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Abstract
Generative deep machine learning models now
rival traditional quantum-mechanical computa-
tions in predicting properties of new structures,
and they come with a significantly lower compu-
tational cost, opening new avenues in computa-
tional molecular science. In the last few years,
a variety of deep generative models have been
proposed for modeling molecules, which differ
in both their model structure and choice of input
features. We review these recent advances within
deep generative models for predicting molecu-
lar properties, with particular focus on models
based on the probabilistic autoencoder (or varia-
tional autoencoder, VAE) approach in which the
molecular structure is embedded in a latent vec-
tor space from which its properties can be pre-
dicted and its structure can be restored.

1. Introduction
Computational molecular science—the discovery and de-
sign of new molecules and analysis of their structure and
properties by computer models—has traditionally involved
making elaborate quantum-mechanical computations de-
rived from first principle. In recent years, new approaches
based on machine learning have shown great promise, ap-
proaching the same accuracy as first principle computations
at a much lower computational cost. Machine learning is
a branch of artificial intelligence concerned with making
models that can learn from data by discovering patterns
in the data, and generalizing these patterns to new unseen
cases. In molecular science, machine learning can lever-
age the existing huge databases of experimental results and
quantum-mechanical calculations that are currently avail-
able, to learn to predict properties and structures of new
molecules at unrivaled computational speed. In this review
we outline the current trends in machine learning-based
computational molecular science with a particular focus on
one of the most promising model classes known as deep
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generative models. Based on the latest results from the lit-
erature and from our own research, our aim is to charac-
terize the deep generative modeling paradigm in terms of
both model structure and approach to inference, in order to
build intuition about the mechanisms behind its success.

In machine learning we distinguish between discrimina-
tive and generative models. In a discriminative learning
approach to molecular science, we would be concerned
with learning a mapping from a molecule x to a property
y that we are interested in predicting. Given a dataset
{xi, yi}Ni=1 that consists of N molecules and their corre-
sponding known properties, the discriminative model is tar-
geted at learning the probability distribution p(y|x) such
that predictions for a new material x∗ can be computed.
Although this can lead to excellent predictions, the down-
side of the discriminative approach is that the model does
not describe the molecular structure x itself—only the rela-
tion between the structure and property—and can thus not
directly be used to make inference about new molecules of
interest. In a generative learning approach, the model is
concerned with characterizing either the distribution of the
molecular structure p(x) or the joint distribution p(x, y) of
the molecular structure and the property of interest. The
former case where only the molecular structure is modeled
is known as unsupervised learning, whereas the latter case
where both molecular structure and corresponding proper-
ties are modeled is known as supervised learning.

In this study we will focus on one particular non-linear
flexible generative model, the variational autoencoder
(VAE) [1,2]. The complementary likelihood free approach
to generative modelling, generative adversial networks
(GAN), has also received a lot of attention recently. GAN
and other approaches beyond VAE are discussed in Section
6. In our review of VAE we include recent advances in in-
ference and implementation details. Therefore the tutorial
by Doersch [3] might be an easier starting point to establish
the mathematical intuition behind the model.

The remainder of the paper discusses generative modelling
(Section 2), variational inference (Section 3), practical im-
plementation (Section 4) and application to properties of
molecules (Section 5).
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2. Deep generative models
In this paper we define a generative model as a probabilis-
tic model for the data features we have access to. We dis-
tinguish between unsupervised learning where we have a
feature vector x and supervised learning where we have x
and dependent variables y. For unsupervised learning the
generative model is the joint distribution of x: p(x). Prob-
abilistic supervised learning involves modeling the condi-
tional p(y|x). In generative probabilistic supervised learn-
ing we decompose the joint distribution of x and y as
p(x, y) = p(y|x)p(x). In the molecular context x will usu-
ally be some representation of the molecule structure (for
example the SMILES representation [4], molecular finger-
prints such as MACCS [5] or in principle the atomic posi-
tions and properties) and y will be a physical property of
the system such as free energy, ground state energy, band
gap, or crystal structure or a biological response such as
toxicity, cellular uptake, or drug efficacy.

