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Abstract: The Parallel Factor Analysis 2 (PARAFAC2) is a multimodal factor analysis model suit-
able for analyzing multi-way data when one of the modes has incomparable observation units, for
example, because of differences in signal sampling or batch sizes. A fully probabilistic treatment
of the PARAFAC2 is desirable to improve robustness to noise and provide a principled approach
for determining the number of factors, but challenging because direct model fitting requires that
factor loadings be decomposed into a shared matrix specifying how the components are consistently
co-expressed across samples and sample-specific orthogonality-constrained component profiles. We
develop two probabilistic formulations of the PARAFAC2 model along with variational Bayesian
procedures for inference: In the first approach, the mean values of the factor loadings are orthogonal
leading to closed form variational updates, and in the second, the factor loadings themselves are
orthogonal using a matrix Von Mises–Fisher distribution. We contrast our probabilistic formulations
to the conventional direct fitting algorithm based on maximum likelihood on synthetic data and
real fluorescence spectroscopy and gas chromatography–mass spectrometry data showing that the
probabilistic formulations are more robust to noise and model order misspecification. The proba-
bilistic PARAFAC2, thus, forms a promising framework for modeling multi-way data accounting for
uncertainty.

Keywords: tensor decomposition; multi-way modeling; variational inference; orthogonality constraint;
PARAFAC2

1. Introduction

Tensor decompositions are multi-way generalizations of matrix decompositions such
as principal component analysis (PCA): A matrix is a second-order array with two modes,
rows and columns, while a data cube is a third order array with the third mode referred
to as slabs. When multi-way data have an inherent multi-linear structure, the advantage
of tensor decomposition methods is that they capture this intrinsic information and often
provide a unique representation without needing further constraints such as sparsity or
statistical independence.

Applications of tensor factorization originated within the field of psychometrics [1,2]
and have been widely useful in other fields such as chemometrics [3], for example, to model
the relationship between excitation and emission spectra of samples of different mixed
compounds obtained by fluorescence spectroscopy [4]. Tensor decomposition is today
encountered in practically all fields of research including signal processing, neuroimaging,
and information retrieval (see also [5–7]).

The two most prominent tensor decomposition methods are (i) the Tucker model [8],
where the so-called core array accounts for all multi-linear interactions between the com-
ponents of each mode, and (ii) the CandeComp/PARAFAC (CP) model [1,2,9], where
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interactions are restricted to be between components of identical indices across modes,
corresponding to a Tucker model with a diagonal core array. Both models can be considered
generalizations of PCA to higher-order arrays, with the Tucker model being more flexible
at the expense of reduced interpretability. The CP model has been widely used primarily
due to its ease of interpretation and its uniqueness [6,10].

In the CP model, the components are assumed identical across measurements, varying
only in their scaling. In many situations, this is too restrictive—for example, when the
number of samples vary across a mode. Furthermore, violation of the CP structure within
chemometrics can be caused by retention time shifts [11,12], whereas in neuroimaging, such
violations may be induced by subject and trial variability [6] invalidating the use of the CP
model. To handle variability while preserving the uniqueness of the representation, the Par-
allel Factor Analysis 2 (PARAFAC2) model was proposed [2]. It admits individual loading
matrices for each entry in a mode while preserving uniqueness properties of the decompo-
sition by imposing consistency of the Gram matrix (i.e., the loading matrix left multiplied
by its transpose, thereby imposing consistency in how components are co-expressed across
samples) [13–15]. It has since been applied within diverse application domains, includ-
ing handling variations in elution profiles due to retention shifts in chromatography [11];
monitoring and fault detection facing unequal batch lengths in chemical processes [16];
in neuroimaging to analyze latency changes in frequency resolved evoked EEG poten-
tials [17], to extract common connectivity profiles in multi-subject fMRI data accounting
for individual variability [18], and to characterize dynamic functional connectivity [19];
for cross-language information retrieval [20]; as well as for music and image tagging [21,22].
Recently, efforts have been made to scale the PARAFAC2 model to large-scale data [23–25],
enhance the robustness and efficiency of the conventional direct fitting algorithm [26,27],
and apply a non-negativity constraint also on the varying mode [28,29] as well as broader
sets of constraints based on alternating directions of the method of multipliers [30].

Traditionally, tensor decompositions have been based on maximum likelihood in-
ference using alternating least squares estimation in which the components of a mode
are estimated while keeping the components of other modes fixed. Initial probabilistic
approaches defined probability distributions over the component matrices and the core
array but relied on maximum likelihood estimates for determining a solution [31,32]. How-
ever, the Bayesian approach presented here makes inference with respect to the posterior
distributions of the model parameters and can thus be used to assess uncertainty in the
parameters and noise estimates. Most work on probabilistic tensor decomposition has
focused on the TUCKER and CP models using either Markov Chain Monte Carlo (MCMC)
sampling [33–35] or variational inference [36–39]. The CP and Tucker models have been
extended to model sparsity [35,40,41], non-negativity [42], and non-linearity [33,43] in
component loadings. Heteroscedastic noise modeling has been discussed in the context of
the CP model [41,44,45] and Tucker model [46], the latter also providing a generalization
of tensor decomposition to exponential family distributions. A review and toolbox for
probabilistic tensor decompositions are given in [45]. For component matrices with or-
thogonal components, recent work has explored using the von Mises–Fisher Matrix (vMF)
distribution in the CP model [47] and the block-term decomposition model defined as a
sum of Tucker models [48]. The former used a MAP-based estimation—which is not a
fully Bayesian approach—and the latter used a variational Bayesian inference approach.
In addition to using a variational Bayesian inference approach to the vMF distribution,
we also explore another orthogonal formulation that is applicable beyond the PARAFAC2
structure.

Benefits of probabilistic modeling include the ability to account for uncertainty and
noise while providing tools for model order selection. Whereas probabilistic modeling
can be directly applied to the CP and TUCKER models extending probabilistic PCA [49],
a probabilistic treatment of the PARAFAC2 model faces the following two key challenges:

(i) The ability to impose orthogonality on variational factors (necessary for imposing the
PARAFAC2 structure).
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(ii) Handling the coupling of these orthogonal components.

In this paper, we address these two challenges and derive the probabilistic PARAFAC2
model. In particular, we investigate two different formulations of the orthogonality con-
straint and demonstrate how the orthogonality of variational factors as in the least squares
estimation for conventional PARAFAC2 can be obtained in closed form using the singular
value decomposition. We exploit how the probabilistic framework admits model order
quantification by the evaluation of model evidence and automatic relevance determination.
We contrast our probabilistic formulation to conventional maximum likelihood estimation
on synthetic data as well as fluorescence spectroscopy and gas chromatography–mass
spectrometry data, highlighting the utility of the probabilistic formulation facing noise
and model order misspecification (A short workshop contribution in brief presenting the
proposed probabilistic PARAFAC2 was presented in [50].).

