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Abstract

Neural message passing on molecular graphs is one of the most promising methods
for predicting formation energy and other properties of molecules and materials.
In this work we extend the neural message passing model with an edge update
network which allows the information exchanged between atoms to depend on
the hidden state of the receiving atom. We benchmark the proposed model on
three publicly available datasets (QM9, The Materials Project and OQMD) and
show that the proposed model yields superior prediction of formation energies and
other properties on all three datasets in comparison with the best published results.
Furthermore we investigate different methods for constructing the graph used to
represent crystalline structures and we find that using a graph based on K-nearest
neighbors achieves better prediction accuracy than using maximum distance cutoff
or the Voronoi tessellation graph.

1 Introduction

The current workhorse for screening of new molecules and materials is Density Functional Theory
(DFT), but machine learning methods show a potential for trading DFT accuracy for a several orders
of magnitude decrease in computation time. Until recently machine learning methods for predicting
properties of molecules and materials have been based on hand crafted feature descriptors, such as
Coulomb matrix (Rupp et al.| |2012), bag-of-bonds (Hansen et al., 2015]), fingerprints (e.g. [Rogers
and Hahn|2010) and histogram of angles (Faber et al.,|2017)). With the availability of large databases
of molecules and materials we are now seeing a shift towards data-driven representation learning as
we have seen in the computer vision field.

The graph neural network model was introduced by |Gori et al.| (2005)); Scarselli et al.| (2009) and
regained attention when [Li et al.| (2015)) expanded the model for different graph problems. In the last
few years a number of graph-based models for molecules have been proposed (Duvenaud et al., 2015},

Preprint.



Kearnes et al., 2016} |Schiitt et al., 2017alb; \Gilmer et al., |2017). These models can all be cast into the
framework of message passing on a molecular graph as shown by |Gilmer et al.| (2017).

The molecular graphs used as input for these models are either the topological graph defined by the
chemical bonds (with or without bond lengths) or a fully connected graph where the pairwise distances
between all the atoms are used as edge features. The topological approach does not directly apply
to crystalline structures because the chemical bonds are less well-defined and the fully connected
approach is impossible because the structure is infinite. The first application of neural message
passing for materials is SchNet (Schiitt et al., 2017c)) where a constant cutoff distance is used. As
noted by [Schiitt et al.[|(2017c) this may lead to “isolated atoms” if the cutoff distance is too small
and the computational burden increases with the size of the cutoff. This motivates us to investigate
different ways to define the molecular graphs based on nearest neighbor cutoff. Concurrently with the
work presented in this paper | Xie and Grossman|(2018) have also employed neural message passing on
graphs based on Voronoi tessellation and K-nearest neighbors, but they do not include a comparison
between the methods.

The edge neural network with set-to-set readout function (enn-s2s) (Gilmer et al., 2017)) demonstrated
state of the art prediction accuracy on the 13 properties of the QM9 (Ramakrishnan et al., 2014;
Ruddigkeit et al.,|2012) dataset consisting of 134k molecules. The recently proposed SchNet (Schiitt
et al.} 2017blc) network improves the accuracy on eight out of the twelve properties. In both of these
models the information exchanged between the atoms in the message passing scheme depends on
the representation of the sending atom and the edge feature on which the message is passed, but is
independent of the representation of the receiving atom. (Gilmer et al.|(2017) proposed the use of a
“pair message” network that includes the state of the receiving atom, but its predicting performance is
inferior to the enn-s2s network. In this work we propose to extend the SchNet model with an edge
update network such that the edge feature depends on the representation of the atoms that the edge
connects. This in turn means the information exchanged between the atoms also depends on the
receiving atom. Edge update networks was also utilised in the Weave module proposed by [Kearnes
et al. (2016)), but there the edges are forced to be undirected and the prediction accuracy is below that
of enn-s2s (Gilmer et al., 2017)).