The two main reasons why we want to apply probabilistic
generative models are that they:

1. Allow for quantitative model comparision. Once fitted
we can evaluate the density on a test data point xtest
or a test dataset. A high value of log p(xtest) (relative
to other model baselines) indicates that the model has
captured essential statistical properties of x.

2. Can be used to synthesize new data. Once fitted we
can simulate new data from the model xnew ∼ p(x)
where ∼ is notation for a draw from the distribution.
The synthesised data can be used for a qualitative eval-
uation of the model for example an image generated
from a model fitted on a training set of natural im-
ages. The generated data can also be of practical in-
terest, for example a new molecule with potentially
desirable properties.

In this paper we will consider a specific class of generative
models called latent variables models. A latent variable
(vector) z represents unobserved properties of the datum
that can describe the observed datum x statistically through
a generative process p(x|z). A simple example of such a
model is a linear model with additive noise ε: x = Wz+ ε,
where W is the weight matrix. Often we will assume that
dim(x) > dim(z) so that the latent representation is more
compact than the observed data. The latent variable itself
is assumed to be generated from a prior distribution p(z).
The generative model p(x) discussed above is recovered
by marginalizing over z: p(x) =

∫
p(x|z)p(z)dz. In a

latent variable model we can draw from p(x) by a two-
step procedure: 1) z ∼ p(z) and 2) x ∼ p(x|z). In some
cases the latent variable will have a direct physical meaning
and in other cases the use of a latent variable model is a
convenient way to define a flexible statistical model.

We will usually use maximum likelihood learning. For un-
supervised learning this means that we have a training set
X = {xi}Ni=1 that we model with a latent variable model
pθ(x, z) = pθ(x|z)pθ(z) with parameters θ. We will as
a default assume independent identically distributed (iid)
samples such that the likelihood for θ is written as

pθ(x) =

N∏
i=1

pθ(xi) (1)

with pθ(xi) =
∫
pθ(xi|z)pθ(z)dz. Sometimes we will

omit the θ dependence for brevity. In maximum likelihood
learning the objective is thus to maximize (1) with respect
to the parameters θ.

In deep generative modelling we replace the simple linear
relation between the observed data x and the latent vari-
able z with a parameterized non-linear function fθ(·). For
fθ(·) we use a multi-layered neural network with L layers
of adaptable weights, for example

fθ(z) = WLhL−1 + bL, (2)
hl = relu(Wlhl−1 + bl), l = 2, . . . , L− 1 (3)
h1 = relu(W1z + b1) , (4)

where the (element-wise) rectified linear activation func-
tion is given by relu(a) = max(0, a). We then have

pθ(x|z) = N (fθ(z), σ
2I). (5)

The trainable parameters θ of the model are the L weight
matrices W1, . . .WL, the L bias vectors b1, . . . bL and the
output noise variance σ2. The model can be extended, for
example by letting σ2 depend on the latent variable z or
by introducing a hierarchy of latent variables, for example
p(x, z1, z2) = p(x|z1)p(z1|z2)p(z2) where z1 and z2 are
latent variables vectors.

As soon as we introduce non-linearities in the model we
can not analytically marginalize out the latent variables.
We therefore have to resort to approximations. A promi-
nent method, that variational autoencoders are based on, is
variational inference.

3. Variational inference
The approach we use in variational autoencoders (VAE)
consists of three steps:

Likelihood lower bound. Replace the likelihood with a
more tractable lower bound. The most widely used is:

log p(xi) ≥ Eqi(z)
[
log

p(xi|z)p(z)
qi(z)

]
, (6)

where Eqi(z)[. . .] denote average (expectation) over qi(z).
We have here introduced a variational distribution qi(z)
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which is an approximation to the posterior distribution over
the latent variables and its role in the variational autoen-
coder is explained in the next paragraph. This lower bound
still requires intractable integration due to Eqi(z)[. . .], but
we can derive low variance Monte Carlo estimators for
these. The bound can be decomposed into two terms

log p(xi) ≥ Eqi(z) [log p(xi|z)]−KL(qi(z), p(z)) (7)

where KL(q(x), p(x)) ≡
∫
q(x) log q(x)

p(x)dx is the
Kullback-Leibler divergence between q and p. The first
term on the right-hand-side of (7) can be interpreted as the
average reconstruction error, i.e. how well does the gen-
erative model fit the data distribution and the KL-term is a
measure of how much q(z) diverges from the prior p(z).

