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ABSTRACT
Bi-partite networks are commonly modelled using latent class
or latent feature models. Whereas the existing latent class
models admit marginalization of parameters specifying the
strength of interaction between groups, existing latent feature
models do not admit analytical marginalization of the param-
eters accounting for the interaction strength within the feature
representation. We propose a new binary latent feature model
that admits analytical marginalization of interaction strengths
such that model inference reduces to assigning nodes to latent
features. We propose a constraint inspired by the notion of
community structure such that the edge density within groups
is higher than between groups. Our model further assumes
that entities can have different propensities of generating links
in one of the modes. The proposed framework is contrasted
on both synthetic and real bi-partite networks to the infinite
relational model and the infinite Bernoulli mixture model. We
find that the model provides a new latent feature represen-
tation of structure while in link-prediction performing close
to existing models. Our current extension of the notion of
communities and collapsed inference to binary latent feature
representations in bipartite networks provides a new frame-
work for accounting for structure in bi-partite networks using
binary latent feature representations providing interpretable
representations that well characterize structure as quantified
by link prediction.

Index Terms— Latent feature modeling, complex net-
works, bipartite graphs, relational modeling, link prediction.

1. INTRODUCTION

Many natural and man made systems can well be represented
in terms of a network. A network consists of nodes, which
represent the entities of the system, and edges between the
nodes which describe the relationships between the entities.
An important problem in the study of networks is to iden-
tify latent structure in these complex systems that can sub-
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sequently be used to both facilitate our understanding of the
systems and for accounting for unknown relations (i.e., pre-
dict unobserved edges) in these complex systems.

Many networks are believed to exhibit community struc-
ture in which nodes within the same groups are more likely
to be connected compared to nodes which belong to differ-
ent groups [1]. The group structure can be quantified by for
instance modularity [2]. Many have studied disjoint commu-
nities, i.e. a partition of the nodes into groups with no node
belonging to more than one group [1], but recently methods
to detect overlapping communities have become more widely
studied, as the assumption that each node belongs to only one
group is often not natural [3]. A set of overlapping commu-
nities allows the nodes of the network to belong to any num-
ber of groups, instead of only one. Many networks naturally
consists of overlapping communities, e.g. a person’s social
network naturally consist of different groups of people such
as family, friends, and co-workers. It has been shown that
when analyzing networks that consist of overlapping commu-
nities using methods for detecting disjoint communities, the
analysis often does not describe the full structure of the net-
work [4], and thus practical methods for identifying overlap-
ping communities can significantly contribute to understand-
ing network structure better. Another property of many net-
works is that their nodes belongs to two or more domains,
where only connections between the domains exist. A net-
work with two domains is known as a bipartite network. This
is again significantly different from a unipartite network, and
requires specialized approaches to detect communities [5].

In recent years many approaches have also been pro-
posed for the modeling of structure in networks within the
machine learning community using Bayesian modeling ap-
proaches (see e.g. [6]). These approaches have either been
based on latent class or latent feature models. Latent class
models such as the infinite relational model [7, 8] assumes
the network can be represented in terms of latent groups such
that edges are independent given the assignment of nodes
to groups. Latent feature models in contrast assume each
node can be represented in terms of a latent low-dimensional
feature representation. Prominent approaches include low-
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rank approximation procedures such as non-negative matrix
factorization [9] and latent feature models based on binary
feature representations. The latter includes the multiple-
membership stochastic block model [10] and extensions to
bi-partite systems [11], as well as the binary matrix factor-
ization [12], the latent feature relational model [13], and the
latent attribute model [14]. A benefit of latent class models
is that the inference can be reduced to inferring assignment
of nodes to groups. Unfortunately, the existing binary la-
tent feature models do not admit analytical marginalization
of parameters specifying interactions between the extracted
features and have to be treated as part of the inference.

