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Abstract

Reinforcement learning policies are often represented by neural networks, but programmatic
policies are preferred in some cases because they are more interpretable, amenable to formal
verification, or generalize better. While efficient algorithms for learning neural policies exist,
learning programmatic policies is challenging. Combining imitation-projection and dataset ag-
gregation with a local search heuristic, we present a simple and direct approach to extracting a
programmatic policy from a pretrained neural policy. After examining our local search heuris-
tic on a programming by example problem, we demonstrate our programmatic policy extraction
method on a pendulum swing-up problem. Both when trained using a hand crafted expert policy
and a learned neural policy, our method discovers simple and interpretable policies that perform
almost as well as the original.

1 Introduction
While neural policy representations are by far the most common in modern Reinforcement Learning
(RL), other representations are worth considering. Programmatic policies provide a number of
potential benefits: For example, a program might be read and understood by a human, something
that generally is not possible with a neural network. Programs are also inherently compositional,
which allows for not only reuse of policies in new combinations, but also compositional reasoning
about their behavior.

However, learning programmatic policies is challenging. The structured, discrete space of pro-
grams does not allow for the gradient based optimization that neural policies benefit greatly from.
Compared to a more standard inductive synthesis setting, programmatic policies must be evaluated
in an environment that, whether simulated or real, is expensive to interact with. Several approaches
exist that attempt to handle this interaction issue, such as learning a parametric environment model
(Hein et al., 2017), imitating an existing policy (Bastani et al., 2018; Verma, Murali, et al., 2018),
or evaluating fewer programs by learning to search more efficiently (Ellis et al., 2018). Furthermore,
Verma, Le, et al. (2019) extend the imitation setting by providing a framework for intertwining RL
and programmatic policy imitation.

This imitation-projection framework brings us a step closer to programmatic RL, where pro-
grams can be learned gradually through interaction with the environment. Essentially, this allows
similar sample efficiency when compared to policy gradient methods, since the imitation-projection
step is performed offline by scoring programs according to an imitation learning objective. One
could even plausibly imagine that the inductive bias in a problem-specific policy language could
lead to improved learning. The framework leaves many choices open in terms of how the policy
update and programmatic policy projection steps are performed, as well as in terms of defining the
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program space. Verma, Le, et al. (2019) perform experiments with a specific choice of update and
projection, using two tailored program spaces based on PID controllers with either decision tree
regression or Bayesian optimisation over some parameters as the projection operator.

In this paper we experiment with a more general program space based on Domain Specific Lan-
guages (DSLs) implemented in a typed lambda calculus. We demonstrate a method for re-using
projections by local search around a previous projection, potentially reducing the required com-
putational effort while allowing much longer programmatic policies to be found. Since imitation-
projection greatly reduces environment interaction, the presented method takes advantage of this
and performs relatively large searches in program space. Demonstrating the method on the pen-
dulum swing-up task, we show that a simple and effective programmatic policy can be found by
imitating a learned neural policy.

2 Methods
Our framework is based on previous work on imitation-projected and programmatically interpretable
reinforcement learning (Verma, Murali, et al., 2018; Verma, Le, et al., 2019). We extend these
methods to DSLs defined in a general-purpose programming language, namely the lambda calculus
with Hindley-Milner type system. Using the building block of depth-limited type-directed program
search, we construct an algorithm for finding a programmatic imitation of a given control policy.
In order to discover programs much larger than what the depth limit of a single search allows, the
algorithm performs multiple iterations of local search. Before describing the full algorithm, it is
useful to consider the type-directed search itself.

2.1 Program synthesis by type-directed search
By choosing the lambda calculus with Hindley-Milner type system, we obtain an expressive program
space, in which exhaustive search for programs of a specified type is straightforwardly defined. An
especially useful feature of this program representation is that the type system can be used to reduce
the search space, by filtering candidate programs that do not type check. Further filtering is possible,
such as the filtering of semantically similar programs as done in MagicHaskeller (Katayama, 2008).
In this program representation, DSLs can be defined as sets of typed functions and constants, which
together represent the space of possible programs to be searched.

Our starting point for program synthesis is a simple version of depth-limited type-directed
search. This choice is not a given; other, more advanced program search algorithms can be used.
Here, the space of all programs in a DSL is viewed a tree, with the empty program at the root.
Internal nodes are partial programs, with each branch being a candidate substitution for a hole in
a partial program. Enumerating through this search tree results in generating all valid programs,
according to the DSL, as the leaves of the tree.