2. Methods

The three-way CP model can be formulated as a series of coupled matrix decompositions,

Xk = ADkF⊤ + Ek,

where Xk ∈ RI×J is the k’th slab of the three-way array X with dimensions I × J × K. Let
M be the number of components in the model; then, the matrix A with dimensions I × M
contains the loadings for the first mode and F with dimensions J × M contains the loadings
for the second mode. The matrices Dk, k = 1, . . . , K, are diagonal with dimensions M × M
and contain the loadings for the third mode. These are usually written as a single matrix
C ∈ RK×M, where the k’th row contains the diagonal of Dk. Ek denotes the residuals for
the k’th slab with dimensions I × J. Notice that the structure of the first and second mode
are invariant across the third mode in this model.

The PARAFAC2 model extends the CP structure by letting a mode have individual
factors Fk for each slab. The extension allows for a varying number of observations in
the chosen mode. This model would be as flexible as PCA on the concatenated data
[X1, X2, . . . XK] if not for the additional constraint that each Gram matrix of Fk be identi-
cal, F⊤

k Fk = Ψ, which is a necessary constraint in order to obtain unique solutions [51].
The three-way PARAFAC2 model can thus be written as

Xk = ADkF⊤
k + Ek s.t. F⊤

k Fk = Ψ.

Modeling Ψ explicitly can be difficult, but it is necessary and sufficient [15] to have Fk = PkF,
with Pk being a columnwise orthogonal J × M matrix and F a M × M matrix; thus, the
model can be written as

Xk = ADkF⊤P⊤
k + Ek s.t. P⊤

k Pk = I. (1)

In the following, we describe the conventional direct fitting algorithm [15] for parameter es-
timation in the PARAFAC2 model before we introduce the probabilistic model formulation
in Section 2.3.

2.1. Direct Fitting Algorithm

The parameters in the PARAFAC2 model in (1) can be estimated using the alternating
least squares algorithm [15], minimizing the constrained least squares objective function,

arg min
A,F,{Pk ,Dk} ∀k

∑
k
∥Xk − ADkF⊤P⊤

k ∥2 s.t. P⊤
k Pk = I.

For fixed A, Dk, and F, the Pk that minimizes the k’th term in the objective function is
equal to

arg max
Pk

Tr(FDk A⊤XkPk) (2)
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and can be computed as [15,52]
Pk = VkU⊤

k (3)

where Vk and Uk come from the singular value decomposition (SVD) decomposition

UkSkV⊤
k = FDk A⊤Xk.

Upon fitting Pk, each slab Xk of the tensor can be projected onto Pk, thereby leaving the
remaining parameters to be fitted as a CP model minimizing

arg min
A,F,{Dk}

∑
k
∥XkPk − ADkF⊤∥2. (4)

A solution to (4) is well explained by Bro in [3]. A well-known issue with maximum
likelihood methods is that it can lead to overfitting due to noise and a lack of uncertainty
in the model parameters, resulting in robustness issues, which we attempt to provide a
solution for by advancing the PARAFAC2 model to a fully Bayesian setting.

Model Selection

A general problem for latent variable methods is how to choose the model order, M.
A popular heuristic can be formed by how well the model fits the data given as

R2 = 1 −
∑
k
∥Xk − ADkF⊤P⊤

k ∥2

∑
k
∥Xk∥2 . (5)

However, this measure will simply increase until the model incorporates enough parame-
ters to completely fit the data, thus eventually leading to overfitting. The model selection
criterion would only be based on the expected noise level.

Another popular heuristic is the core consistency diagnostic (CCD), originally devel-
oped for the CP model [53], but that has shown useful for the PARAFAC2 model as well [54].
It is based on the observation that the CP model can be seen as a constrained Tucker model,
where the core array is enforced to be a superdiagonal array of ones. The principle behind
CCD is to measure how much the CP model violates this assumption of a superdiagonal
core array of ones by re-estimating the core array of the CP model to fit the Tucker model,
denoted G, while keeping the loadings fixed and then calculating the CCD according to

CCD = 100

(
1 −

||G − I||2F
||I||2F

)
,

in which I is the superdiagonal core array and || · ||F denotes the Frobenius norm.
The PARAFAC2 model can be written as a CP model for each slab as in (4); thus, the
core array can be estimated in the same way as for the standard CP model. This approach
was evaluated on synthetic as well as real data sets by [54], where the conclusion was that
even though the CCD can be seen as an useful parameter for determining model order, it is
not recommended in practice without considering other diagnostic measures, including
inspecting the residuals and the loadings.

2.2. Variational Bayesian Inference

In Bayesian modeling, the posterior distribution of the parameters θ is computed by
conditioning on the observed data X using Bayes’ rule, p(θ|X) = p(X|θ)p(θ)/p(X). The
posterior is thereby given as the product of the likelihood p(X|θ) and the prior probability
of the parameters p(θ) divided by the probability of the observed data p(X) under the
model, also known as the marginal likelihood. Evaluating the marginal likelihood is,
in general, intractable; instead, a variational approximation can be found by fitting a
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distribution q(θ)—called the variational distribution—to the posterior [55] minimizing the
Kullback–Leibler (KL) divergence, given by

q⋆(θ) = arg min KL
[
q(θ)

∥∥p(θ|X)
]
.

Minimizing the KL divergence is solved by maximizing a related quantity, the evidence
lower bound (ELBO).

ELBO(q(θ)) = E[log p(θ, X)]−E[log q(θ)].

A common choice is a variational distribution that factorizes over the parameters, known
as a mean-field approximation, q(θ) = ∏j qj(θj). Note that, for convenience, we choose
distributions belonging to the exponential family, as this allows closed-form solutions to be
found. The optimal variational distribution can then be found by iterative updates of the
form

qj(θj) ∝ exp
(
E−j[log p(θj, θ−j, X)]

)
, (6)

where E−j[·] denotes the expectation over the variational distribution except qj. For a
comprehensive overview of variational inference, see for example [56,57], and for Bayesian
inference in general, see [58].

