the IRM and the PA model have dif-
ferent goals. The PA model attempts to explain how
network structure, such as the degree distribution, fol-
lows from simple rules of network growth and is not
suitable for link prediction. The IRMs main goal is to
discover latent block-structure and predict edges, tasks
which the PA model is not suitable for. In the follow-
ing we will use network model to refer to a model with
the same aims as the IRM, most notably predicting
missing edges.
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Figure 1: (Left:) A network is generated by randomly selecting points from [0, α[2⊂ R2
+ (squares) and identifying

the unique coordinates with a vertex (circles) giving the maximally disconnected graph. (Middle:) The edges
are restricted to lie at the intersection of randomly generated gray lines at θi each with a mass/sociability
parameter wi such that the probability of selecting an intersection is proportional to wiwj giving a non-trivial
network structure. (Right:) Using three independent measures

∑
i≥1 w`iδθ`i and modulating the interacting with

a parameter η`m ≥ 0 allows block-structured networks where each random measure corresponds to a block.

1.1 Exchangeability

Invariances is an important theme in Baysian ap-
proaches to network modelling [Kallenberg, 2006]. For
network data the criteria which has received most at-
tention is infinite exchangeability of random arrays.
Suppose we represent the network as a subset of an
infinite matrix A = (Aij)ij≥1 such that Aij is the num-
ber of edges between vertex i and j (we will allow multi
and self-edges in the following). Infinite exchangeabil-
ity of the random array (Aij)ij≥1 is the requirement
that [Hoover, 1979, Aldous, 1981]

(Aij)ij≥1
d
= (Aσ(i)σ(j))ij≥1 (2)

for all finite permutations σ of N. The distribution of
a finite network is then obtained by marginalization.
An important consequence of infinite exchangeability
is given by the Aldous-Hoover theorem [Hoover, 1979,
Aldous, 1981] according to which a random network
obeying infinite exchangeability eqn. (2) has a repre-
sentation in terms of a random function and further-
more the number of edges in the network must either
scale as the square of the number of vertices or (with
probability 1) be zero [Orbanz and Roy, 2015]. None
of these options are compatible with a power-law de-
gree distribution and one is faced with the dilemma
of either giving up the power-law distribution or ex-
changeability. It is the first horn of this dilemma which
have been pursued by much work on Bayesian network
modelling [Orbanz and Roy, 2015].

It is however possible to substitute the notation of in-
finite exchangeability in the sense of eqn. (2) with a
different definition due to Kallenberg [2006, chapter

9]. The new notion retains many important character-
istics of the original including a powerful representa-
tion theorem parallelling the Aldous-Hoover theorem
but expressed in terms of a random set. Important
progress has recently been made in exploring network
models based on this representation by Caron and Fox
[2014] who demonstrate the ability to model power-law
behaviour of the degree distribution and construct an
efficient sampler for parameter inference. The reader
is encouraged to consult this reference for more details.

In this paper, we will apply the ideas of Caron and
Fox [2014] to block-structured network data, thereby
obtaining a model based on the same structural in-
variance but able to capture both block-structure and
degree heterogeneity.

The remainder of the paper is structured as follows.
In section 2.1 and 2.2 we will provide a basic descrip-
tion of the construction of Caron and Fox [2014] and a
sketch of our proposed model, dubbed the completely
random measure stochastic block model (CRMSBM).
Section 2.3 contains a brief review of random measure
theory which will be used to define the proposed model
more explicitly. In section 2.5 we will introduce a sim-
ple sampling scheme and section 3 will investigate the
model on 11 network datasets.

2 Methods

Before introducing the full method we will describe
the construction informally omitting details relating
to completely random measures.
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2.1 A simple approach to sparse networks

Suppose the vertices in the graph are labelled by real
numbers in R+. An edge e (edges are considered di-
rected and we allow for self-edges) then consists of two
numbers (xe1, xe2) ∈ R2

+ denoted the edge endpoint
and a network X of L edges (possibly L =∞) is sim-
ply the collection of points X = ((xe1, xe2))Le=1 ⊂ R2

+.
We adopt the convention that multi-edges implies du-
plicates in the list of edges.

Suppose X is generated by a Poisson process with base
measure ξ on R2

+:

X ∼ PP
(
ξ
)
. (3)

a finite network Xα can then be obtained by consid-
ering the restriction of X to [0, α[2: Xα = X ∩ [0, α[2.
This representation easily admits sparse networks as
illustrated in the left pane of figure 1a. Suppose ξ
is the Borel measure, the number of edges is then
L ∼ Poisson(α2) and the edge-endpoints xe1, xe2 are
i.i.d. on [0, α[. The edges are indicated by the gray
squares in figure 1a and the vertices as circles. Notice
the vertices will be distinct with probability 1 and the
procedure therefore gives rise to the de-generated but
sparse network of 2L vertices and L edges shown in
figure 1a.