An alternative tighter bound is given by Burda et al. [6],
which is often used when comparing different models on
the same dataset.

FK(x) ≡
∫ K∏

k=1

q(zk) log

[
1

K

K∑
k′=1

wx(zk′)

]
K∏
k=1

dzk

with wx(z) ≡ p(x|z)p(z)
q(z) . This so-called importance

weighted bound coincides with the standard bound for
K = 1, obeys FK ≥ FL for K > L and converges to the
log p(x) for K → ∞ as a consequence of the law of large
numbers. It is often used with moderate K for example
K ≈ 3–10 during training and large K, K ≈ 1000–5000
for evaluating the test log likelihood.

Inference network. The lower bound (6) depends upon
a variational distribution qi(z) which is an approximation
to the latent posterior distribution

p(z|xi) =
p(xi|z)p(z)
p(xi)

. (8)

We can for example choose qφi(z) = N (z|µi,Σi) with
variational parameters φi = {µi,Σi}. In VAE, instead of
having a set of parameters for each xi we will use a so-
called inference network parameterization qφ(z|x). The in-
ference network will be specified as a deep neural network
similar to the generative model but now with x as input
and mean and variance of z as output. We could for exam-
ple take qφ(z|x) = N (z|µφ(x),Σφ(x)) where µφ(x) and
Σφ(x) are written as output of a deep network in the same
fashion as the generative model was specified in the gener-
ative model Eqs. (2)-(5). This is actually more restrictive
than the formulation with individual variational parameter
for each datum but it has the advantage that we leverage
information across data points. In other words it is based
upon the assumption that data points that are close (in some
sense derived from the data) will also have similar posterior

latent distribution. The log likelihood lower bound for the
training set that we want to optimize is:

L(θ, φ) =

N∑
i

Eqφ(z|xi)
[
log

pθ(xi|z)pθ(z)
qφ(z|xi)

]
. (9)

Note that even though we treat the two sets of parameters
θ and φ in the same way they play different roles: the θ-
optimization is model fit and the φ-optimation is for mak-
ing the bound as tight as possible. Overfitting is not an
issue in the latter case — we want the inference network to
come as close as possible to p(z|x).

The inference network qφ(z|x) can be interpreted as a prob-
abilistic encoder which maps an input x to a probability
distribution in the latent vector space and pθ(x|z) is the
corresponding probabilistic decoder. Hence the name vari-
ational autoencoder.

Monte Carlo estimators and reparameterization trick.
Low variance Monte Carlo estimators of the log likelihood
lower bound and its derivative with respect to the parame-
ters θ and φ are obtained by choosing a parameterization of
qφ(z|x) that allows the use of the so-called reparameteriza-
tion trick. Again we focus on the standard bound and use
M samples:

log p(x) ≥ Eqφ(z|x) [logwx(z)] ≈ 1

M

M∑
m=1

logwx(zm)

with wx(z) = pθ(x|z)pθ(z)
qφ(z|x) and zm ∼ q(z|x). Since we

expect wx(z) to scale exponentially in the number of di-
mensions of z then the logarithm appearing in the bound
is important to make the Monte Carlo estimator (the right
hand side above) have low variance.

We need the reparameterization trick when taking deriva-
tives. For the Gaussian inference network it amounts to
replacing an average over qφ(z|x) with an average over
ε ∼ N (0, I). The parameter dependence is thus shifted
into the integrand. In the integrand we will then replace z
with zφ(ε, x) = µφ(x) +

√
Σφ(x)ε where

√
Σφ(x) is to

be understood as a matrix square root. A diagonal Σφ(x)
is the standard choice because it is simple only requiring a
network with dim(z) outputs for the (log) variances.

3.1. Bits back

The bits back argument [7,8,9] gives theoretical insight on
why variational models often will converge to a solution
where relatively few latent dimensions are being used. That
is in p(x|z) many of the components of z have no influence
on x. The bits back back argument is simply an alternative
decomposition of the log likelihood bound in the limit of
very large training set corresponding to averaging over the
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data generating distribution pdata(x). For the variational
bound using an inference network we have

Epdata(x) [log p(x)] ≥ Epdata(x),q(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
.