We take advantage of the typed language to reduce the search space. Instead of yielding all
syntactically valid programs, as explained above, we want to yield only well-typed programs. This
type-directed search algorithm is the same as used by e.g. Ellis et al., 2018 to sample programs
from a prior distribution, but instead of sampling, all programs are enumerated. To expand a node
in the search tree, a typed hole (an empty program with a type annotation) in the corresponding
partial program is selected for synthesis. Then, valid candidates are selected from the set of all
DSL candidates by unification; the resulting context of the unification is propagated to the further
expansion of child nodes, ensuring that any constraints are satisfied. All candidates that can produce
the correct type are considered, even if they would need arguments applied to them first.
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Algorithm 1 Depth-limited local search (typed neighborhood)
1 input: domain specific language D
2 input: imitation dataset Γ
3 input: initial program P
4 output: best program in typed neighborhood p∗

5 function Nd
n(D, P, l) // generates the neighborhood for location l in P

6 return ∅ if d = 0
7 T = type(P, l) // type of expression at l in P
8 C = {e | e : t ∈ D ∧ T can unify with yield(t)} // everything valid from DSL
9 P ′ = {edit(P, l, c)) | c ∈ C}

10 // return all complete programs, and recursively generate remaining partial ones
11 return {p ∈ P ′ | p is complete} ∪Nd−1

n (D, p′, l′) ∀p′ ∈ {p′ ∈ P ′ | p′ is partial}
12 where l′ is the location of the first hole in p′

13 end
14 p∗ ← ∅, v∗ ←∞ // best program and imitation loss
15 foreach l ∈ set of all paths in P
16 El = expression(P, l) // expression at location
17 D′ = D ∪ (El, type(El)) // locally extend DSL with El

18 foreach p ∈ Nd
n(D′, P, l)

19 evaluate p on Γ and update p∗ and v∗

20 end
21 end

Algorithm 2 Iterative local programmatic policy imitation
1 input: oracle policy f
2 optional input: initial program pinit = ∅
3 output: imitation program pK
4 collect N on-policy trajectories using f:
5 τ0 =

((
s00, f(s

0
0), s

0
1, f(s

0
1), . . .

)
, . . . ,

(
sN0 , f(sN0 ), sN1 , f(sN1 ), . . .

))
6 create supervised dataset Γ0 = {(s, f(s)) |s ∈ τ0}
7 derive p0 from Γ0 by local search from pinit // algorithm 1
8 for k = 1, . . . ,K
9 collect M on-policy trajectories using pk−1:

10 τk =
((
s00, pk−1(s

0
0), s

0
1, pk−1(s

0
1), . . .

)
, . . . ,

(
sM0 , pk−1(s

M
0 ), sM1 , pk−1(s

M
1 ), . . .

))
11 create supervised dataset Γ′ = {(s, f(s)) |s ∈ τk}
12 aggregate datasets:
13 Γk = Γk−1 ∪ Γ′ // or Γk = Γ0 ∪ Γ′, which is cheaper
14 derive pk from Γk by local search from pk−1 // algorithm 1
15 end

2.2 Typed neighborhood
In alg. 1, the type-directed depth-limited synthesis algorithm is used to generate what we call the
typed neighborhood of a given program. This construction applies the basic synthesis algorithm in
multiple places of an existing program, resulting in a iterative local search method that can both
add and remove subprograms in each iteration. Because of this, the algorithm can synthesize larger
programs, while also benefiting from work performed in previous iterations of the search.

In more detail, we use a tree edit operation to define the programs contained within a typed
neighborhood. Define the edit operation edit(P, l, P ′) as the program obtained by replacing the
subprogram at location l in program P with the program P ′. Given a typed DSL D, contain-
ing functions, constants, and their (polymorphic) types, the neighborhood of the program P at
location l is the set of programs obtained by generating all well-typed expressions P ′ contained
in D, written Nd

n(D, P, l). The definition of a location is the root-to-expression path in the ab-
stract syntax tree (AST) of the program. Here, we use the concept of a location in a generalized
manner that can encompass multiple simultaneous locations, that is, a location l can represent

3



Algorithm 3 Imitation-Projected Programmatic Reinforcement Learning with Local Synthesis
1 input: initial policy π0

2 optional input: initial program p0 = ∅
3 output: trained policy πJ, program pJ
4 for j = 1, . . . , J
5 πj ← Update(πj−1) // reinforcement learning, e.g. policy gradient
6 pj ← Project(πj , pinit = pj−1) // program synthesis by algorithm 2
7 end

multiple paths in the AST that are to be simultaneously replaced using independent edit opera-
tions. The neighborhood of a program P is thus the union of the neighborhoods at all locations,
Nd

n(D, P ) =
∪

l∈L(P )N
d
n(D, P, l), where the neighborhood is parameterized with a maximum depth

d of the expressions generated by edit operations, and with a maximum number of simultaneous
edits n.