To generate non-trivial networks the edge-endpoints
must co-inside with nonzero probability. Similar to
Caron and Fox [2014], suppose the coordinates are re-
stricted to only take a countable number of potential
values, θ1, θ2, · · · ∈ R+ and each value has an asso-
ciated sociability (or mass) parameter w1, w2, · · · ∈
[0,∞[ (we use the shorthand (θi)i = (θi)

∞
i=1 for se-

ries). If we define the measure µ =
∑
i≥1 wiδθi and

let ξ = µ × µ, then generating Xα according to the
procedure of eqn. (3) the position of the edges is still
selected i.i.d., but with probability proportional to
wiwj of selecting coordinate (θi, θj). Since the edge-
endpoints coincide with non-zero probability this pro-
cedure allows the generation of non-trivial associative
network structure, see figure 1b. With proper choice
of (wi, θi)i≥1 these networks exhibit many desirable
properties such as a power-law degree distribution and
sparsity [Caron and Fox, 2014].

This process can be intuitively extended to block-
structured networks as illustrated in figure 1c: Each
vertice is assigned a sociability parameter (here indi-
cated by the colors and the symbol zi ∈ {1, . . . ,K}) in-
dicating the assignment of vertex i to one of K blocks.
We can then consider a measure of the form

ξ =
∑
i,j≥1

ηzizjwiwjδ(θi,θj) =

K∑
`,m=1

η`mµ` × µm (4)

Where we have introduced µ` =
∑
i:zi=`

wiδθi . ξ is

then a measure on [0, α[2 and η`m parameterize the
interaction strength between community ` and m. No-
tice the number of edges L`m between block ` and m is,
by basic properties of the Poisson process, distributed
as L`m ∼ Poisson(η`mT`Tm) where T` = µ`([0, α[) and
in figure 1c the location θi of the vertices have been
artificially ordered according to color for easy visual-
ization. The following section will show the connec-
tion between the above construction of eq. (4) and the
exchangeable representation due to Kallenberg [2006],
however for greater generality we will let the latent
trait be a general continuous parameter ui ∈ [0, 1] and
later show block-structured models can be obtained as
a special case.

2.2 Exchangeability and point-process
network models

Since the networks in the point-set representation are
determined by the properties of the measure ξ, invari-
ance (i.e. exchangeability) of random point-set net-
works is defined as invariance of this random mea-
sure. Recall infinite exchangeability for infinite ma-
trices eqn. (2) was the requirement the distribution of
the random matrix did not change by permutation of
rows/columns in the network. For a random measure
on R2

+ the corresponding requirement is that it should
be possibly to partition R+ into intervals I1, I2, I3, . . . ,
permute the intervals, and the random measure should
be invariant to this permutation. Formally, a random
measure ξ on R2

+ is then said to be jointly exchangeable

if ξ◦(ϕ⊗ϕ)−1
d
= ξ for all measure-preserving transfor-

mation ϕ of R+. According to Kallenberg [2006, the-
orem 9.24] this is ensured provided the measure has a
representation of the form:

ξ =
∑
i,j≥1

h(ζ, ui, uj)δ(θi,θj) (5)

where h is a measurable function, ζ is a random
variable and {(xi, θi)}i≥1 is a unit rate Poisson pro-
cess on R2

+ (the converse involves five additional
terms [Kallenberg, 2006]). In this representation, the
locations (θi)i and the parameters (xi)i are de-coupled,
however we are free to select the random parameters
(xi)i≥1 to lie in a more general space than R+. Specif-
ically, define

xi = (ui, vi) ∈ [0, 1]× R+

with the interpretation that each vi corresponds to a
random mass wi through a transformation wi = g(vi)
and each ui ∈ [0, 1] is a general latent trait of the
vertex (In figure 1 this parameter corresponded to the
assignment to blocks). We then consider the following
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choice:

h(ζ, xi, xj) = f(ui, uj)gzi(vi)gzj (vj) (6)

where f : [0, 1]2 → R+ is a measurable function (com-
pare to the graphon in the Aldous-Hoover representa-
tion) and {(ui, vi, θi)}i≥1 follows a unit-rate Poisson
process on [0, 1]× R2

+.

To see the connection with the block-structured model,
suppose the function f as the piece-wise constant func-
tion

f(u, u′) =

K∑
`,m=1

η`m1J`(u)1Jm(u′)

where

J` =

[
`−1∑
m=1

βm,
∑̀
m=1

βm

[
,

K∑
`=1

β` = 1

and β` > 0 and zi = ` denotes the event 1J`(ui) = 1.
Notice this choice for f is exactly equivalent to the
graphon for the block-structured network model in the
Aldous-Hoover representation [Orbanz and Roy, 2015].
The procedure is illustrated in figure 2.

Realizations of this point-process is shown in figure 3
for various values of K (top-row) and the choice of ran-
dom measure introduced in section 2.3 and using the
simulation method of Caron and Fox [2014]. For com-
parison the bottom row indicates the corresponding
standard stochastic block-model representation where
the edges are distributed uniformly within each tile.
Notice the K = 1, η11 = 1 case corresponds to the
method of Caron and Fox [2014].