We benchmark the proposed edge update network on QM9 molecules, Materials Project (Jain et al.,
2013)) and OQMD (Saal et al., 2013} |Kirklin et al., 2015) datasets and it shows an improvement
over current state of the art results on all three datasets. For crystalline structures we show that it is
beneficial to use a K-nearest neighbor graph rather than a graph defined by a constant cutoff distance
as used in previous work (Schiitt et al.,[2017c).

The paper is organised as follows. We present the proposed model within the neural message passing
framework in Section[2land we show how it is different from other models within the same framework
in Section[3] We introduce the three datasets in Section ] which are used for benchmarking the
model in Section [5]and we conclude the paper in Section [6]

2 Message Passing Neural Networks

We describe message passing neural networks similarly to (Gilmer et al.l2017) as a model operating
on a graph G with vertex features x,, and edge features ¢,,,. Each vertex has a hidden state h!, and
each edge has a hidden state e, which are updated in a number of interaction steps 7'. Vertices are
updated using a message function M () and a state transition function S;(+)
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where N (v) denotes the neighbourhood of v, i.e. the vertices that have an edge to v. The edges are
updated by an edge update function F(-) that depends of the previous edge state and the states of the
sending and receiving vertices of the current step
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After the T interaction steps a readout function R(-) is applied which maps the set of vertex states
into a single entity
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The readout function must be invariant to permutation of the vertex set, which is often achieved via
summation over the vertex features. The functions My, S;, E; and R are all implemented as neural
networks with trainable parameters and can be optimised using gradient descent. Some models, for
example Deep Tensor Neural Network (Schiitt et al.| [2017a), use weight sharing across the interaction
steps, thus My = M, S; = S and E; = F for all time steps ¢. A range of graph convolution models
(Duvenaud et al.l 2015} [Li et al.l 2015} Battaglia et al., 2016; [Kearnes et al., 2016; [Schiitt et al.|
2017a)) including Laplacian based models (Bruna et al.l 2013) can be cast into this message passing
framework as shown by |Gilmer et al.[(2017).

2.1 SchNet with Edge Update Network

We now describe how our model fits into the message passing framework described above. As vertex
input features, x,,, we use the atomic numbers which are translated into an embedding vector for each
atomic number as in (Schiitt et al., 2017alblc). The initial hidden state hg = {(x,) is thus the result
of a lookup function £ : Z — R“. The hidden state is a representation of the atom and its chemical
environment and the idea behind the message passing interaction steps is to refine this representation
based on the surrounding atoms and their chemical environments. Since the interaction between
atoms depends on the distance between them (Coulomb’s law) we use the interatomic distances as
initial edge features. We then expand the initial edge feature using a radial basis function. Denoting
the distance between atom v and w as d,,, the edge between node v and w in the graph has initial
feature vector
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where fimin, A, and k.« are chosen such that the centers of the functions covers the range of the input
features. In all our experiments we set Ly, = 0 A, A=0.1 A, kmax = 150. This expansion makes it
easier for the neural network model to decorrelate input and output similar to how 1-hot-encoding is
preferred over integer coding for categorical features.

The role of the hidden edge representation ¢!, is to control how the two connected atoms interact.

The idea of using an edge update network is to let the updated atomic hidden states influence this
interaction. We use an edge update function at each interaction step implemented as a two layer
feed-forward neural network. The input to the network is the concatenation of the edge representation
and the hidden states of the receiving and sending vertices. Thus
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and similarly for the subsequent steps
et = gWiy  g(We (R hif Y el)), (7
where g(z) = In(e® +1) — In(2) is the shifted soft-plus activation function (-;-) denotes vector

concatenation and {W,, Wiy, Wi, W} are trainable weight matrices. This update makes the

network edges directional.
The message function itself is only a function of the sending node and can be written as
Mt(hfﬂ hfu’ efjw) = Mt(hfin 651111) = (Wlthfu) © g(ng(Wgeiw))a ®)