We can rewrite this expression using two steps: multiplying
by pdata(x)

pdata(x)
inside the log and replacing p(x|z)p(z) by the

equivalent p(z|x)p(x):

Epdata(x) [L] =−H(pdata)−KL(pdata(x), p(x))

− Epdata(x) [KL(q(z|x), p(z|x))] ,

where H(p) = −
∫
p(x) log p(x)dx is the entropy of p.

The first term (minus the entropy of the data generating
distribution) is the irreducible lower bound on the log like-
lihood, the second is the model error and the third is the
variational posterior approximation error. The trade-off be-
tween the two last terms determines the solution we will
find. We get a more flexible model by introducing latent
variables because p(x) =

∫
p(x|z)p(z)dz will in general

be more flexible than a model without the latent variables
but we pay a price in terms of the variational approxima-
tion error. The components ẑ of z not are used in the gen-
erative model will have p(ẑ|x) = p(ẑ) and we can get
KL(q(ẑ|x), p(ẑ|x)) to be zero by setting q(ẑ|x) = p(ẑ).
The limited number of active units observed empirically,
see for example [10], reflects this trade-off. At some point
introducing additional latent variables gives a smaller gain
in terms of model fit than the price paid in approximation
error. This is motivation for using the improved variational
approximations discussed in the next section.

3.2. Improving the variational approximation

Methods for improving the variational distribution may
roughly be divided into three categories:

Hierarchical specification of variational distribution.
For generative models with two or more stochastic lay-
ers there is some freedom in choosing the connectivity of
variational distribution. Consider a two layer generative
model p(x, z1, z2) = p(x|z1)p(z1|z2)p(z2). One minimal
solution is to specify q with dependence in the reverse or-
der: q(z1, z2|x) = q(z2|z1)p(z1|x). However, we get a
more flexible and thus more accurate inference network if
we condition the first term on x as well: q(z1, z2|x) =
q(z2|z1, x)p(z1|x). We say that we introduce a skip-
connection that connects x directly to the network for the
mean and covariance of z2: µφ(z1, x) and Σφ(z1, x). The
ladder VAE [10] has a more advanced version of skip con-
nections which also includes a parameterization where the
parts of the inference network are shared by the prior hier-
archical prior specification for the generative model. This
leads to improved generative performance.

Normalizing flows. Let f be an invertible dim(z) →
dim(z) mapping. We can use distribution z′ = f(z) in our
generative model instead of z and introduce the determi-
nant of the Jacobian in the likelihood. [11] If we let f have
adaptable parameters it is possible to learn quite flexible
priors. We can also generalize this concept in a simple way
by letting f be a series on invertible transformations. [12,13]

Auxiliary latent variables. In the auxiliary variable ap-
proach [14,15,16] we introduce a new latent vector a into the
inference network q(z, a|x) = q(z|a, x)q(a|x). We specify
the generative model as p(x, z, a) = p(x|z)p(z)p(a|z, x)
in order to leave the generative process unaffected that
is z and x are not affected by the value of a. How-
ever, the resulting marginal inference network q(z|x) =∫
q(z|a, x)q(a|x)da is now more flexible than before and

should therefore give a better fit to the posterior. This is
also observed in practice. [15] One may also make a bits
back argument for the auxiliary model that shows that we
still have to make a trade-off between the exact posterior
p(a|z, x) and its variational approximation.

4. VAE inference in practice
Variational autoencoder practice follows standard modern
deep learning practice. Mini-batch stochastic gradient de-
scent optimization is employed with parameter updates
based upon gradients calculated on mini-batches of the or-
der of 100 training examples. Thousands of epochs (com-
plete sweeps through the training set) are often needed
for convergence. The objective is usually evaluated with
M = 1 samples for the expectation:

mini-batch∑
i

log
pθ(xi|zi)pθ(zi)
qφ(zi|xi)