To fully define the method we must first introduce the
relevant prior for the measure µ =

∑
i≥1 wiδ(θi,ui). As

a prior we will use the Generalized Gamma-process
(GGP) [Hougaard, 1986]. In the following section we
will briefly review properties of completely random
measures and use these to derive a simple expression
of the posterior.

2.3 Random measures

As a prior for µ we will use completely random mea-
sures (CRMs) and the reader is referred to [Kallen-
berg, 2006, Kingman, 1967] for a comprehensive ac-
count. Recall first the definition of a CRM. Assume
S is a separable complete metric space with the Borel
σ-field B(S) (comparing to the preceding discussion
S = [0, α[). A random measure µ is a random variable
whose values are random measure on S. For each mea-
surable set A ∈ B(S), the random measure induces a
random variable µ(A), and the random measure µ will
be said to be completely random if for any finite collec-
tion A1, . . . , An of disjoint measurable sets the random

    

k = 1961

K = 4

k = 689

K = 3

k = 537

K = 2

k = 188

K = 1

Figure 3: (Top row:) Example of four randomly gen-
erated graphs for K = 1, 2, 3 and 4. The other pa-
rameters were fixed at α = 20, τ = 1, σ = 0.5 and
λa = λb = 1. Vertices has been sorted according to
their assignment to blocks and sociability parameters.
(Bottom row:) The same networks as above but ap-
plying a random permutation to the edges within each
tile. A standard SBM assumes a network structure of
this form.

variables µ(A1), . . . , µ(An) are independent. It was
shown by Kingman [1967] any such random measure
µ is discrete almost certainly with a representation

µ =

∞∑
i=1

wiδθi (7)

where the sequence of masses and locations (wi, θi)i
(also known as the atoms) is a Poisson random mea-
sure on R+ × S with mean measure ν. The mean
measure ν thus fully characterizes the CRM and is
known as the Lévy intensity measure. We will consider
homogeneous CRMs where locations are independent,
ν(dw, dθ) = ρ(dw)κα(dθ), and assume κα is the stan-
dard Borel measure on [0, α[.

Since the construction as outlined in figure 1c depends
on sampling the edge start and end-points at random
from the locations (θi)i with probability proportional
to wi of particular interest will be the normalized form
of eqn. (7). Specifically, the chance of selecting a par-
ticular location from a random draw is governed by

P =
µ

T
=

∞∑
i=1

piδθi , pi =
wi
T
, T = µ(S) =

∞∑
i=1

wi (8)

which is known as the normalized random measure
(NRM) and T is known as the total mass of the CRM
µ. A random draw from a Poisson process based on
the CRM can thus be realized by first sampling the
number of generated points, L ∼ Poisson(T ), and then
drawing their locations iid. from the NRM of eqn. (8).

Notice for this definition to make sense the Lévy in-
tensity must satisfy the requirements:

∫∞
0
ρ(dw) =∞
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∑
i≥1 wiδ(θi,ui) ∼ CRM(ρσ,τ ,R+ × [0, 1]).

ρσ,τ is the Lévy intensity of a GGP
(βi)

K
i=1 ∼ Dirichlet

(α0

K
, · · · , α0

K

)
η`m ∼ Gamma(λa, λb)

Step 3: Form measure

ξ =
∑
i,j≥1 wiwjf(ui, uj)δ(θi,θj)

Step 4: Sample network

X = {(xe1, xe2)}e≥1 ∼ PP(ξ)

Figure 2: (Step 1:) The potential vertex locations, θi, latent traits ui and sociability parameters wi are generated
using a generalized gamma process (Step 2:) The interaction of the latent traits f : [0, 1]2 → R+, the graphon, is
chosen to be a piece-wise constant function (Step 3-4:) Together, these determine the random measure ξ which
is used to generate the network from a Poisson process

and
∫∞
0

(1 − exp(−w))ρ(dw) < ∞, guaranteeing re-
spectively that T is positive and finite, thereby en-
suring eqn. (8) is well-defined. The reader is referred
to James [2002] for a comprehensive treatment. For
many important Lévy intensities the density of the to-
tal mass does not have a simple analytical expression,
however the Laplace transform of the random variable
S corresponding to the total mass T has the general
form [James, 2002]

L[S](u) = Ψ(u) = κ(S)

∫
ρ(dw)(1− e−uw). (9)

Consider a sequence of random draws made from a
NRM of the form eqn. (8). Since the NRM is discrete
almost surely there is a positive probability any two
draws will select the same atom θi. This induces a
random partition Π of N known as the exchangeable
partition probability function where i, j ∈ N are in the
same block iff. they select the same atom. This parti-
tion is exchangeable and it’s properties can be derived
from the choice of Lévy intensity, see [Kingman, 1978,
Pitman, 2006] for additional details.