2.3. Probabilistic PARAFAC2

We propose two probabilistic PARAFAC2 variants using the formulation in (1), which
differ only in how the orthogonality of Pk is handled. The constraint P⊤

k Pk = IM has
the probabilistic interpretation that E[P⊤

k Pk] = IM, in which the Pk is an orthogonal
matrix, which we call model (i). Another interpretation is to enforce that the expected value
E[Pk] is an orthogonal matrix and implies E[Pk]

⊤E[Pk] = IM—which we call model (ii). The
main motivation for the latter approach being the interpretation of the orthogonal factor is
identical to that of the maximum likelihood estimation. However, the resulting components
are no longer themselves restricted to the set of orthogonal matrices, namely, the Stiefel
manifold. As such, the model (ii) becomes more flexible as only the mean parameters of the
variational approximation are constrained to be orthogonal and not the expectation of their
inner product, as required for every realization of the underlying distribution to conform
to the PARAFAC2 model. We include the latter model formulation, as it provides simple
closed-form updates similar to the conventional direct fitting PARAFAC2 algorithm, as
shown below. The updates for (ii) are derived by constraining the mean of a matrix normal
(MN ) distribution within the variational approximation to the Stiefel manifold, whereas
the model i) formulation is based on [59] and uses a matrix von Mises–Fisher (vMF) Matrix
distribution, which only has support on the Stiefel manifold. We accordingly present the
following two generative models, (i) and (ii), for the probabilistic PARAFAC2:

ai· ∼ N (0, IM)

fm· ∼ N (0, IM)

ck· ∼ N (0, diag(α−1))

(i) Pk ∼ vMF(0)

(ii) Pk ∼ MN
(
0, IJ , IM

)
s.t. E[Pk]

⊤E[Pk] = IM

τk ∼Gamma(aτk , bτk )

Xk ∼ N (ADkF⊤P⊤
k , τ−1

k IJ),

where ai· denotes the ith row of the matrix A and similarly for fm· and ck·. We denote the
set of all {Pk}k=1,2,...,K as P . For the rate-scale Gamma distribution, the hyper-parameters
aτk and bτk are user defined. α defines the length scale of each component and can thus
be used for automatic relevance determination (ARD) by turning off excess components
by concentrating their distributions at zero when αm is large [56]. In this paper, we use
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the MAP estimate of αm as we are more interested in the model’s pruning ability than
uncertainty on αm. Pruning excess components is a challenging task, see [45] for ARD
within Bayesian inference in the CP and Tucker models, and [60] for Bayesian shrinkage
priors in general. Lastly, we allow the noise τk to vary across slabs, thereby accounting for
potential different levels of the noise (i.e., assuming heteroscedastic noise) across slabs.

2.4. Variational Update Rules

The inference is based on the following factorized distribution,

q(θ) = q(A)q(C)∏
m

q( fm·)∏
k

q(Pk)q(τk)

leading to the following ELBO,

ELBO(q(θ)) = E[log p(X , θ)]−E[log q(θ)]

= E[log p(X | A, C, F,P , τ)] +E[log p(A)]

+E[log p(C | α)] +E[log p(F)]

+E[log p(P)] +E[log p(τ)]

+ h(q(A)) + h(q(C)) + h(q(F))

+ h(q(P)) + h(q(τ)). (7)

Expanding the variational factors, as given by (6), the resulting variational distributions and
update rules are given in Table 1. The update for the factor matrix F is non-trivial, and to
obtain a closed-form solution we employ a componentwise updating scheme inspired by
the non-negative matrix factorization literature [61–63]. For each latent parameter, we use
(6) and moment matching to determine the optimal variational distributions.

Table 1. Overview of all the variational factors and their updates. Note that P = {Pk}k=1,2,...,K is
the set of projection matrices and (SVD) indicates the expression is decomposed by singular value
decomposition (SVD) to obtain UkSkVk.

Variational Factor Update

q(A) ∼ ∏
i
N (µai· , Σai· ) Σai· =

(
IM + ∑

k
E[τk]E[DkF⊤P⊤

k PkFDk]
)−1

µai· = Σai· ∑
k
E[τk]E[DkF⊤P⊤

k x⊤i·k]

q(C) ∼ ∏
k
N (µck· , Σck· ) Σck· =

(
diag(α) +E[τk]E[F⊤P⊤

k PkF] ◦E[A⊤A]
)−1

µck· = Σck·E[τk]diag(E[F⊤]E[P⊤
k ]X⊤

k E[A])

q(F) ∼ ∏
m
N (µ fm· , Σ fm· )

Σ fm· =
(

∑k E[τk]E[Dk A⊤ADk]E[p⊤
·mk p·mk] + IM

)−1

µ fm· = Σ fm·

(
∑
k
E[τk]

{
E[(P⊤

k )m]X⊤
k E[A]E[Dk]

−E[Dk A⊤ADk] ∑
m′\m

E[p⊤
·mk p·m′k] f⊤m′·

})
BPk = E[τk]E[F]E[Dk]E[A⊤]Xk
E[Pk] = VkΨU⊤

k , where BPk = UkSkV⊤
k (SVD)q(P) ∼ ∏

k
vMF(BPk )

(Ψ given by [59], Appendix A.2)
ΣPk = (E[FDk A⊤ADkF⊤] + I)−1

q(P) ∼ ∏
k

cMN
(

MPk , IJ , ΣPk

)
MPk = VkU⊤

k , where E[τk]E[F]E[Dk]E[A⊤]Xk = UkSkV⊤
k (SVD)

aτk = aτ + I·J
2

bτk =
(
b−1

τ + 1
2 Tr(XkX⊤

k )+ 1
2E[Tr(ADkF⊤P⊤

k PkFDk A⊤)]q(τ) ∼ ∏
k

Gamma(aτk , bτk )

−E[Tr(ADkF⊤P⊤
k X⊤

k )]
)−1

arg max
αm

ELBO(αm) αm = K
(

∑
k
E[c2

km]
)−1

These updates rules are used for implementing a computational algorithm for proba-
bilistic PARAFAC2, where each factor A, C, F,P , and τ is updated conditionally on all other
factors. This leads to an alternating optimization algorithm that, given an initial solution



Entropy 2024, 26, 697 7 of 24

(randomized or starting from the MAP solution), iteratively maximizes the evidence lower
bound, Equation (7), until the relative change in ELBO is below a convergence criteria or a
maximum number of iterations is reached. Finding the optimal solution is a non-convex
optimization problem that is sensitive to initialization and the order of the updates.

2.4.1. Von Mises–Fisher Loading

In the von Mises–Fisher model for the loading Pk, the variational distribution is
given by

vMF(Pk|BPk ) = κ(J, B⊤
Pk

BPk )
−1exp

(
tr[B⊤

Pk
Pk]
)
,

which is defined on the Stiefel manifold, P⊤
k Pk = I. The normalization constant is given

by κ = 0F1

(
1
2 J, 1

4 B⊤
Pk

BPk

)
vJ,M, where vJ,M is the volume of the J-dimensional Stiefel man-

ifold described by M components [64]. The hypergeometric function with matrix argu-
ment 0F1(·, ·) can be calculated more efficiently using the SVD of BPk = UkSkV⊤

k , since

0F1

(
1
2 J, 1

4 B⊤
Pk

BPk

)
= 0F1

(
1
2 J, 1

4 S2
k

)
[64].