with zi ≡ zφ(εi, xi) = µφ(xi) + σφ(xi) ⊗ εi, µφ(xi) and
log σφ(xi) are the output of the inference network (both
dim(z) dimensional), ⊗ denotes component-wise multi-
plication and εi ∼ N (ε|0, I). Setting M = 1 is the fa-
vored choice because averaging over mini-batches will be
a more efficient way to decrease the variance of the esti-
mator than to use the same example M > 1 in the same
mini-batch. Many variants of adaptive step-size stochas-
tic gradient descent with momentum have been proposed
recently. Adam [1] is a popular choice. Differentiation of
the objective involves applying the chain rule of differenti-
ation. This is performed automatically within modern deep
learning software packages such as TensorFlow and Py-
Torch. Some derivate terms in the objective cancels exact
on expectation. [17] These terms have to removed explicitly
from the gradient calculation. In practice it turns out that it
does not make a big difference to take this into account or
not. [17]
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The effect of removal of latent variables discussed in Sec-
tion 3.1 can be partially mitigated by employing “warm-
up” [10,18] or the “free bits” surrogate objective. [13] We
rewrite the log likelihood lower bound objective in (9) and
introduce a “temperature” parameter α:

L(θ, φ, α) =

N∑
i

Eqφ(z|xi)
[
log pθ(xi|z) + α log

pθ(z)

qφ(z|xi)

]
(10)

The original objective is restored by setting α = 1. Warm-
up [10,18] amounts to starting with a traditional map x-to-x
autoenocder objective corresponding to α = 0 and slowly
increasing α, say linearly during the first 200 epochs, to
the variational objective α = 1. In some cases for example
in the sequence encoder and decoder models employed in
Section 5 it turns out that it is necessary to set the final
value of α below one in order to make the model use any
latent variables. The learned latent structure is still useful
but the likelihood lower bound interpretation is no longer
valid.

5. Applications to molecular sciences
Using VAEs with recurrent neural network encoder and
decoder was first employed by Bowman et al. [18] to gen-
erate English written sentences. The first application in
molecular science is demonstrated by Gómez-Bombarelli
et al. [19], where a similar encoder and decoder model
is used to generate SMILES strings character by char-
acter from the latent space. The method is applied to
a dataset of approximately 250,000 drug-like molecules
from the ZINC database [20] and 100,000 organic light emit-
ting diode (OLED) molecules. [21] One of the problems
of the character-based VAE is that it often produces in-
valid molecules. In the experiments by Gómez-Bombarelli
et al. [19] from 70% to less than 1% of the generated sam-
ples are valid molecules. The errors can be syntax errors
(the generated string is not a valid SMILES string) or se-
mantic errors (the SMILES string is syntactically valid but
the molecule corresponding to the SMILES string is phys-
ically impossible). Despite these problems, using SMILES
strings is an appealing approach because it gives a full
description of the molecule without making assumptions
about which features are important for the task at hand.
If we for example modeled fingerprints we would have
to search for the molecule that corresponds to the gener-
ated fingerprint (which might not exist if it is generated er-
roneously) and we have already made a choice of which
features are important by selecting or designing the finger-
print.

5.1. Using a grammar

The number of syntax errors can be significantly reduced
by replacing the character-based encoder and decoder with
a syntax-aware model as done in the Grammar VAE. [22]

The SMILES syntax can approximately1 be described by
a so-called context free grammar. Rather than construct-
ing a string character by character we can be represent the
string as a sequence of production rules. Not all possible
sequences of production rules are valid and the formulation
as a context free grammar allows us to enforce this restric-
tion upon the decoder such that all generated sequences are
syntactically valid. Kusner et al. [22] also applies the Gram-
mar VAE model to the drug-like molecules from the ZINC
database and the results indicates improved smoothness in
the latent space representation in comparison to the charac-
ter based VAE.

In many molecular screening applications we are not inter-
ested in the set of all possible molecules, but for example
want to limit our search to a smaller set of molecules that
are easy to synthesize. In this case the SMILES grammar
formulation may be unnecessarily complex and can be re-
placed with a simpler application specific grammar that is
easier to handle for the grammar VAE. This approach is
used by Jørgensen et al. [23] for screening of materials for
polymer solar cells where each material is composed from
a library of acceptor, donor and side group substructures.
If the application allows it, the grammar can be formulated
such that a syntactically valid string implies a semantically
valid molecule, such that the model only generates valid
molecules.