where @ denotes element-wise multiplication and { W7, W%, Wi} are trainable weight matrices. This
message function enables the interpretation of the function on the right hand side of the element-wise
multiplication as a filter-generating function (Schiitt et al., 2017bic) fi(el,,) = g(W3ig(Wiel,)), a
continuous analogous to the filters applied over a discrete domain in a convolutional neural network
for image processing. We visualize this function towards the end of this section. The shifted soft-
plus activation function is chosen to follow [Schiitt et al.| (2017b/c) and can be seen as an infinitely
differentiable alternative to the rectified linear unit (ReLU) activation function.

The state transition function applies a two layer neural network on the sum of incoming messages
and adds this to the current hidden state as in Residual Networks (He et al.,[2015):

Se (hly,mbt) = bl + Whg(Wimbt), 9)

where {W} Wi} are trainable weight matrices. After a number of interaction steps T all the
information about the property we want to predict must be contained in the set of hidden node states.
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Figure 1: Flow of computations of the proposed model. The dimension of the hidden state for each
atom state is C' and the “fc”-blocks are fully connected layers annotated with the output dimension
and the applied activation function.

We apply a readout function for which we use a two layer neural network that maps the hidden
representation to a scalar and finally we sum over the contribution from each atom, i.e.

R({n} € G}) = > Wrg(Wehl), (10)
hl'eG
where { W7, W} are also trainable weight matrices. The model architecture and flow of computations
is illustrated in Figure[T] The original SchNet architecture is obtained if we “remove” the edge update
function, i.e. by setting E;(ht, h el 1) = el 1. This property enables direct comparison between
the two models.

We want to visualize the filter generating function to qualitatively assess what the model learns, but
because of the edge update network, the edge feature of the first layer ¢, does not only depend on
the distance d,,, between the two atoms, but also on the atom embeddings, i.e.

)(dvw) = f3 (Eo(hy, by, RBF (dyw))), (11)
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where RBF(+) is the radial basis function expansion defined in (3). We can now plot the filter
response of the first layer as a function of the sending and receiving atoms and the distance between
them as shown in Figure 2|and Figure [3| We see that the filter-generating function is almost identical
across the sending atom species but the variation across the receiving atoms is more significant. This
indicates that the model has learned to shape the messages depending on the receiving atom. The
ability to condition the filter on the pair of sending and receiving atoms is the key difference between
the proposed model and the SchNet model which is using the same filter for all combinations of
sending and receiving atoms.

3 Related Work

Our model is closely related to the other message passing neural network models used for molecular
properties prediction. However, the only message passing neural network that has explored the use of
edge updates is the Weave module (Kearnes et al.,[2016). The message function is My (hf, hi el ) =
a(Wiet,,) and the state transition function is S¢(hl, mi{™t) = a(Wi(a(Wih!); miTt)) where o)
is the rectified linear unit activation function, (-; -) denotes vector concatenation and {W7{, Wi, Wi}
are weight matrices. Unlike our model where the edge updates are interleaved with the node updates,

the edge updates are done in parallel, i.e.
ettt = B, (b, b, el (12)
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Figure 2: An example of one of the learned fil-
ters (out of 64) at the first layer of the message
passing architecture trained on prediction of for-
mation energy Uy of the QMO dataset. The filter
depends on the embedding of the sending (the
rows) and the receiving (the columns) nodes.
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Figure 3: Filter variation for all 64 learned filters
at the first layer of the message passing architec-
ture trained on prediction of formation energy
Uy of the QMY dataset. Each row of pixels cor-
responds to one of the 64 filters and the color
encodes the deviation (—0.4 is blue and 0.4 is

red) from the corresponding average filter (av-
eraged over sending and receiving atom). The
enumeration of the filters is arbitrary and we
have sorted them according to the value of the
deviation at 1.0 for the filter H—H. The filter
generating function shows a higher dependence
on the species of the receiving atom than the
species of the sending atom.