In the following we will focus exclusively on the gen-
eralized gamma process (GGP) as the choice of inten-
sity measure[James, 2002]. The GGP is parameterized
with two parameters σ, τ and has the functional form

ρσ,τ (dw) =
1

Γ(1− σ)
w−1−σe−τwdw

The parameters (σ, τ) may lie in either the regions ]−
∞, 0]×]0,∞] or ]0, 1[×[0,∞[. We will focus exclusively
on the later region as the first corresponds to a finite
number of atoms. Notice this is the same choice as in
[Caron and Fox, 2014]. In conjunction with κα we thus
obtain three parameters (α, σ, τ) which fully describes
the CRM and induced partition structure. To signify
this dependence we will use µα,σ,τ for the CRM µ. For
this particular choice the eqn. (9) becomes [Pitman,

2006]

ψα,σ,τ (u) =

∫
ρα,σ,τ (dw)(1− e−uw)

=
α

σ
[(u+ τ)σ − τσ] (10)

For τ = 0, α = 1 this is the Laplace transform of a σ-
stable random variable Sσ [Pitman, 2006, Devroye and
James, 2014] which according to Zolotarev’s integral
representation has the following form [Zolotarev, 1964]

fσ(x) =
σx

−1
1−σ

π(1− σ)

∫ π

0

du A(σ, u)e−A(σ,u)/xσ/(1−σ)

A(σ, u) =

[
sin((1− σ)u)1−σ sin(σu)σ

sin(u)

] 1
1−σ

. (11)

Thus introducing a new random variable Tα,σ,τ with
density

gα,σ,τ (t) = θ−
1
σ fσ(tθ−

1
σ )φλ(tθ−

1
σ ) (12)

where φλ(t) = eλ
σ−λt, λ = τθ

1
σ , θ = α

σ . Standard
properties of the Laplace transform reveals L[gα,σ,τ ] =
Ψ as defined in eqn. (10). Thus, eqn. (12) is the den-
sity of total mass T for the GGP. Additional details,
including efficient sampling methods for this distribu-
tion, is discussed by Devroye and James [2014].

With the notation in place we provide the final form of
the generative process. Suppose the random measure
µ (restricted to the region [0, α[) have been generated
from a GGP. Assume zi = ` iff. ui ∈ J` and define the
K sub-measures on [0, α[:

µ` =
∑
i:zi=`

wiδθi

each with total mass T` = µ`([0, α[). The number
of points in each tile L`m is then Poisson(η`mT`Tm)
distributed, and given L`m the edge-endpoints
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(xe1`, xe2m) between atoms in measure ` and m can
then be drawn from the corresponding NRM. The gen-
erative process is then simply:

(β`)
K
`=1 ∼ Dirichlet(

β0
K
, . . . ,

β0
K

)

µ
iid∼ CRM(ρσ,τ , U[0,1] × UR+)

η`k
iid∼ Gamma(λa, λb)

L`m
iid∼ Poisson(η`mT`Tm)

for e=1, . . . , L`m: xe1`
iid∼ Categorical

(
(wi/T`)zi=`

)
and xe2m

iid∼ Categorical
(
wj/Tm)zj=m

)
For sampling random graphs we used the same adap-
tive thinning strategy as Caron and Fox [2014]1.

2.4 Posterior Distribution

In order to define a sampling procedure of the
CRMSBM we must first characterize the posterior dis-
tribution. In Caron and Fox [2014] this was calculated
using a specially tailored version of Palms formula. In
this work we will use a counting argument inspired by
Pitman [2003, eqn. (32)].

To this end, consider first the case where the inter-
action strengths (η`m)`m and block sizes (β`)` has a
fixed value and that number of edges L`m within each
tile (`,m) is given. Since not all potential vertices
(i.e. terms wiδθi in µ) will have edges attached to
them it is useful to introduce a variable which encapsu-
lates this distinction. We therefore define the variable
z̃i = 0, 1, . . . ,K with the definition:

z̃i =

{
zi if there exist (x, y) ∈ Xα st. θi ∈ {x, y},
0 otherwise.

Suppose in addition for each measure µ`, the end-
points of the edges associated with this measure selects

k` = |{i : z̃i = `}|

unique atoms and that the number of edge-endpoints
selecting any particular atom wi is ni. This naturally
divides the edge-endpoints associated with a particu-
lar measure ` into a partition, {B1, . . . , Bk`} [Pitman,
2003], and we denote by Π`,2L this random partition
for measure `. For a particular measure the joint dis-
tribution

P (Π`,2L = {B1, . . . , Bk`}, wi ∈ dwi, T` ∈ dT`) (13)

is obtained from three contributions (with α` ≡ β`α):

1We thank the authors for generously making their code
available online.

• The mass parameter Tα` is distributed as gα`,σ,τ

• For each ` = 1, . . . ,K, there must be a Poisson
atom in dwi for each i such that z̃i = `

• For each `, we know there are Poisson atoms in
(dwi)z̃i=`, however since the measure of these in-
tervals is infinitesimal, the remaining mass T` −∑
z̃i=`

wi is still distributed as gα`,σ,τ .