5.2. Example: Screening of polymer solar cells using
grammar VAE

The problem of interest in [23] is to find new materials for
polymer solar cells. The polymer units are composed by
one of 13 acceptor units, one of 10 donor units and a num-
ber of side groups. The crucial properties are the Low-
est Unoccupied Molecular Orbital (LUMO) and the opti-
cal band gap energy. These properties can be estimated
with computationally costly DFT calculations and from a
dataset of approximately 4000 DFT calculations we seek
to propose new candidate molecules and determine their
properties with machine learning. An example polymer so-
lar cell molecule (monomer) is shown in Figure 1 and the
context free grammar that describes all the possible strings
is shown in Figure 2. A model based on this grammar
might generate invalid molecules because the number of
side groups for each acceptor/donor is not defined by the
grammar, but the grammar rules are simpler this way.

1Not all elements of SMILES are context free, e.g. opening
and closing of ring-bonds where the same digit must be used for
opening and closing the bond as seen in benzene “c1ccccc1”.
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Donor
D4

Acceptor
A1

A1-H_OCH3-S + D4-H_F-O_S_S

X groups

Y group

X groups

Y groups

Figure 1. An example molecule from the polymer solar cell
dataset and its simplified string representation.

m → A - OPTG - OPTG + D - OPTG - OPTG
A → A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13
D → D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10

OPTG → * | GS
GS → G | GS G

G → Ge | CH3 | OCH3 | H | C | O | SCH3 | NCH3 | S | F | Si | Se

Figure 2. Context free grammar for the polymer solar cell dataset.

We train a grammar VAE using the log likelihood lower
bound objective (10) with a constant temperature parameter
α < 1. Initial studies showed that using α < 0.1 was
necessary in order to yield good reconstruction error and
we use α = 0.08 for the training objective and α = 1
when evaluating the bound. We use Adam [24] with initial
learning rate 0.001 and the learning rate is divided by 2
after every 100 epochs. The log likelihood lower bound for
the training and validation set is shown in Figure 3a and the
reconstruction accuracy2 is shown in Figure 3b.

The latent space dimension is set to 32, but as discussed
in Section 3.1 it might not be beneficial to use all the la-
tent variables. Because the prior p(z) and q(z|x) factorize
across the dimensions of z we can compute the KL-term
of the objective function for each of the latent dimensions
as shown in Figure 4 for the polymer solar cell grammar
VAE. In this example the “effective” dimension of the la-
tent space is around 17, the KL-term for the remaining di-
mensions is close to zero. Depending on the subsequent
application of the model, it may be beneficial to “prune”
these dimensions from the model.

2The reconstruction accuracy is measured in the following
way: Each string x is encoded as the mean of the encoding distri-
bution qφ(z|x) and decoded using pθ(x|z) where the most prob-
able (according to the decoder model) production rule is selected
at each step and the encode/decode is considered successful if the
output of the decoder matches the encoder input exactly. The ac-
curacy is the success rate across the data set.
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(a) Log likelihood lower bound and KL-term versus training
epoch. The validation lower bound is higher than the training
bound, because we use the tighter importance weighted bound
with K = 50 samples for validation and K = 1 for training.
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Figure 3. Training curves for grammar VAE on the polymer so-
lar cell dataset. We use 5-fold cross-validation to estimate the
model’s generalisation error. The lines are averages across the 5
folds and the shaded area shows the maximum and minimum.
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KL(qφ(z|xi), pθ(z)) for each dimension of the latent
space for one of 5 training folds.
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The embedding is visualized using principal component
analysis in Figure 5. Even though the grammar VAE is
trained without using label information we notice some
structure when coloring the embedded data points accord-
ing to the optical band gap energy. The target range for the
optical gap is from 1.4 eV to 1.7 eV and the LUMO target
range is -3.2 eV to -2.9 eV.