Another difference is that the edge updates in the Weave module are invariant to permutation of h,,
and h,, and the edges are thus undirected by design. The Weave module does not use the Euclidean
distance between the atoms as input features, but uses the graph distance on the chemical graph. The
model was tested on a range of different classification tasks as well as drug efficacy, photovoltaic
efficiency and solubility regression tasks. The model was reimplemented by |[Faber et al.|(2017)) and
Gilmer et al.|(2017). The version by [Faber et al.|(2017) includes a few modifications. The edges are
no longer forced to be undirected, i.e.

ef)t)l = E; (hf)’ hfw ef)w)
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and the Euclidean distance between the atoms is included in the message function by division of the
edge feature with a range of different powers of the distance d.,:

My(hE, hE el ) = a | concatenate Wieh,
vy Wy Tvw k€{0,1,2,3,6} dr

vw

13)

(14)
Both versions of the graph convolution model based on the Weave module shows similar performance

on the QM0 regression benchmark (Gilmer et al.,|2017} |[Faber et al.,2017), but the mean absolute
prediction error is significantly higher than that of the enn-s2s and SchNet models.

4 Datasets
We benchmark the proposed model on three publicly available datasets.

Quantum Machines 9 (QM9) (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) The dataset
contains 133 885 examples of stable small organic molecules with up to 7 heavy atoms (CONF) and



Table 1: Target properties of the QM9 dataset.
Target  Description

egomo  Energy of highest occupied molecular orbital (HOMO)
eLumo  Energy of lowest occupied molecular orbital (LUMO)
Ae Difference between LUMO and HOMO

ZPVE  Zero point vibrational energy

I Dipole moment

@ Isotropic polarizability

(R?)  Electronic spatial extent

Uy Internal energy at 0 K

U Internal energy at 298.15 K

H Enthalpy at 298.15 K

G Free energy at 298.15 K

C, Heat capacity at 298.15 K

up to 29 atoms in total including H. The 12 target properties for each example are shown in Table
[Il All properties are calculated at the B3LYP/6-31G(2df,p) level of quantum chemistry. Following
Gilmer et al.| (2017);Schiitt et al.| (2017c) we randomly select a training set of 110 000 molecules,
a validation set of 10 000 molecules and the remaining 13 885 examples are used for testing. The
validation set is used for early stopping and model selection.

The Materials Project (Jain et al.,2013) This dataset contains geometries and formation energies
of 69 640 inorganic compounds with input structures taken from the ICSD database (Bergerhoff]
et al.| [1983). We use the latest version of the database (version 2.0.0). The target property is heat of
formation. The number of examples is reduced to 69 539 after we exclude all materials with noble
gases (He, Ne, Ar, Kr, Xe) because they occur so infrequently in the dataset. This brings the number
of different elements in the dataset down to 84. Following (Schiitt et al., 2017c)) we randomly sample
60 000 of the examples to use as the training set. Of the remaining examples we use a set of 5000 for
validation and the remaining 4539 examples are used for testing.

Open Quantum Materials Database (OQMD) (Saal et al., 2013; Kirklin et al.,[2015) Is also a
database of inorganic structures. We have extracted the database from the supplemental material of
(Ward et al., 2017). Again we consider materials with noble gases as outliers and we also exclude
(highly unstable) materials with a heat of formation of more than 5 eV /atom. We thus exclude 210
out of 435 792 examples. As with the materials project we use 20% (87 116) of the examples as a
test set, 5000 for validation and the remaining 343 466 for training.