Furthermore, the expression being edited is dynamically added as a candidate to the DSL, and
for the depth evaluation this candidate counts as having a depth of 1. This allows an edit not
just to replace an expression, but to also extend an expression by using it as part of the new
expression, despite the result otherwise being too large (compared to the depth limit). The size of
the neighborhood |Nd

n(D, P )| is quite sensitive to all involved parameters D, P , n, and d, but these
can be flexibly chosen based on the problem and available computational resources.

2.3 Policy extraction by local synthesis
We use the typed neighborhood to discover programs that imitate reinforcement learning policies.
In this setting, input/output examples are obtained by executing an existing policy and storing
the state observations together with the corresponding actions chosen by the policy in each state.
Thus, the policy synthesis problem is framed as imitation learning. Like in previous policy imitation
methods, an interactive dataset aggregation method such as DAgger (Ross et al., 2010) is used:
Instead of imitating only on states that the expert experiences, which is called behavioral cloning,
some experience from the imitation policy is periodically added to the set of states considered. This
allows subsequent imitation iterations to correct mistakes that otherwise wouldn’t be observed,
since the expert policy never experiences these mistakes. However, unless the expert is a global
optimum, it is possible that it also makes mistakes on states which are not usually observed, and
for this reason it is not always a clear benefit. The iterative imitation approach using the typed
neighborhood is described in alg. 2.

One purpose of this search algorithm is to fit into the full imitation-projection framework from
Verma, Le, et al. (2019). A simple, modified version of this framework is shown in alg. 3. The
difference consists of the projection step, which now also depends on the previous projection, as
enabled by alg. 1. Compared to alg. 2, the main difference is that each iteration also contains an
Update step, which optimizes the expert policy.

3 Experiments
We present three different program synthesis experiments: The first is a programming by example
(PBE) task with sampled ground truth programs, demonstrating the efficacy of the local search
heuristic in alg. 1. The second is a policy extraction task, testing alg. 2, where the ground truth is
a hand-coded policy. In these two first experiments, the DSL used for the search contains the true
program used to generate observational data. Finally, in our third experiment we examine if we
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Figure 1: Programming by example: Learn a program from input-output examples. Experiment on
100 sampled programs. Left: For each program, the absolute error (normalized wrt. first iteration)
by number of programs evaluated. Right: Mean, median, and standard deviation by search iteration.

can learn a simple yet effective policy by imitation from a more complicated neural network policy
which is trained using an existing reinforcement learning algorithm.

3.1 Programming by example with local program search
As a first evaluation of the method, we used a straightforward PBE task, whose purpose is to
show that the described iterative local search is capable of synthesizing nontrivial programs from
input-output specifications.

DSL: We defined a language containing the set of constants {−1, 0, 0.5, 0.8, 1, 3, 5, 6, true},
which are all Floating point numbers except true which is Boolean, and the functions with associ-
ated type signatures {if : Bool ⇒ T0 ⇒ T0 ⇒ T0, > : Float ⇒ Float ⇒ Bool, ∧ : Bool ⇒ Bool ⇒
Bool, ⊕ : Bool ⇒ Bool ⇒ Bool, − : Float ⇒ Float ⇒ Float), ∗ : Float ⇒ Float ⇒ Float,
·2 : Float ⇒ Float}.

Data: The observation space (i.e. input) to these programs consists of three Floats, which
are distinct variables that can be used just like constants. 10 sets of these numbers were randomly
sampled as inputs to be used during synthesis. Ground truth programs of some length, as a simple
proxy for complexity, were sampled from a weighted distribution over the DSL. In order to obtain
samples that have a reasonable length, we designed a distribution on the abstract syntax of our
DSL that puts more probability on higher-arity functions. Further, the probability of sampling true
was weighted significantly down, while the probability of sampling an input variable was weighted
higher. Since program length is not the best measure of complexity, samples were rejected on other
criteria as well. Programs were discarded if: the length of the program (number of tokens) was less
than 8, program output was constant, or an input-output equivalent program, on some randomly
chosen inputs, existed within a depth 4 search of the DSL.

Results and discussion: Results from d = 4 local search on 100 sampled ground truth
programs can be seen in fig. 1, which shows that for many of the programs an exact fit is found
on the given inputs. Even for programs where an exact solution is not found, most of the searches
show significant progress through the iterations, although a few make no progress at all. Since the
search is deterministic, if no improvement is made in an iteration, further iterations will not lead
to better results. It should also be noted that a single iteration of search with d = 5 in this setting

5



corresponds to evaluating about as many programs as 20 iterations with d = 4.