In this paper we propose a new latent binary feature
model, the Bayesian latent feature model (BLFM), for mod-
eling bipartite networks that allows analytical marginalization
of parameters specifying the interactions. The main assump-
tions of the proposed model is that the nodes can belong to
several overlapping groups such that if two nodes belong to
the same group they will have a higher edge-probability than
otherwise. We will furthermore assume the edge-probabilites
are modulated with a node-specific parameter to account for
some entities being more popular than other entities. The
particular parameterizations of the proposed model allows
marginalization of most parameters leaving a simple dis-
crete sampling problem. On synthetic and real network we
demonstrate the utility of our approach compared to existing
marginalized procedures given by the two latent class models,
the infinite-relational model (IRM) and the infinite Bernoulli
mixture model (IBM) [7]. In particular, we find that our ap-
proach admit interpretable feature representations while the
model representation predicts edges close to the performance
of the IRM and IBM.

2. MODEL

Our model describes the structure of the bipartite network in
terms of latent attributes. Suppose the bipartite network is de-
scribed as a I × J adjacency matrix A such that if there is an
edge between node i and node j then Aij = 1 and otherwise
Aij = 0. Each node in the network can have zero or more of
D latent attributes independently of each other. Say, the net-
work denotes customers and goods in a market-basket setting.
Then, if a customer and a good share the same attribute this
will increase the edge probability compared to the case where
they do not share a latent attribute. Let us denote the event
customer i has attribute d by zid = 1 (and otherwise zid = 0)
and similarly the event that good j has attribute d by qid = 1.
Then, if zid = qjd = 1 for any d, the link probability of cus-
tomer i and good j will be φ+

j and otherwise φ−j . Denoting
the probability of a link between customer i and good j by
φij we may write

φij =

{
φ+
j ∃d. zid =qjd =1,

φ−j otherwise.
(1)

Thus, the probabilities are specific to each of the J goods.
If we collect all assignments of latent attributes into matrices
Z = (zid)id and Q = (qjd)jd we can write

p(Aij =1|Q,Z) = φij = (φ+
j )Iij (φ−j )1−Iij , (2)

where Iij = I(
∑D

d=1 zidqjd) and I(·) is the indicator func-
tion.

To complete our model description we need prior distri-
butions for Q,Z. We will simply assume that these depend
only on the latent attributes such that

p(zid = 1) = θzd, p(qid = 1) = θqd. (3)

As these parameters are attribute specific, irrelevant attributes
may be pruned. For convenience, we furthermore assume that
the probability variables φ = (φ±

j )j and θ = (θzd)d, (θ
q
d)d are

all independently Beta distributed such that

φ±j ∼ Beta(a±1 , a
±
2 ), θz,qd ∼ Beta(az,q1 , az,q2 ), (4)

and we collect all eight hyperparameters for the Beta distribu-
tions into the vector ρ = (a+

c , a
−
c , a

z
c , a

q
c)c=1,2. To complete

the hierarchical description of the model, each entry in ρ is
given a Gamma(1, 1) prior distribution. The joint distribution
then becomes

p(A,Z,Q,θz,q,φ±,ρ) = p(A|Z,Q,φ±)p(Z|θz)
× p(Q|θq)p(θz,q,φ±|ρ)p(ρ).

(5)

This parameterization of the model is illustrated as a Bayesian
network in Fig. 1

Aij
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Fig. 1. The Bayesian network of the BLFM.

2.1. Restricted model

The parameters φ+
j and φ−j are interpreted as the probability

of an edge if i, j share a latent attribute or if they do not, re-
spectively. Thus, it can be sensible to assume that φ+

j ≥ φ−j
to guarantee that shared features are interpretable as increas-
ing the edge probability, similar to the notion of community
structure where edge density is higher within than outside a



group (see also [15]). In addition to the unconstrained case
given above we therefore also consider a variant of the model
where the constraint φ+

j ≥ φ
−
j is enforced through the prior:

p(φ+, φ−) = 1
Zp(φ

+)p(φ−)I(φ+ ≥ φ−) (6)

where p(φ±) is the standard Beta prior (parameters omitted
for brevity) and the normalization can be computed as

Z =
Γ(a+

1 + a−1 )Γ(a+
2 + a−2 )

a+
2 a

−
1 Γ(a+

1 + a+
2 + a−1 + a−2 − 1)

(7)

× 3F2(1, 1− a+
1 , 1− a

−
2 ; a+

2 + 1, a−1 + 1; 1).

where Γ(·) and 3F2(·) are the gamma and generalized hyper-
geometric functions respectively.