Computing expectations over the vMF matrix distribution requires evaluating the
hypergeometric function and can be performed as described by [59]. († Source code for
approximating the hypergeometric function is available online http://staff.utia.cz/smidl/
files/mat/OVPCA.zip (28 February 2017). This code was used with default settings and
without modifications in the experiments. We also share it with the probabilistic PARAFAC2
code at https://github.com/philipjhj/VBParafac2). Note that it follows from the vMF
matrix distribution that E[P⊤

k Pk] = I, but in general E[Pk]
⊤E[Pk] ̸= I. However, if an

orthogonal summary representation is desired, one can inspect the mode of the vMF given
by UkV⊤

k .

2.4.2. Constrained Matrix Normal Loading

In the constrained matrix normal (cMN ) model for the variational factor of the
loadings Pk, we consider the distribution

cMN (Pk|MPk , IJ , ΣPk ) =
exp

{
− 1

2 trace
(

Σ−1
Pk

(Pk − MPk )
⊤ I−1

J (Pk − MPk )
)}

(2π)IM/2|ΣPk |I/2|IJ |M/2 ,

s.t. M⊤
Pk

MPk = I.

Instead of using the free form variational approach, we maximize (7) as a function of
the mean parameter MPk subject to the orthogonality constraint MPk M⊤

Pk
= IM.

The constraint consequently causes (7) to be constant except for the linear term of
the expected log of the probability density function of the data. The reason for this is that
all other terms do not depend on MPk or only on the matrix product MPk M⊤

Pk
, which is

equivalent to the identity matrix, resulting in the optimization problem

arg max
MPk

ELBO(MPk ) s. t. MPk MPk
⊤ = I

where

ELBO(MPk ) = ∑
k
E[τk]Tr(E[F]E[Dk]E[A⊤]Xk MPk ) + c.

This is equal to (2) except for a scalar leading to the same solution as for the maximum
likelihood estimation method, as given in (3). Detailed derivations of the expression above
are given in the Supplementary Material. The variance parameter ΣPk in the variational
distribution follows from moment matching using (6).

http://staff.utia.cz/smidl/files/mat/OVPCA.zip
http://staff.utia.cz/smidl/files/mat/OVPCA.zip
https://github.com/philipjhj/VBParafac2
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2.4.3. The F Matrix

The updates for fm· are non-trivial due to an inter-component dependency. The quadratic
term in (6) for F is

E−F [ai·DkF⊤Pk
⊤PkFDkai·

⊤]

=E−F [Tr(FDkai·
⊤ai·DkF⊤Pk

⊤Pk)]

=Tr(FE−F [Dkai·
⊤ai·Dk]F

⊤E−F [Pk
⊤Pk])

= ∑
mm′

(FE[Dkai·
⊤ai·Dk]F

⊤)mm′(E[Pk
⊤Pk])mm′

= ∑
mm′

fm·E[Dkai·
⊤ai·Dk]f

T
m′·E[pT

·mkp·m′k]

=∑
m

fm·E[Dkai·
⊤ai·Dk]E[pT

·mkp·mk]f
T
m·

+ 2 ∑
m

∑
m′\m

fm·E[Dkai·
⊤ai·Dk]E[pT

·mkp·m′k]f
T
m′·,

where we see that the quadratic term separates into a quadratic and linear part, revealing
the linear inter-component dependency.

2.4.4. Non-Trivial Expectations

An overview of all the factors and their updates are given in Table 1. Below, we detail
some non-trivial expectations and the necessary steps to compute them. The first group of
expectations deals with having the diagonal matrix Dk left and right multiplied with an
inner term. The first case is the following expectation,

E[Dkai·
⊤ai·Dk]

which is equivalent to the Hadamard product of the outer product of the diagonal of the
surrounding matrix with itself and the inner matrix; so, we can separate the expectation
into two parts

E[Dkai·
⊤ai·Dk] =E[ck·

⊤ck·] ◦E[ai·
⊤ai·],

where ck· is the vector containing the diagonal elements of Dk. The same rule applies for
the following expectation:

E[DkF⊤Pk
⊤PkFDk] =E[ck·

⊤ck·] ◦E[F⊤Pk
⊤PkF],

where the second expectation becomes trivial when using the vMF prior (ii) as the matrix
product Pk

⊤Pk is the identity matrix. However, when using the matrix normal distribution
(i), we obtain

E[Pk
⊤Pk] =Tr(ΣPk ) + IM,

which leads to the element with index ij of the expectation to be equal to

E[F⊤Pk
⊤PkF]ij = E[∑

m
(F⊤)im(Pk

⊤PkF)mj]

= E[∑
m

F⊤
mi ∑

m′
(Pk

⊤Pk)mm′ Fm′ j]

= ∑
m

∑
m′

E[F⊤
miFm′ j]E[(Pk

⊤Pk)mm′ ].
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Since the m’th and m′ components are independent, we have

E[F⊤
miFm′ j] ={
E[F⊤

mi]E[Fm′ j] + (Σ fm·)ij for m = m′.
E[F⊤

mi]E[Fm′ j] for m ̸= m′.

These are the most involved expectations when computing the update rules, and the
remaining are either simpler or depend upon the expectations derived here.

2.5. Noise Modeling

The probabilistic formulation of PARAFAC2 requires the specification and estimation
of the noise precision τ. We presently consider two specifications, i.e., homoscedastic noise
in which the noise of each slab Xk is identical—i.e., τ1 = . . . = τK—as assumed in the direct
fitting algorithm, and heteroscedastic noise, where the model includes a separate precision
for each of the K slabs.

2.6. Model Selection

A benefit of a fully probabilistic formulation of the PARAFAC2 model is that it provides
model order quantification using tools from Bayesian inference, see [45,60], respectively,
for details in the context of probabilistic tensor models and Bayesian inference in general.
We presently exploit automatic relevance determination by learning the length scale α, see
also [56]. In practice, we use the MAP estimates for the automatic relevance determination
because we are more interested in the pruning ability than the uncertainty estimates on α.
If desired, a variational estimate is easily found by letting αm follow a Gamma distribution,
c.f. [49]. Finally, the estimated ELBO on the data can also be used to compare different
model orders.

2.7. Computational Complexity

The computational complexity of probabilistic PARAFAC2—for a third-order tensor
X ∈ RI×J×K with M components—is the same as its maximum likelihood alternative,
namely, O(I · J · K · M + K · M3) where the first term stems from the matricized tensor
Khatri–Rao product (MTTKRP) and the second from the inversion (or SVD) of an M × M
matrix in connection with updating Pk for k = 1, 2, . . . , K. The MTTKRP cannot be avoided,
but caching of the sufficient statistics can make resulting calculations more efficient, al-
though the computational complexity remains unchanged. Usually, I, J, and K are much
greater than M; so, the MTTKRP becomes the limiting factor. Importantly, a limitation of
the variational Bayesian formulation of PARAFAC2 is that one cannot directly use the pro-
jection trick of PARAFAC2, where the K mode is projected such that XkPk = Yk, and Y then
has a PARAFAC structure. The trick relies on Pk being orthogonal, but in the variational
formulation, the expectation of E[Pk] is used instead of Pk; thus, it is no longer exactly
orthogonal. A remedy to this is either using sampling or a maximum a priori estimate
for which Pk is exactly orthogonal, although neither approach changes the computational
complexity of probabilistic PARAFAC2.