• Each edge-endpoint selects the atom indepen-
dently with probability given by the NRM of
eqn. (8), wi/T`.

The probability eqn. (13) can then be obtained from

these three contributions as (with k =
∑K
`=1 k` being

the total number of vertices in the network):{
k∏
i=1

αρσ,τ (dwi)

}
(14)

×
K∏
`

gα`,σ,τ (T` −
∑
i:z̃i=`

wi)


 ∏
i:z̃i=`

(
wi
T`

)ni
(15)

where ni is the total number of times a particular atom
i of µ` is selected in the process. To connect these defi-
nitions to actual network data, i.e. an array (Aij)

k
i,j=1,

notice if the atom (wi, θi) corresponds to a particular
vertex i in the network then ni =

∑
j(Aij +Aji).

Returning to eqn. (15) for a particular `, the expres-
sion can be integrated by introducing the variables
s` =

∑
i:z̃i=`

wi corresponding to the sum of the se-

lected atoms, introducing the parameters xi = wi/szi ,
and integrating [Pitman, 2003, Lijoi and Walker, 2008,
Favaro et al., 2013]. With n` =

∑
i:z̃i=`

ni eqn. (15)

can be written as a product over K factors:

k∏
i:z̃i=`

(1−σ)ni

∫ T`

0

ds`
sn`−k`σ−1` gα,σ,τ (T`−s`)
Γ(n` − k`σ)Tn`` α−k`` eτs`

. (16)

Recall the number of edges within each tile L`m is
Poisson with rate η`mT`Tm. In addition, when consid-
ering a concrete observed data matrix the edges does
not have a particular labelling which is otherwise in-
troduced in the proceeding counting argument. Thus,
if we observe a number Aij of edges between vertices
i, j in a particular tile, we must consider all ways a
network with this number of edges can be obtained by
our generative process. This is equivalent to the num-
ber of ways of selecting the particular edge-counts of
the total edge-counts within each tile. The multiplicity
becomes the multinomial coefficient:(

L`m
(Aij)z̃i=`,z̃j=m

)
=

L`m!∏
z̃i=`,z̃j=m

Aij !
. (17)
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The probability of obtaining a particular observed net-
work Aij can be obtained by combining eqs. (16), (17)
and the Poisson rates for the edge-counts within each
tile to obtain:

P (A, (zi)i|(η`m)`m, (β`)`) =

{
K∏
`=1

∫ ∞
0

dT` {eqn. (16)}

}

×
∏
`m

Poisson(L`|η`mT`Tm)
L`m!∏
z̃i=`,
z̃j=m

Aij !

 . (18)

Defining n`m =
∑
z̃i=`,z̃m=j Aij and simplifying

P (A, (zi)i|(η`m), (β`)`) =
1∏

ij Aij !

∏
`

[∫ ∞
0

∫ T`

0

dT`ds`

]

×

[∏
`m

ηn`m`m e−
∑
`m η`mT`Tm

]{∏
`

E`

}
where we have defined

E` =
αk`sn`−k`σ−1`

Γ(n` − k`σ)eτs`
gα`,τ,σ(T`−s`)

∏
z̃i=`

(1− σ)ni .

Similar to Lijoi and Walker [2008] we will use the sim-
ple change-of-variable from T to t = T−s and a change
in the order of integration to obtain:∫

R+

∫ s

0

dTds h(T, s) =

∫∫
R2

+

dsdt h(t+ s, s). (19)

Then introducing the Gamma-priors for η`m, Dirichlet
prior for (β`)` and integrating over η`m we obtain the
final expression:

P (A, (zi)i, σ, τ, (α`, s`, t`)`) =
Γ(β0)

∏K
`=1 α

β0
K −1
`

Γ(β0

K )Kαβ0

×
∏
`E`∏
ij Aij !

∏
`m

G(λa+n`m, λb+(s`+t`)(sm+tm))

G(λa, λb)

(20)

where G(a, b) = Γ(a)b−a is the normalization factor
of the Gamma distribution. Finally notice the η = 1
case, corresponding to Caron and Fox [2014], can be
obtained by taking the limit λa = λb → ∞ in which

case G(λa+n,λb+T )
G(λa,λb)

→ e−T . When discussing the K =

1 case we will assume this limit has been taken.