5 Results

We train the models with ADAM (Kingma and Bal, [2014) with initial learning rate 5 x 10~% or
1 x 10~* (when the higher learning rate leads to instability) and decrease the learning rate by multi-
plying with 0.96 every 100 000 gradient steps. We use a minibatch size of 32, run the optimization for
up to 1 x 107 gradient steps, compute the validation error every 50 000 steps and terminate if there
was no improvement within the last 1 x 10° steps. When applying the model on the two materials
datasets (Materials Project and OQMD) we use an average over messages rather than a sum in (I
because |Schiitt et al.| (2017c) found that it increases the stability of the optimization. For these
datasets (as well as for some of the QM9 properties, specifically egomo, eLumo, Ae, ZPVE, u, o and
(R?%)) we also take the average rather than the sum in the readout function (T0) because the target
property is formation energy per atom. When the readout function uses a sum we first estimate the

iTLi’

target mean and standard deviation atom-wise, i.e. ji = L 6= /> (% — )% where t; and n;

are the target and number of atoms for the ¢th training sample. The targets are then normalised using

t; = tl_gﬂ such that each scalar of the sum (I0) is expected to have zero mean and unit variance for
a given sample with known n;. When the readout function uses the average rather than a sum the
targets are normalised to zero mean and unit variance in the “usual” way, irrespectively of the number
of atoms. For the QM9 experiments we use a hidden state representation of dimension C' = 64 and



Table 2: Mean absolute error of formation energy predictions for V-RF, SchNet and the proposed
model. For QM9 the error is in meV and for the Materials Project and OQMD the numbers are in
meV /atom. The lowest error is highlighted in bold. We have obtained the V-RF results by running
the implementation provided by the authors (Ward et al., 2017), while SchNet results have been
obtained by running our own SchNet implementation. The numbers in parenthesis are the estimated
95th percentile, which have been obtained by sampling the test set (with replacement) 1 x 10° times.

Model QM9 Uy, Mat.Proj. OQMD
V-RF - 76.8 (79.8) 74.5(75.1)
SchNet 13.6 (14.2) 31.8(33.3) 27.5(27.9)

Proposed Model 10.5 (11.1) 22.7 (24.0) 14.9 (15.2)

for the two materials datasets we increase the dimensionality to C' = 256 because the number of
different elements in these datasets is 84 rather than 5 in QMO9. In agreement with the results shown
in (Schiitt et al.; [2017c)) and also noticed in (Gilmer et al.,[2017) we did not see a gain in prediction
accuracy when using more than 3 interaction steps, so the results presented here are are all with
T =3.

5.1 Edge Update Network

To assess the effect of the edge update network we train the proposed model with and without the
edge update network to predict formation energies of the three datasets. Without the edge update
network the model reduces to the SchNet model. For the two materials datasets (Materials Project
and OQMD) we use a cutoff distance of 5 A as used in (Schiitt et al.,[2017c) when constructing the
graphs. In the benchmark we also include a state of the art non-deep learning, graph-based method,
which creates a graph based on the Voronoi diagram, extracts a number of features from the graph
and uses a random forest regression model for making predictions and we refer to this method as
V-RF (Ward et al.,[2017). The model also uses the spatial information, but the interatomic distances
are normalised such that the model’s predictions are independent of the scaling. We benchmark all
three models on the same training and test set, but V-RF also uses the validation set for training
because early stopping is not used for this model. The mean absolute error for the test set predictions
are shown in Table 2] In all three benchmarks we observe a big improvement in prediction accuracy
when using the edge update network. This is not only due to the increase in number of parameters,
because merely increasing the number of interaction steps does not improve the performance of the
model.

We also train the proposed model to predict the 12 properties of the QM9 dataset. The results of
SchNet (Schiitt et al., 2017c)) and enn-s2s (Gilmer et al., [2017)) are included as references. The results
are shown in Table[3] The proposed model demonstrates a significant improvement in the prediction
of 9 out of 12 properties and matches the existing results for the remaining 3.