3. Results and Discussion

We evaluate the proposed models on both synthetic data and three real data sets: an
amino acid fluorescence (AAF) data set and two gas chromatography–mass spectrometry
(GC-MS) data sets. For comparison, we include the least squares PARAFAC2 direct-fit
(Direct Fit) [15], probabilistic CP with normal distributed factors and a Gamma ARD-prior
with either homoscedastic (VB PARAFAC ∆) or heteroscedastic (VB Parafac Ω) noise mod-
eling, probabilistic Tucker (VB TUCKER) [48], and Bayesian relaxed matrix factorization
(rMFT) [65]. For the proposed probabilistic PARAFAC2 methods, we initialize the model
parameters as the PARAFAC2 solution computed using the direct fitting algorithm (as
implemented by Bro [15] at http://www.models.life.ku.dk/go?filename=parafac2.m (13

http://www.models.life.ku.dk/go?filename=parafac2.m
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October 2017)) and repeat the initialization five times for the synthetic data and 50 times
for the real data to minimize the risk of getting stuck in a local extrema. The final model
parameters are chosen as the parameters with the lowest R2 for the direct fitting models
and the highest ELBO for the probabilistic models among the fitted models. Each model
estimation is limited to 104 iterations for the synthetic data and 5 × 104 iterations for the
real data. If the relative improvement in R2 for the direct fitting models and the ELBO for
the probabilistic models after an iteration goes below 10−9, we invoke an early stop. Empir-
ically, we experienced better learning of the probabilistic models by keeping the precision
parameter of the added noise fixed for some number of iterations while estimating the
length scale α. We choose this delay to last for the first 50 iterations. The hyper-parameters
of the precision were set to (shape,scale) = (aτk , bτk ) = (1, 1032) in order to be uninformative
for the variational distribution, as their influence on the updated parameters is very small
on the considered data sets.

3.1. Synthetic Data

To investigate the performance of the proposed model, we generate synthetic data
sets in a similar manner as in [15]. We generated the data tensor X by sampling A from
a zero-mean isotropic multivariate normal distribution with unit variance. F was taken
from a Cholesky factorization of an M × M matrix with 1’s in its diagonal and 0.4 in
all the off-diagonal elements. This essentially keeps the M components from being too
similar. Each element of C was sampled from a uniform distribution on the interval 0
to 30. Pk was constructed by the standard orthonormalization function in MATLAB of
a set of vectors sampled from a zero-mean isotropic multivariate normal distribution
with unit variance. The synthetic data sets were generated with either homoscedastic
or heteroscedastic additive noise at different signal-to-noise ratios (SNR) in the interval
[−20, 10] dB, with increments of 2 dB. Each configuration was generated 10 times, resulting
in 320 data sets. Each data set was given the dimensions 50 × 50 × 10 with M = 4
components.

The probabilistic PARAFAC2 models were fitted to the data sets with the results on
the synthetic data shown in Figures 1 and 2. To investigate the effect of the principled
model selection approach based on the ELBO, we compare it to the existing model order
selection heuristics by plotting the different selection criteria as a function of the number
of components used in the model in Figure 1a,b. The figures show the mean result of the
models fitted on the 10 synthetic data sets with four components and an SNR of 4. Overall,
the ELBO suggests the same number of components as the other two criteria, R2 and CCD.
When the data have heteroscedastic noise, the two probabilistic models that incorporate
this have a substantially higher ELBO compared to the homoscedastic models.

The results for varying SNR using the true number of components in each model
are shown in Figure 2a for data with homoscedastic noise and in Figure 2b for data with
heteroscedastic noise. We report the R2 on the noiseless data, i.e., using the formula from
(5), with the modification that the noise Ek has been subtracted from Xk for each slab.
Thereby, we measure the different models’ ability to capture the true underlying structure
in the data.

On the homoscedastic data, we see a small advantage of using the two vMF mod-
els compared to the direct fitting algorithm when we decrease the SNR of the data.
The cMNmodel performs slightly worse compared to the direct fitting algorithm. When
we move to the heteroscedastic data, we see a stronger separation of the four different
probabilistic methods. Naturally, the models with heteroscedastic noise outperform the
ones with homoscedastic noise. It is also evident that the penalty of modeling the noise as
heteroscedastic in a setting where the true noise is homoscedastic is small.

If the number of components is misspecified, see Figure 2c,d, we see a larger difference
between the performance of the probabilistic models accounting for the heteroscedastic
noise and the direct fitting algorithm. Here, we also observe that the vMF models perform
better compared to the cMNparameterization and see a larger positive effect of using
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the probabilistic models over the direct fitting algorithm. This is mainly explained by
the reduced tendency to overfit when accounting for the uncertainty and the automatic
relevance determination (ARD) pruning irrelevant components, as the Bayesian modeling
promotes simpler representations by the ARD.
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Figure 1. Mean of model selection criteria R2 and CCD reported on the conventional PARAFAC2,
and the ELBO for the TUCKER, rMTF, probabilistic PARAFAC, and probabilistic PARAFAC2 models,
with 1 to 8 components on 10 synthetic data sets with added homoscedastic (a) and heteroscedastic (b)
noise both with an SNR equal to 4. To make the results comparable, all ELBO values for each criterion
and model (but across noise model types) have been normalized to be in the range of 0 to 100. In the
legend, ∆ indicates a homoscedastic noise model and Ω indicates a heteroscedastic noise model.
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Figure 2. Recovery of the underlying signal in synthetic data with varying levels of homoscedastic
(a,c) and heteroscedastic (b,d) added noise, as measured by noiseless R2. For the conventional
PARAFAC2 and probabilistic PARAFAC2 models fitted with both the true number of components
((a,b), with M = M̃ = 4) and with an overspecified number of components ((c,d), with M̃ = 6). In the
legend, ∆ indicates a homoscedastic noise model and Ω indicates a heteroscedastic noise model.
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3.2. Real Data

As our synthetic results suggest, both formulations of the orthogonality constraint
appear to be reasonable; we further investigate their performance on three real-world
data sets. The first is an amino acid fluorescence (AAF) data set (available at www.
ucphchemometrics.com, previously http://www.models.life.ku.dk/Amino_Acid_fluo)
described in [61,66], in which the core-consistency diagnostic based on the PARAFAC2
model has previously successfully identified the three underlying constituents; tyrosine,
tryptophan, and phenylalanine [54]. The data set contains five samples with 201 emission
and 61 excitation intervals.