2.5 Inference

Sampling the expression eqn. (20) requires three types
of sampling updates: For Aij we must apply a sam-
pling procedure to impute missing values, the sequence
of block-assignments (zi)i must be updated, the pa-
rameters associated with the random measure σ, τ

must be updated and finally the remaining variables
(α`, s`, t`) associated with each expression E` must be
updated. We will first consider the later problem:

Update of variables associated with each E`:
All terms except the densities gα,σ,τ are amenable to
standard sampling techniques. In [Caron and Fox,
2014] this expression was sampled by employing a pro-
posal distribution proportional to the density, thus al-
lowing their value to cancel. In our work we opted
for the approach of Lomeĺı et al. [2014] in which u
in Zolotarev’s integral representation eqn. (11) is con-
sidered an auxiliary parameter. Thus, introducing
u` ∈]0, π[ for each RPM gives the full set of variables
Φ` = (α`, s`, t`, u`) for each RPM. For convenience,
the domain of the variables are in turn transformed to
R using the standard change-of-variables x 7→ ex for
α, t and s and the logistic mappings x 7→ (1 + e−x)−1,
x 7→ π(1 + e−x)−1 for σ and u. We found a sim-
ple random-walk Metropolis-Hastings sampling with a
N (0, σ = 0.1) kernel (50 steps per iteration) was ro-
bust and efficient compared to the other updates.

Update of zi: These variables can be updated di-
rectly from the likelihood eqn. (20), however we opted
to re-impute the weights (wi)z̃i=` by inverting the in-
tegration step from eqn. (15) to eqn. (16) to obtain

(wi/s`)i:z̃i=` ∼ Dirichlet
(
(ni − σ)i:z̃i=`

)
(21)

doing this for each ` = 1, . . . ,K allows all variables zi
to be updated in a regular Gibbs sweep.

Update of Aij: Most networks are binary whereas
the model assumes count-data. Furthermore to test
the model it is useful to predict the presence of unob-
served edges. Both of these difficulties are resolved
by imputation. Suppose we are given a matrix W
such that Wij = 1 iff. the edge-count Aij is unob-
served. Furthermore assume Aij is binary and must
be imputed. Edges can then in principle be imputed
directly by performing MCMC updates of Aij and ac-
cepting/rejecting according to the likelihood eqn. (20),
however the coupling between different counts through
the gamma functions in E` would make such a sam-
pling procedure prohibitively expensive. This diffi-
culty is not present in Caron and Fox [2014] where
the sociability-vector (wi)i are retained and updates
using Hamiltonian Monte-Carlo, however we can re-
sample (wi)i and (η`m)`m from their marginal distribu-
tions and use the re-sampled values of (wi)i to impute
the corresponding values of (Aij). Thus for each plate
(`,m) we sample (wi)z̃i=` from (21) and η`m from

η`m ∼ Gamma
(
n`m+λa, (t`+s`)(tm+sm)+λb

)
(22)

the distribution of each unobserved Aij is then simply
Poisson(η`wiwj), zi = `, zj = m.
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Figure 4: Autocorrelation plots for lags up to 1 000
of the parameters α, σ, τ (top row) and s, t, u (bottom
row) for a K = 1 network drawn from the prior dis-
tribution using α = 25, σ = 0.5 and τ = 2. The plots
were obtained by evaluating the proposed sampling
procedure for 106 iterations and the shaded region in-
dicates standard deviation obtained over 12 re-runs.
The simulation indicates reasonable mixing for all pa-
rameters with u being the most affected by excursions.

2.5.1 Full inference procedure

Collecting the preceding steps we obtain

• For ` = 1, . . . ,K, update the four variables in Φ`
and σ, τ using random-walk metropolis hastings

• Impute (wi)z̃i=` using eqs. (22) once for each `
and then iterate over i and update each zi using
a Gibbs sweep from the likelihood.

• Impute (η`m)`m and (wi)i using eqs. (22) and (21)
and for each (ij) such that the edge is either un-
observed (Wij = 1) or must be imputed (Aij ≥
1) generate a candidate a ∼ Poisson(η`mwiwj).
Then, if Wij = 1 simply set Aij = a, otherwise if
Wij = 0 and a = 0 reject the update.

The parameters Φ` and σ, τ are important for deter-
mining the sparsity and power-law properties of the
network model [Caron and Fox, 2014] and to investi-
gate the sampling of these parameters we generated a
single network problem using α = 25, σ = 0.5, τ = 2
and evaluated 12 samplers with K = 1 on the prob-
lem. Autocorrelation plots (mean and standard devia-
tion computed over 12 restarts) can be seen in figure 4.
All parameters mix, however the different parameters
have different mixing times with in particular u be-
ing affected by excursions. This indicates many slice-
sampling update of Φ` are required to explore the state
space appreciably and we therefore applied 150 slice-
sampling updates of Φ` for each update of (zi)i and
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Figure 5: AUC score on held-out edges for the se-
lected methods (averaged over 4 restarts) on 11 net-
work datasets. For the same number of blocks,
the CRMSBM offers good link-prediction performance
compared to the method of Caron and Fox [2014]
(CRM), a SBM with Poisson observations (pIRM) and
the degree-corrected SBM (DCSBM) [Herlau et al.,
2014]. Additional information is found in the supple-
mentary material.

Aij . Basic validation of the sampling procedure can
be found in the supplementary material.