For efficient inference, the conjugacy of the Beta and
Bernoulli distribution allows us to analytically marginalize
the parameters φ±. In the unconstrained case this yields a
ratio of Beta functions, and in the constrained case a ratio of
the normalization constants in Eq. (8). In the unconstrained
case this leaves a distribution of the form

log p(A,Z,Q|ρ) = (8)∑
j

[
B(a+

1 , a
+
2 , L

+
1,j , L

+
2,j) + B(a−1 , a

−
2 , L

−
1,j , L

−
2,j)
]

+
∑
d

[
B(az1, a

z
2, C

z+
d , Cz−

d ) + B(aq1, a
q
2, C

q
1,d, C

q
2,d)
]
,

with the shorthand B(x, y,X, Y ) = log B(x+X,y+Y )
B(x,y) where

B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function. For completeness,

the count statistics are given as

L+
1,j =

∑
i

AijIij , L+
2,j =

∑
i

(1−Aij)Iij , (9)

L−
1,j =

∑
i

Aij(1− Iij), L−
2,j =

∑
i

(1−Aij)(1− Iij),

Cz
1,d =

∑
i

zid, Cz
2,d =

∑
i

(1− zid),

and similarly for Cq
1,d, C

q
2,d. The constrained model is iden-

tical except the two first B functions are replaced by the log
ratio of the normalization constants in Eq. (8) computed over
the same count statistics.

2.2. Inference

Inference of the likelihood Eq. (9) is carried out by Gibbs
sampling the binary matrices Z and Q and applying a suit-
able sampling procedure for the eight-dimensional vector ρ.
Due to the low dimensionality of ρ the majority of the cost is
used sampling Z and Q and so we simply opted for random-
walk Metropolis Hastings for the parameters in ρ. For each
sweep of Z,Q we applied 20 sampling steps for the parame-
ters in ρ where a log-transformation ρ → logρ was applied
for numerical stability.

2.2.1. K-flip

Here we propose an alternative sampling approach. Instead of
sampling each latent attribute per iteration of the sampler, one
could sample a randomly chosen subset of the latent attributes
of size k. This requires the evaluation of the log joint proba-
bility 2k times to sample such a subset. If we denote N as the
sum of number of nodes in each domain, this is I + J , then
an iteration of the Gibbs sampler requires O(N × D) eval-
uations of the log joint probability, while the k-flip sampler
needs O(N × 2k). By choosing k small, the k-flip sampler
can more quickly estimate a new sample, however this new
sample will most likely be more similar to the previous sam-
ple compared to a new sample from the Gibbs Sampler since
an iteration will not consider all latent attributes.
Since the indicator function I(·) only changes when the num-
ber of shared latent attributes for two nodes goes from zero
to nonzero, or vice versa, only the count statistics affected by
such a change have to be updated for evaluating the log joint
probability. This property can be used to make the sampler
more efficient.

2.3. Predictions

The model will be evaluated in terms of link prediction. This
is easily done using the marginalized expression for the like-
lihood Eq. (9) using S samples of Q,Z and using the MCMC
approximation for a missing edge Aij :

p(Aij = 1|(Q(s),Z(s))Ss=1)

≈ 1

S

S∑
s=1

p(Aij = 1 | A \Aij ,Z
(s),Q(s)).

(10)

It is assumed the sufficient count-statistics is computed for the
matrix with the missing edges removed.

3. RESULTS

We will compare the Bayesian latent feature model (BLFM)
to the infinite-relational model (IRM) and the Bernoulli Mix-
ture model (IBM). For evaluation we will consider both ar-
tificially generated data sets from the three models as well
as two real data sets, namely the the Animals with Attributes
(AWA) data set originally collected for a psychological exper-
iment [16], but extended and analyzed with the IRM model
by Kemp et. al. [7] and the brain connectivity matrix from the
the Allen Mouse Brain Connectivity Atlas1 (MBC) [17]. All
the following data processing and computations were carried
out with MATLAB2. Each sampling trial was evaluated for an
equal amount of time between the regular Gibbs sampler and
the proposed k-flip sampler.