In addition, the models were evaluated on two gas chromatography–mass spectrome-
try (GC-MS) data sets. The first of these originated from wine (GC-MS-WINE) (available at
www.ucphchemometrics.com, previously http://www.models.life.ku.dk/Wine_GCMS_
FTIR) and was described in detail in [67]. PARAFAC2 has previously been used on GC-
MS data obtained from measuring wine [54,68]. The second data set based on tobacco
(GC-MS-TOBAC) was produced by [69] and kindly made available by the authors upon
request. The GC-MS-WINE data contain 44 samples of wine; here, we specifically consider
the unaligned data at the elution times 4.5903–4.7527 min over the mass range m/z 5–204.
The GC-MS-TOBAC data analyzed here contain 65 samples of tobacco, and we consider
the elution times between 4.95 and 5.03 min over the mass range m/z 50–350.

In Figures 3–6, we consider the estimated components using the direct fitting algo-
rithm and the proposed probabilistic PARAFAC2 with homo- and heteroscedastic noise,
respectively. In Figure 3, we report the ELBO using the probabilistic models as well as the
R2 and CCD using the direct fitting algorithm, and in Figures 4–6, we present the extracted
profiles for each data set.

For the amino acid fluorescence data, we observe that both the R2 and CCD strongly
suggest that a three-component model sufficiently describes the data, and the ELBO also
finds no substantial improvements beyond three components (Figure 3a). In Figure 4, we
investigate the extracted excitation loadings and observe that both the probabilistic and
direct fitting PARAFAC2 models extract similar components when too few or the correct
number of components are specified, i.e., M ≤ 3. However, facing misspecification by
having chosen too many components, the direct fitting algorithm extracts noisy profiles
that incorrectly reflect the underlying three constituents. In contrast, the probabilistic
PARAFAC2 models more robustly recover the three constituents when overspecifying the
number of components—in particular, when assuming homoscedastic noise.

For the GC-MS-WINE data, the R2 and CCD point to a four- or five-component model,
whereas the ELBO points to adding additional components (cf. Figure 3b). Inspecting
the extracted components in Figure 5, we again observe close agreement between the
extracted components using the probabilistic and direct fitting PARAFAC2 approaches
when specifying a low number of components (M ≤ 5). Furthermore, the estimated elution
profiles facing model order misspecification appear less influenced by noise than the elution
profiles extracted using the direct fitting algorithm, emphasizing the improved robustness
by the Bayesian approach.

For the GC-MS-TOBAC data given in Figure 3c, we observe support for a three-
component model according to R2 and CCD, whereas it is harder to decide a suitable model
order based on the ELBO. The change in the ELBO from two to three components for the
homoscedastic noise models suggests that local maxima have been identified. Inspecting
the extracted components in Figure 6, it is also evident that local maxima have been
reached for most of the probabilistic PARAFAC2 models with M < 4. For M > 3, most
of the probabilistic models successfully recover the three components without using the
extra components, where the direct fitting algorithm splits the three components into
multiple components.

www.ucphchemometrics.com
www.ucphchemometrics.com
http://www.models.life.ku.dk/Amino_Acid_fluo
www.ucphchemometrics.com
http://www.models.life.ku.dk/Wine_GCMS_FTIR
http://www.models.life.ku.dk/Wine_GCMS_FTIR
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Figure 3. Mean of model selection criteria R2 and CCD reported on the conventional PARAFAC2,
and the ELBO for the TUCKER, rMTF, probabilistic PARAFAC, and probabilistic PARAFAC2 models
with 1 to 8 components on the AAF (a), GC-MS-WINE (b), and GC-MS-TOBAC (c) data sets. To make
the results comparable, all ELBO values for each criterion and model (but across noise model types)
have been normalized to be in the range of 0 to 100. In the legend, ∆ indicates a homoscedastic noise
model and Ω indicates a heteroscedastic noise model.
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Figure 4. The excitation loadings of the AAF data given by the conventional PARAFAC2 and
probabilistic PARAFAC2 models. From top to bottom, the loadings consist of 2 to 8 components.
For each model, the background heatmap visualizes the correlation between the data reconstruction
for each identified component and the componentwise data reconstruction of the conventional
PARAFAC2 model with 3 components (ground-truth). Furthermore, to the left, a Hinton diagram
indicates the relative squared Frobenius norm of the componentwise data reconstructions to the sum
of them all. In the headers, ∆ indicates a homoscedastic noise model and Ω indicates a heteroscedastic
noise model.
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Figure 5. The elution profiles of the GC-MS-WINE data given by the conventional PARAFAC2 and
probabilistic PARAFAC2 models. From top to bottom, the profiles consist of 2 to 8 components.
For each model, the background heatmap visualizes the correlation between the data reconstruction
for each identified component and the componentwise data reconstruction of the conventional
PARAFAC2 model with 5 components (expert conclusion). Furthermore, to the left, a Hinton diagram
indicates the relative squared Frobenius norm of the componentwise data reconstructions to the sum
of them all. In the headers, ∆ indicates a homoscedastic noise model and Ω indicates a heteroscedastic
noise model.
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Figure 6. The elution profiles of the GC-MS-TOBAC data given by the conventional PARAFAC2
and probabilistic PARAFAC2 models. From top to bottom, the profiles consist of 2 to 8 components.
For each model, the background heatmap visualizes the correlation between the data reconstruction
for each identified component and the componentwise data reconstruction of the conventional
PARAFAC2 model with 3 components (expert conclusion). Furthermore, to the left, a Hinton diagram
indicates the relative squared Frobenius norm of the componentwise data reconstructions to the sum
of them all. In the headers, ∆ indicates a homoscedastic noise model and Ω indicates a heteroscedastic
noise model.

Of the three considered data sets, the ELBO itself does not strongly indicate an optimal
number of components; however, most of the probabilistic models still manage to recover
the underlying structure given by the ground-truth or expert conclusion in spite of being
overspecified. This is in sharp contrast to MAP estimation, where overspecification typically
leads to degenerate solutions. We attribute this to the regularization invoked by accounting
for uncertainty and the automatic relevance determination promoting the pruning of
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excess components. The relative importance of each component can be observed from
the Hinton diagrams in Figures 4–6. Each square in the Hinton diagrams indicates the
relative contribution of each component to the full data reconstruction, computed as the
squared Frobenius norm of the componentwise data reconstruction divided by the sum of
the squared Frobenius norms of all the componentwise data reconstructions.