3 Experiments

The proposed method was evaluated on 11 network
datasets (a description of how the datasets were ob-
tained and prepared can be found in the supplemen-
tary material). As a criteria of evaluation we decided
for AUC score on held-out edges, i.e. predicting the
presence or absence of unobserved edges using the im-
putation method described in the previous section. All
networks were initially processed by thresholds at 0
and vertices with zero edges were removed. A fraction
of 5% of the edges were removed and considered as
held-out data.

To examine the effect of using blocks, we compared the
method against the method of Caron and Fox [2014]
(CRM) (corresponding to η`m = 1 and K = 1), a
standard block-structured model with Poisson obser-
vations (pIRM) [Kemp et al., 2006] and the degree-
corrected stochastic block model (DCSBM) Herlau
et al. [2014], a simple model which allows both block-
structure and degree-heterogeneity but is not ex-
changeable. More details on the simulations and meth-
ods are found in the supplementary material.

The pIRM was selected since it is the closest block-
structured model to the CRMSBM without degree-
correction. This allows us to determine the relative
benefit of inferring the degree-distribution compared
to only the block-structure.
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For priors we selected uniform priors for σ, τ, α and
a Gamma(2, 1) prior for β0, λa, λb. For consistency
similar choices were made for the alternative models.

All methods were evaluated for T = 2 000 iterations
and the later half of the chains was used for link
prediction. We used 4 random selections of held-out
edges per network to obtain the results seen in figure 5
(same sets of held-out edges were used for all meth-
ods). It is evident the use of block-structure is cru-
cial to obtain good link prediction performance. For
the block-structured methods, the results indicate ad-
ditional benefits from using models which allows the
modelling of degree-heterogenity for most networks ex-
cept the Hagmann brain connectivity graph. This re-
sult is possibly explained by the Hagmann graph being
constructed by fixing the number of outgoing edges
for each vertex. Comparing the CRMSBM and the
DCSBM, these models perform either on par or with
a slight advantage to the CRMSBM. Models of net-
works based on the CRM representation of Kallenberg
[2006] offers one of the most important new ideas in
statistical modelling of networks in recent years and to
our knowledge Caron and Fox [2014] were the first to
realize the benefits of this modelling approach as well
as describing it’s statistical properties and provide an
efficient sampling procedure.

The degree distribution of a network is only one of sev-
eral important characteristics of a complex network.
In this work we have examined how the ideas presented
in Caron and Fox [2014] can be applied for a sim-
ple block-structured network model to obtain a model
which admits block structure and degree correction.
Our approach is a fairly straightforward generalization
of the methods of Caron and Fox [2014]. However, we
have opted to explicitly represent the density of the to-
tal mass gα`,σ,τ using Zolotarev’s integral representa-
tion and integrate out the sociability parameters (wi)i
reducing the number of parameters associated with the
CRM from the order of vertices to the order of blocks.

The resulting model has the increased flexibility of be-
ing able to control the degree distribution within each
block. In practice results of the model on 11 real-world
datasets indicates this flexibility offers benefits over
a purely block-structured approaches to link predic-
tion for most networks as well as some potential ben-
efit over an alternative approach to modelling block-
structure and degree-heterogeneity. The results heav-
ily indicates structural assumptions (such as block-
structure) is important to obtain reasonable link pre-
diction.

Block-structured network modelling is in turn the sim-
plest structural assumption for block-modelling. The
extension of the method of Caron and Fox [2014] to

overlapping blocks, possibly using the correlated ran-
dom measures of Chen et al. [2013], appears fairly
straight-forward and should potentially offer a gener-
alization of overlapping block models.
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Figure 6: The estimated frequency of all unique net-
works binned according to their unique edge-endpoint
counts (n1, . . . , nk). (ordered decreasingly) for L =
0, . . . , 4 edges (41 in total, red circles), as well as the
frequency obtained by computing the probability (see
text for details).

A Supplementary Material

Validation of the sampler

To investigate the validity of the sampling procedure,
we considered the K = 1, λa = λb →∞ case and used
the sampling procedure of [Caron and Fox, 2014] with
(α = 2, σ = 0.5, τ = 1) to generate 250 000 random
networks. As described in the previous section the
probability of any given network is fully determined by
the edge-endpoint counts (n1, . . . , nk) and the proba-
bility of a particular sequence of counts is permuta-
tion invariant. If ordered decreasingly this gives 41
unique vectors of edge-endpoint counts (n1, . . . , nk)
for L = 0, 1, 2, 3, 4 (see vertical axis on figure 6) and
the generated networks were binned according to their
edge-endpoint count signature (networks with more
than 4 edges were discarded). In this manner we ob-
tained an estimate of the true frequency of a particular
network signature. This estimate of the frequency was
compared against the probability of a given network
as computed by eqn. (17). Notice that due to per-
mutation invariance the probability of each network
signature must be corrected by multiplying eqn. (17)
with a factor obtained by a combinatorial argument
(see for instance Pitman [2006, eqn. (2.2)])

n!∑mi
i=1(i!)mimi!