5.2 Choosing The Cutoff

We want to investigate the importance of choosing a cutoff when constructing the graph used as input
to the neural message passing models. The choice of cutoff is important because the computational
complexity of the algorithm increases linearly with the number of edges in the graph. On the other
hand if the number of edges is too small the interaction between the nodes of the graph may be too
limited. In (Schiitt et al., | 2017c) and in our experiments above a constant cutoff distance of 5 Ais
used. We use the OQMD dataset for this experiment and use the formation energy as the target for
predictions. With this cutoff distance some of the atoms of the dataset becomes isolated and further
increasing the cutoff distance comes with prohibitive computational cost. Alternatively we can use
a K-nearest cutoff method such that each atom receives messages from the K nearest neighboring
atoms no matter how far away they are. This makes the connections between atoms asymmetrical,
but that is not necessarily a problem. Finally we can use the neighbors as obtained through Voronoi
tessellation, i.e. two atoms are connected if they are neighboring cells in a Voronoi diagram. The
connections are symmetrical and we also avoid isolated atoms. We use the software package Voro++
(Rycroft, 2009) to compute the tessellation.



Table 3: Mean absolute error of predictions for different target properties of the QM9 dataset using
110k training examples. The lowest error is highlighted in bold. SchNet and enn-s2s results are
from (Schiitt et al., 2017c) and (Gilmer et al} 2017) respectively. The numbers in parenthesis are
the estiGmated 95th percentile, which have been obtained by sampling the test set (with replacement)
1 x 10° times.

Target  Unit SchNet enn-s2s Proposed (95th)
EHOMO meV 41 43 36.7 (373)
cLumo meV 34 37 30.8 (31.3)
Ae meV 63 69 58.0 (58.9)
ZPVE meV 1.7 1.5 1.49 (1.52)
N Debye 0.033 0.030 0.029 (0.029)
« Bohr? 0.235 0.092 0.077 (0.082)
(R?) Bohr? 0.073 0.180 0.072 (0.075)
Uy meV 14 19 10.5 (11.1)
U meV 19 19 10.6 (11.2)
H meV 14 17 11.3 (11.9)
G meV 14 19 12.2 (12.7)
C, cal/molK  0.033 0.040 0.032 (0.033)
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Figure 4: MAE of formation energy predictions  Figure 5: Average number of incoming messages
on OQMD using different cutoffs (cutoff dis- per atom for all atoms in OQMD. The error bars
tance in Angstrom, K-nearest and Voronoi) for ~ show the standard deviation.

constructing the graphs. The black dots show

the mean absolute error for the validation set

used for early stopping. The lowest error is 13.7

meV/atom using K-nearest cutoff with K=24.

The prediction accuracy of the model when using different cutoff methods is shown in Figure 4 We
also show the average number of incoming edges across all atoms in the OQMD dataset in Figure 3]
which serves as a proxy for the computational complexity. The results shows that the K-nearest cutoff
is more efficient in terms of achieving a low MAE for a given average number of edges per atom
and we achieve the lowest error (13.7meV) with K = 24. This is not only caused by eliminating the
“isolated atoms problem”, because the Voronoi tessellation method is also without this problem. One
reason could be that training the model is more stable when the number of incoming messages is
constant.

6 Conclusion

We have proposed a novel neural message passing model for molecules and materials by extending
the SchNet model with an edge update network that allows the information exchanged between atoms
to be dependent on the sending and receiving atom. This simple extension leads to a remarkable
improvement in prediction accuracy. By inspecting the learned filters for the molecular formation
energy prediction task we found that the edge updates in the first layer has a higher dependence on the
receiving atom than the sending atom. Through numerical simulations we demonstrate improvements
in accuracy on formation energy prediction of molecules and materials across all three benchmark



datasets. We also highlight the problem of choosing the cutoff when constructing the graphs used
as input for the model. We found that using K-nearest neighbors cutoff yields lower error than
using a constant cutoff distance. We believe these results are important for applications of message
passing neural networks for predicting properties of molecules and materials and hope to see more
applications and further improvements of the model architecture in the future.
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