4. Conclusions

We developed a fully probabilistic PARAFAC2 model and demonstrated how orthogo-
nality can be imposed in the context of variational inference in two different ways: Firstly,
using the von Mises–Fisher matrix distribution, assuming E[Y⊤Y ] = I, as proposed in
the context of variational PCA in [59]. Using this distribution forces all the realizations
of the given matrix parameter to be orthogonal. Secondly, using the constrained matrix
normal distribution, assuming E[Y⊤]E[Y ] = I, in which the mean is constrained to the
Stiefel manifold. This effectively results in a more flexible model as only the expectation of
the realizations of the matrix are orthogonal and not the realizations themselves. For the
latter approach, we presently derived a simple closed-form solution based on optimizing
the lower bound.

Both probabilistic PARAFAC2 approaches were able to successfully recover the under-
lying signal in synthetic data when considering homoscedastic or heteroscedastic added
noise. However, we found that the specification of orthogonality based on vMF was more
robust to noise than the specification based on cMN . In particular, we observed sub-
stantial noise robustness in the probabilistic PARAFAC2 models when compared to the
conventional direct fitting approach, both when the correct model order was specified and
when overestimating the number of components.

On the AAF data, the probabilistic PARAFAC2 framework was able to correctly
identify the underlying constituents and demonstrated improved robustness to model
misspecification when compared to the conventional direct fitting algorithm. The EL-
BOs of the probabilistic models suggest a model order of three components similar to
the CCD and R2 heuristics computed from the direct fitting estimations. For the two gas
chromatography–mass spectrometry data sets, GC-MS-WINE and GC-MS-TOBAC, we also
observed agreement between the probabilistic and direct fitting PARAFAC2 models but
with more mixed results. The model order is not so clearly evident from the ELBO on these
data sets. However, we see that the automatic relevance determination suppresses unneces-
sary components fairly well on both data sets, ensuring robustness to overspecification of
the model, which otherwise leads to degenerate solutions when the direct fitting approach
is used. A few results from the probabilistic PARAFAC2 did not match the results of the
direct fitting approach. This can most likely be explained by encountering local maxima,
since variational methods are known to suffer from issues of underestimating uncertainty
and thereby becoming overly confident on estimated parameters.

We attribute the performance improvements of probabilistic PARAFAC2 over conven-
tional PARAFAC2 to the casting of PARAFAC2 as a Bayesian model, which approximates
the posterior distribution of the parameters—rather than a point estimate as conventional
PARAFAC2. Additionally, Bayesian inference, in general, enjoys more robustness to noise
and overspecification of the model [48]. The proposed probabilistic PARAFAC2 models
form an important step in the direction of applying probabilistic approaches to more ad-
vanced tensor decomposition approaches and a new direction for handling orthogonality
constraints in probabilistic modeling—in general, using the proposed constrained matrix
normal distribution framework, which has a simple variational update. In particular, we
anticipate that the orthogonality constraints within a probabilistic setting may also be useful
for the Tucker decomposition, in which orthogonality is typically imposed [5]; the block-
term decompositions [70], in which orthogonality may be beneficial to impose within each
block as previously considered using the vMF [48]; or to improve identifiability within
the CP decomposition by imposing orthogonality as implemented in the n-way toolbox
(http://www.models.life.ku.dk/nwaytoolbox). PARAFAC2 is actively being advanced and

http://www.models.life.ku.dk/nwaytoolbox
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employed for new applications, e.g., recently, the higher-order block term decomposition
has been embedded with a PARAFAC2 structure [71].
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Abbreviations
The following abbreviations are used in this manuscript:

PCA principal component analysis
SNR signal-to-noise ratio
SVD singular value decomposition
ARD automatic relevance determination
ELBO evidence lower bound
CCD core consistency diagnostic
KL divergence Kullback–Leibler divergence
vMF Von Mises–Fisher
CP CandeComp/PARAFAC

Appendix A. Software

A MATLAB implementation of the probabilistic PARAFAC2 model was used to run all
experiments and generate the results in the paper. The source code is available on GitHub
(https://github.com/philipjhj/VBParafac2), including a guide on setup and usage.

Appendix B. Deriving the Variational Inference

In the following, we derive the most important expressions used to identify the update
rules of the model parameters. Below is a overview of the used notation.

https://github.com/philipjhj/VBParafac2
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Appendix B.1. The Evidence Lower Bound (ELBO)

An expansion of the ELBO is shown here:

ELBO(q(θ)) =E[log p(X , θ)]−E[log q(θ)]

=E[log p(X , A, C, F,P , τ, α)]−E[log q(A, C, F,P , τ, α)]

=E[log p(X | A, C, F,P , τ)p(C | α)p(F)p(P)p(τ)]

−E[log q(A)q(C)q(F)q(Pk)q(τ)]

=E[log p(X | A, C, F,P , τ)] +E[log p(A)] +E[log p(C | α)]

+E[log p(F)] +E[log p(P)] +E[log p(τ)]

−E[log q(A)]−E[log q(C)]−E[log q(F)]−E[log q(P)]

−E[log q(τ)]

=E[log p(X | A, C, F,P , τ)] +E[log p(A)] +E[log p(C | α)]

+E[log p(F)] +E[log p(P)] +E[log p(τ)]

+ h(q(A)) + h(q(C)) + h(q(F)) + h(q(P))

+ h(q(τ))

How to derive each of these terms is shown in the following.

Appendix B.2. Standard Moment Matching

As the formulation of the probabilistic PARAFAC2 model consists of the multivariate
normal and gamma distribution, we expand the logarithm of their general expressions
below. This will serve as a reference for identifying the parameters of the variational
distribution when reading the derivations of the update rules.

Appendix B.2.1. Multivariate Normal Distribution

Deriving the log of the probability density function of the multivariate normal distri-
bution amounts to

f (x1, . . . , xk) = N ([x1, . . . , xk]; µX , ΣX) = N (X; µX , ΣX)

f (x1, . . . , xk) = (2π)−
k
2 (|ΣX |)−

1
2 exp(−1

2
(X − µX)

⊤
Σ−1

X (X − µX))

⇒ ln f (x1, . . . , xk) = ln
[
(2π)−

k
2 (|ΣX |)−

1
2 exp

(
−1

2
(X − µX)

⊤
Σ−1

X (X − µX)

)]
= − k

2
ln(2π)− 1

2
ln(|ΣX |)−

1
2
(X − µX)

⊤
Σ−1

X (X − µX)

= − k
2

ln(2π)− 1
2

ln(|ΣX |)−
1
2

X⊤Σ−1
X X − 1

2
µX

⊤Σ−1
X µX + µX

⊤Σ−1
X X

= −1
2

ln(|ΣX |)−
1
2

X⊤Σ−1
X X − 1

2
µX

⊤Σ−1
X µX + µX

⊤Σ−1
X X + c

where c is the constant terms with respect to Xk and its parameters.
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Appendix B.2.2. Gamma Distribution

Deriving the log density function of the gamma distribution amounts to

f (x; a, b) =
1

Γ(a)ba xa−1 exp(−xb−1)

⇒ ln f (x; a, b) = ln
[

1
Γ(a)ba xa−1 exp(−xb−1)

]
= ln

1
Γ(a)ba + (a − 1) ln x − xb−1

=(a − 1) ln x − xb−1 + c

where c is the constant terms with respect to x.