1Allen Mouse Brain Atlas [internet]. Seattle (WA): Allen Institute for
Brain Science. c 2009. Available from: hhtp://mouse.brain-map.org.

2MATLAB Release 2015b, The MathWorks, Inc., Natick, Massachusetts,
United States.



Fig. 2. Recovery of structure by the BLFM when applied to
data sets generated from the BLFM model. Left: adjacency
matrix A sorted according to true latent attributes. Right:
learned link-probabilities for node (i, j) sorted according to
true latent attribute assignments.

3.1. Synthetic Data

In the first set of simulations we will consider data sets gen-
erated from each of the three models. In each case we con-
sidered ten data sets of dimensions 100× 300. For the BLFM
we selected the hyperparameters as a+

1 = 10, a+
2 = 1

10 , a
−
1 =

1
10 , a

−
2 = 10, az1 = 1, az2 = 5, aq1 = 1, aq2 = 5 and the la-

tent dimension of D = 20. To generate data from the IRM
and IBM models, the hyperparameters values a1 = 1 and
a2 = i for i = 1, 2, . . . , 10 was used for the Beta distributions
to create increasingly sparse networks and α = D/log(n)
for the Chinese restaurant process, where n is the number of
nodes in the given domain.

3.1.1. Recovery of planted structure

To verify the correctness of the sampler, we will compare the
planted structure (i.e. the Z and Q matrices) in the generated
data sets to those found by the BLFM sampler, where we con-
sider the maximum a posterior sample. To the left in Fig. 2
such a comparison is visualized by showing A sorted accord-
ing to the true matrices Z,Q. The estimated probabilities for
links when A is sorted according to the true structure is shown
to the right, strongly matching the pattern of links in the true
A. In Fig. 3 a different artificial data set is considered. In
the figure, the adjacency matrix A is sorted according to the
MAP estimate of Z,Q and each latent group indicated by a
color at the top and to the left of A, i.e. the group assignment
of a given link can be found by considering which colored
groups are to the left and above it in the matrix. The visual-
ization indicates the larger groups share many links internally
as expected.

3.1.2. Pruning Properties

To investigate if the model can recover the true number of
groups D we considered experiments where D was selected
as 50 in the sampler while the true value ofD used to generate

Fig. 3. The adjacency matrix A and the latent attributes. Each
group is represented by a color, and the group assignment of
vertices connected by a given edge can be found by consider-
ing the colors above or to the left of the edge.

Fig. 4. Number of groups in samples from the BLFM model.
The figure shows the samples of ten different runs. All of
them end up activating approximately the true number of
groups of twenty.

the data was 20 (the other hyperparameter was selected as
above). The result can be seen in Fig. 4 for ten repetitions of
the BLFM sampler. As seen, the sampler accurately recovers
the true number of groups.

3.1.3. Edge prediction

For link prediction, the three models were evaluated on the
artificial data generated as described in section 3.1 for each



Table 1. AUC scores for the restricted? Bayesian Latent Fea-
ture Model (BLFM), Infinite Relation Model (IRM), and the
Bernoulli Mixture Model (IBM) on data generated from each
of the three models.

DATA SET BLFM? IRM IBM
BLFM? 0.9961 0.9668 0.9582
IRM 0.6777 0.7388 0.7115
IBM 0.6711 0.7348 0.7347

of the models. We evaluated the models for 40000 seconds
on each data set with 10% randomly chosen edges marked as
missing. This procedure was repeated five times and averages
by each trial is reported. The AUC scores (averaged over the
five trials) for the results can be seen in table 1. Each model
performs best on its own data, except for the IBM data where
the IRM performs just as good as the IBM model. The BLFM
performs better than the other models on data generated from
the BLFM.