, where mi =

k∑
i=1

1(ni = 1).

We thus obtain two estimates of the probability of a
particular network signature shown in figure 6, both
in close agreement. In figure 7 is shown the estimated
density of the total mass T obtained by numerically
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the randomly generated networks as well as the true
density eqn. (24) obtained by numerical integration of
eqn. (23)

integrating Zolotarev’s integral representation of fσ

fσ(x) =
σx

−1
1−σ

π(1− σ)

∫ π

0

du A(σ, u)e−A(σ,u)/xσ/(1−σ) ,

A(σ, u) =

[
sin((1− σ)u)1−σ sin(σu)σ

sin(u)

] 1
1−σ

, (23)

gα,σ,τ (t) = θ−
1
σ fσ(tθ−

1
σ )φλ(tθ−

1
σ ) (24)

and the estimated density of the total mass T obtained
by summing the generated sticks (wi). Both the esti-
mates of the networks signatures and the density of T
are in close agreement.

Datasets and preparation To test the methods
we selected 11 publicly available datasets describing
social networks, co-authorship networks and biological
networks.

Yeast: Interaction network of 2361 proteins in
yeast [Bu et al., 2003].

SmaGri: Coauthorship network of 1059 authors
from the Garfield’s collection of citation net-
works [Batagelj and Mrvar, 2014].

SciMet: Coauthorship network of 3084 authors from
the Scientometrics journal, 1978-2000 [Batagelj
and Mrvar, 2014].

Netscience: Coauthorship network of 1589 authors
working in network theory as compiled by New-
man [2006].

Hagman: Structural brain networks where edges cor-
respond to the number of fiber tracts between 998
brain regions. All five networks in the dataset
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were simply averaged to produce a single net-
work [Hagmann et al., 2008].

NIPS: Consisting of the 2865 authors who have coau-
thored papers together at the 1-12’th NIPS con-
ference [Roweis, 2009].

Caltech, Simmons, Reed, Haverford, Swarthmore:
Five social networks of 769, 1446, 962, 1518, 1659
students respectively obtained from the Face-
book100 dataset [Traud et al., 2011].

The datasets were processes similarly by first remov-
ing any vertices without edges, i.e. where ni = 0, and
thresholding at 0 to produce binary networks. Selec-
tion of the missing edges for link prediction was done
by first removing a fraction of 5% of all potential edges
at random and then, if this procedure left any ver-
tices without attached edges, re-introducing one of the
edges attached to each such vertex and removing (at
random from all other potential edges) a single edge.
This procedure was repeated until 5% of the potential
edges were removed and all vertices had at least one
edge attached.

Models considered In addition to non-parametric
extensions of the Poisson SBM we compared the
CRMSBM against a degree corrected block model, the
degree-corrected stochastic block model (DCSBM) of
Herlau et al. [2014]. This model is not exchangeable
but does model block structure and sociability.

Specifically the DCSBM assumes a generative process
of the form:

(z1, . . . , zn) ∼ CRP(α)

η`m ∼ Gamma(λa, λb)

(θ
(1)
i` ), (θ

(2)
i` ) ∼ Dirichlet((γ)k`i=1)

Aij ∼ Poisson(kzikzjθ
(1)
izi
θ
(2)
jzj
ηzizj ).

To be consistent with the CRMSBM we selected a
prior of the form Gamma(2, 1) for α, λa and λb. The
model is somewhat sensitive to the choice of prior for
γ however we found a prior of the form Gamma(2, 1)
to perform reasonably well. The DCSBM reduces to
a model without degree-correction, the pIRM [Kemp
et al., 2006], by the choice γi` = 1

n`
.
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Ecole D’Eté de Probabilités de Saint-Flour XXXII-
2002. Springer, 2006.

Sam Roweis. Data for MATLAB hackers.
http://www.cs.nyu.edu/ roweis/data.html,
2009. [Online; accessed 24-April-2015].

Steven H Strogatz. Exploring complex networks. Na-
ture, 410(6825):268–276, 2001.

Amanda L. Traud, Peter J. Mucha, and Mason A.
Porter. Facebook data scrape related to pa-
per ”The Social Structure of Facebook Networks”.
https://archive.org/details/oxford-2005-facebook-matrix,
2011. [Online; accessed 24-April-2015].

Harrison C White, Scott A Boorman, and Ronald L
Breiger. Social structure from multiple networks. i.
blockmodels of roles and positions. American jour-
nal of sociology, pages 730–780, 1976.

Z Xu, V Tresp, K Yu, and H P Kriegel. Infinite hid-
den relational models. In Proceedings of the 22nd
International Conference on Uncertainty in Artifi-
cial Intelligence (UAI 2006), 2006.

Vladimir Mikhailovich Zolotarev. On the representa-
tion of stable laws by integrals. Trudy Matematich-
eskogo Instituta im. VA Steklova, 71:46–50, 1964.