Appendix B.3. Non-Trivial Moment Matching

To identify the parameters for C and F, non-trivial steps had to be performed.

Appendix B.3.1. The F Matrix

The variational factor for F is defined as

q(F) ∝ expE−F [log p(X , θ)]

∝ expE−F [log p(X , F | A, C,P , τ)]

where

E−F [log p(X , F | A, C,P , τ)] =E−F [log p(X | A, C, F,P , τ)] +E−F [log p(F)]

=∑
k

∑
i
E−F [log p(xi·k | ai·, Dk , F, Pk , τk)] + ∑

m
E−F [log p( fm·)]

=∑
k

∑
i
E−F [−

1
2
(ai·Dk F⊤P⊤

k )IMτk(ai·Dk F⊤P⊤
k )

⊤

+ ai·Dk F⊤Pk
⊤IMτkxi·k

⊤] + ∑
m
E−F [−

1
2

fm·IM fm·
⊤] + c

=− 1
2 ∑

k
∑

i
E−F [τk(ai·Dk F⊤Pk

⊤Pk FDkai·
⊤)]− 1

2 ∑
m

fm· fm·
⊤

+ ∑
k

∑
i
E−F [τkai·Dk F⊤Pk

⊤xi·k
⊤] + c

=− 1
2 ∑

k
E[τk ]∑

i
E−F [ai·Dk F⊤Pk

⊤Pk FDkai·
⊤]− 1

2 ∑
m

fm· fm·
⊤

+ ∑
k

∑
i
E[τk ]E−F [ai·Dk F⊤Pk

⊤xi·k
⊤] + c.

Again, we reorder the parameters using the trace operator to identify the quadratic term.
This time, the quadratic term separates into a quadratic and linear part revealing a linear
intercomponent dependency.
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E−F [ai·DkF⊤Pk
⊤PkFDkai·

⊤] =E−F [Tr(ai·DkF⊤Pk
⊤PkFDkai·

⊤)]

=E−F [Tr(FDkai·
⊤ai·DkF⊤Pk

⊤Pk)]

=Tr(FE−F [Dkai·
⊤ai·Dk]F

⊤E−F [Pk
⊤Pk])

= ∑
mm′

(FE[Dkai·
⊤ai·Dk]F

⊤)mm′(E[Pk
⊤Pk])mm′

= ∑
mm′

fm·E[Dkai·
⊤ai·Dk]f

T
m′·E[pT

·mkp·m′k]

=∑
m

fm·E[Dkai·
⊤ai·Dk]E[pT

·mkp·mk]f
T
m·

+ 2 ∑
m

∑
m′\m

fm·E[Dkai·
⊤ai·Dk]E[pT

·mkp·m′k]f
T
m′·

Again, we have to reorder and include the linear terms as before.

∑
i
E−F [ai·DkF⊤Pk

⊤xi·k
⊤] =∑

i
∑
m
E−F [ai·Dk fm·

⊤(Pk
⊤)mxi·k

⊤]

=∑
i

∑
m
E[ai·]E[Dk] fm·

⊤E[(Pk
⊤)m]xi·k

⊤

=∑
i

∑
m
E[(Pk

⊤)m]xi·k
⊤E[ai·]E[Dk] fm·

⊤

=∑
m
E[(Pk

⊤)m](∑
i

xi·k
⊤E[ai·])E[Dk] fm·

⊤

Accounting for all terms and matching them to the ones in Section B.2, we arrive at
the following update rules for F.

q(F) = ∏
m

N (µ fm· , Σ fm·), (A1)

µ fm· = Σ fm·(∑
k
E[τk](E[(Pk

⊤)m]Xk
⊤E[A]E[Dk]− ∑

i
E[Dkai·

⊤ai·Dk] ∑
m′\m

E[pT
·mkp·m′k]f

T
m′·)),

(A2)

Σ fm· = (∑
k
E[τk]∑

i
E[Dkai·

⊤ai·Dk]E[pT
·mkp·m′k] + IM)−1. (A3)

Appendix B.3.2. Constrained Matrix Normal Distribution

The orthogonality constraint in the model can be handled with two formulations. This
section concerns the approach where the mean parameters of the variational approximation
for Pk are constrained to be orthogonal, and the following section describes the solution
using the von Mises–Fisher distribution. Instead of using the free form variational updates,
we optimized the ELBO with respect to the mean parameters MPk = E[Pk] constrained to
be orthogonal.
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MPk =arg max
MPk

ELBO(MPk ) s.t. MPk MPk
⊤ = I

=arg max
MPk

E[log p(X | A, C, F,P , τ)]

+E[log p(A)] +E[log p(C | α)]

+E[log p(α)] +E[log p(F)] +E[log p(P)] +E[log p(τ)]

+ h(q(A)) + h(q(C)) + h(q(F)) + h(q(P))

+ h(q(τ)) + h(q(α)) s.t. MPk MPk
⊤ = I

=arg max
MPk

E[log p(X | A, C, F,P , τ)] + c1 s.t. MPk MPk
⊤ = I

=arg max
MPk

− 1
2 ∑

k
∑

i
E[τk(ai·DkF⊤Pk

⊤PkFDkai·
⊤)]

+ ∑
k

∑
i
E[τkai·DkF⊤Pk

⊤xi·k
⊤] + c2 s.t. MPk MPk

⊤ = I

=arg max
MPk

∑
k

∑
i
E[τkai·DkF⊤Pk

⊤xi·k
⊤] + c3 s.t. MPk MPk

⊤ = I

=arg max
MPk

∑
k
E[τk]Tr(E[A]E[Dk]E[F⊤]E[Pk

⊤]Xk
⊤) + c3 s.t. MPk MPk

⊤ = I

=arg max
MPk

∑
k
E[τk]Tr(E[F]E[Dk]E[A⊤]Xk MPk ) + c3 s.t. MPk MPk

⊤ = I.

Only the linear term of the probability density function of the data X depends on MPk
since MPk in the quadratic terms is the identity matrix. Except for a scalar, the optimization
problem reduces to the same one as finding Pk in the alternating least squares algorithm,
where one maximizes Tr(E[F]E[Dk]E[A⊤]Xk MPk ) subject to the orthogonality constraint.
The solution to this is found by simply applying an SVD, as stated in the main text (The
alternating least squares method is described in [15], and the solution to the optimization
problem was first described in [52].).
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