5.3. Generating new molecules

In our description above we have only discussed the prob-
lem of encoding to and decoding from a latent space rep-
resentation of the discrete input, but often we would like
to use this representation to search for molecules with a
given property. Since the latent space is a continuous vec-
tor space we can then employ our favourite regression/clas-
sification on top of this representation. Kusner et al. [22] and
Gómez-Bombarelli et al. [19] use a Gaussian process regres-
sion model that is trained on the latent space representation
and new points in the latent space are selected based on
Bayesian optimization, see Brochu et al. [25] for a tutorial
on Bayesian optimization. The Bayesian optimization pro-
cedure tries to avoid to sample new points that are close to
the training data, so we can avoid sampling a point in the
latent space that decodes to a molecule that is already in
the training set. However, this also means we might sam-
ple from areas in the latent space that decodes to invalid
molecules. [19] Instead they train a feedforward neural net-
work on the latent representation and then optimize the po-
sition by taking a few gradient steps starting from the la-
tent representation of a molecule with good properties. [19]

Jørgensen et al. [23] (continuing the example above) sample
a large number of random points from the latent space and
this set of points is decoded and encoded repeatedly to find
well-behaved regions of the latent space. After a number of
iterations the best points according to the regression model
are selected for further studies.

A more advanced approach is to train a regression model
in conjunction with the VAE model, as done for classifica-
tion in semi-supervised learning with deep generative mod-
els. [26] In this class of models we can condition the gener-
ation of new samples on a specific class label. This is yet
to be tried with the SMILES representation, but has been
successfully done for drug efficiency classification trained
on pre- and post-treatment gene expression vectors. [27]

6. Other generative models
Another popular deep generative model class is Generative
adversarial networks (GAN). [28] In this framework the gen-
erative model is pitted against a discriminative adversar-
ial model, which is typically also implemented as a neural
network. During training the discriminator is optimized to
classify whether a sample comes from the data distribution
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Figure 5. Visualization of embedding using principal component
analysis on the mean value of the embedding corresponding to
each data point. The dots marks the mean value and the shaded
ellipses are the contours corresponding to half the standard devi-
ation of each point.
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or it is generated by the generative model and the generative
model is optimized to fool the discriminator. Some advan-
tages compared to VAEs is that we do not need to specify
a variational distribution qφ(z|x) and the model can repre-
sent sharper data distributions. [28]

The GAN framework has been applied to generation of
molecular fingerprints in the DruGAN Adversarial Autoen-
coder. [29] They effectively replace the KL-term of a VAE
with a discriminator that discriminates between the encoder
and a sample from N (0, I). Apart from generating new
molecular fingerprints they use the VAE as pretraining for
an aqueous solubility regression problem.

It is also possible to formulate generative models based on
(deep) reinforcement learning in which a software agent
builds a data point through a series of actions, e.g. select-
ing the characters for a SMILES string representation. The
agent is trained to maximize a given notion of reward for
the generated data. The advantage of this approach is that
the reward function can be any function of the taken ac-
tions as opposed to VAE where we need to specify a differ-
entiable p(x|z) and for a GAN the discriminator must be
differentiable.

Olivecrona et al. [30] trains an autoencoder to recon-
struct SMILES strings. Then they replace the decoder
with a reinforcement-learning trained decoder to gener-
ate molecules with a desired property. They use a trade-
off parameter to trade off between generating from the
auto-encoder (prior) or follow the RL cost function. In
objective-reinforced generative adversarial network (OR-
GAN), [31] the GAN framework is combined with reinforce-
ment learning to generate SMILES strings. They also in-
troduce a trade-off parameter that weights between GAN
training (to make molecules look like training data) and RL
training (to make molecules with desired property).

7. Conclusion
This paper has given an introduction to variational autoen-
coders (VAE) and given a few examples of their appli-
cation for modeling molecule properties. VAE are flexi-
ble non-linear latent variables generative models. At the
time of writing the VAE have only been around for four
years. During these years variants of VAE have pushed
the state-of-the-art performance in many unsupervised and
semi-supervised benchmarks and found its way into many
application areas. Un- and semi-supervised learning are ar-
guably areas where we will see much more research fo-
cus in the coming years because supervised learning is
much more explored and better understood and because
having access to good unsupervised models will enable re-
searchers to explore the vast amounts of unlabeled data
available. There are still many open issues around infer-

ence with VAE such as how to construct better variational
approximations (inference networks) such that we can learn
better model for for example sequence data. When these
current shortcomings have been dealt with we will likely
see even more applications in many data abundant areas
such as computational materials science and biomedicine.
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