3.2. Experimental Data

The models were assessed on two previously mentioned real
data sets. The first data set is the Animals with Attributes
(AWA) data set consisting of a network which represents 50
animals as one domain and 85 traits they have as the second
domain. The second data set, the Allen Mouse Brain Connec-
tivity Atlas (MBC) represents structural connectivity within
1231 mouse brains estimated through stereotaxic injections
for both ipsilateral and contralateral projections resulting in
two 213 × 213 binary matrix. Each model was evaluated for
40000 seconds over 5 trials with 10% data marked as miss-
ing for link prediction in every trial. The maximum number
of latent groups D for BLFM was set to a higher value than
the highest estimate of groups found by the IRM model, such
that the model would learn the number of groups by itself.
Specifically D = 50 for AWA and D = 170 and D = 150
respectively for MCB Contra/Ipsi.

3.2.1. The Effect of the Restricted Model

Performing inference with and without the restriction on the
link probabilities yields the result in table 2. The restricted
model has a slightly lower performance compared to the un-
restricted model. However the restricted model enforce com-
munity structure, which allows for an easier intepretation of
the result. An example of the difference between the models
can be seen in figure Fig. 5, where the MAP result of respec-
tively the unrestricted and restricted BLFM can be seen. It is
clear the restricted model identifies community structures to
a much greater extent than the unrestricted.

(a) unrestricted BLFM (b) restricted BLFM

Fig. 5. Comparison of the result on the AWA data of the un-
restricted BLFM (a) and the restricted BLFM (b). The unre-
stricted version does not show a community pattern, while the
restricted version indicates some communities in its sorting.

3.2.2. Predictions on real data

Link prediction results for each of the three data sets (as mea-
sured by AUC) is shown in table 2. The BLFM performs
better than the IBM on the AWA data but slightly worse than
the IRM. On the MCB data both the IRM and IBM performs
better than the BLFM.

Table 2. AUC scores for the unrestricted/restricted?

Bayesian Latent Feature Model (BLFM), infinite-relation
Model (IRM), and the infinite Bernoulli mixture model (IBM)
on various data sets.

DATA SET BLFM BLFM? IRM IBM

AWA 0.8991 0.8917 0.9198 0.8749
MBC (CONTRA) 0.8347 0.8257 0.8587 0.8562
MBC (IPSI) 0.8266 0.8249 0.8502 0.8495

3.2.3. Discussion of found group structure

The IRM model found 11 animal groups and 43 attribute
groups in the AWA data, while the IBM found 18 attribute
groups and the BLFM found 27 overlapping groups. Each
model find different groups. An example of a group identified
by the BLFM in the AWA data set is:
Animals: hamster, polar-bear, mole, skunk, rat, otter,
persian-cat, giant-panda, dalmatian, wolf, chihuahua, collie,
bobcat, raccoon, squirrel, beaver
Attributes:: agility, furry, quadrapedal, gray, tail, paws,
small, claws, pads, solitary, scavenger

The adjacency submatrix of this group is shown in Fig. 6,
and the estimated link probabilities for each attribute within
this group is shown in the top of each column.



The link probabilities provides a good picture of how
common a given attribute are among the animals in this par-
ticular group. Given these, the group makes sense as some of
animals and/or attributes not necessarily would be grouped
together by a human.

Fig. 6. Adjacency matrix of one of the identified groups by
the BLFM MAP estimate. It reveals similar animals and their
shared attributes. Estimated link probabilities for each at-
tribute are displayed at the top of each column.

4. DISCUSSION AND CONCLUSION

In this paper, we have proposed a new model for overlap-
ping community structure in bi-partite networks. The main
benefits of the proposed model over other approaches to over-
lapping communities is that it allows analytical marginaliza-
tion of the continuous parameters thereby reducing Bayesian
inference to a simple, discrete sampling problem. We com-
pared the BLFM model against the popular Infinite Relational
Model (IRM) and the Infinite Bernoulli Mixture-model (IBM)
and found the BLFM to well characterize planted structure
and as having performance close to these models in terms of
link prediction. We considered two variants of the proposed
model, an unconstrained variant where community structure
was not enforced and a constrained variant where the com-
munity structured was assumed to increase the edge proba-
bility. The constrained model has the benefit of easing the
interpretability of the latent attributes by ensuring shared at-
tributes increase the edge probability.
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