3.2 Imitation of a programmatic pendulum swing-up policy
Next we examined if we were able to discover a ground truth programmatic policy.

Task: We based the experiment on a simple, classical control problem, the pendulum swing-
up task. The state space consists of the angle and angular velocity of the pendulum, and the
action space is the torque applied to the base of the pendulum, normalized to the interval [-1, 1].
This two-dimensional state space allows us to easily display and visually compare policies. The
simulator is discretized with a time step of 0.05s, and an episode is 200 steps long. The reward
function is r(θ, θ̇, a) = ((θ+π (mod 2π))−π)2+0.1θ̇+0.001a2, which results in a reward of 0 if the
pendulum is perfectly balanced with no torque applied, and a reward of −π2 when the pendulum
is pointing straight down while not moving. While the state space of the pendulum task is (θ, θ̇),
the observation space supplied to the policies is (x1,x2,x3) = (sin θ, cos θ, θ̇).

DSL: We used a simple, pure DSL with primitives suitable for solving the RL task, containing
the constants {−6,−1, 1, 0.5, 0.6, 8, 10}, and the functions {if : Bool ⇒ T0 ⇒ T0 ⇒ T0, gt :
Float ⇒ Float ⇒ Bool, sub : Float ⇒ Float ⇒ Float, add : Float ⇒ Float ⇒ Float, mul :
Float ⇒ Float ⇒ Float, sign : Float ⇒ Float, sqr : Float ⇒ Float}.

Ground truth: We hand crafted a ground truth policy in the DSL, capable of swinging up the
pendulum from any starting state. The policy achieves an average reward of approximately -211 and
a maximum of -113. This handcrafted policy is given by the program ((if ((gt x1) 0.6)) ((sub
((mul x2) -6)) x3)) (sign ((mul ((sub ((add ((mul 0.5) (sqr x3))) ((mul ten) ((sub x1)
1)))) 8)) ((mul -1) x3))).

Synthesis: At each iteration of the local search we used a search depth of d = 4 which was
found to be enough to discover the if expression that switches between swing-up and balancing. As
training data we used N = 5 state trajectories from the ground truth policy and M = 2 trajectories
from the latest programmatic imitation policy. All training states were expert labelled with actions
from the ground truth policy. For evaluation we simulated 100 rollouts from uniformly random
states in the range π

2 ≤ θ ≤ 3π
2 , −1 ≤ θ̇ ≤ 1, which is the pendulum below horizontal with relatively

low velocity.
Results and discussion: The results of the experiment is shown in fig. 2 (left column). After

four iterations of imitation learning a simple policy was found, capable of balancing the pendulum
and swinging up from some states. After approximately ten iterations the policy could effectively
swing up and balance the pendulum from any state. The imitation learning did not find the ground
truth programmatic policy by iteration 10, likely due to the small number of observations in certain
areas of the state space. Nonetheless, it managed to synthesize an effective policy which is quite
similar to the ground truth.

3.3 Imitation of a neural pendulum swing-up policy
Finally, we examined if we were able to discover a simple, interpretable policy in a more realistic
setting, where we synthesized by imitation learning from a neural policy. The task, DSL, and
synthesis procedure were as described in the previous experiment, with the ground truth policy as
the only difference.

Ground truth: The neural ground truth policy was found by TD3 (Fujimoto et al., 2018),
using feed-forward neural networks with 2 hidden layers of 24 neurons for both the actor and
critic. Training was run for 5 million steps with a learning rate of 10−4 to ensure relatively good
convergence.
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Imitation from programmatic policy Imitation from neural policy
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Figure 2: Pendulum swing-up imitation learning of a programmatic policy from a ground truth
programmatic (left) or neural (right) policy. Policies are visualized as a heat map; the state space
is pendulum angle, θ, and angular velocity, θ̇, and the action is pendulum torque. The goal state
is θ = 0 (mod 2π), θ̇ = 0. a) Cumulative reward of test trajectories. b) Ground truth program-
matic/neural policy. Points indicate all states seen during training. c) Programmatic policy found
after four iterations of imitation learning, with five test trajectories shown. d) Programmatic policy
found after several more iterations, with five test trajectories shown.
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Results and discussion: The results of the experiment is shown in fig. 2 (right column).
After four iterations of imitation learning, a simple imitating policy capable of swinging up and
balancing the pendulum is found. This imitation policy is (mul x1) (cos (exp (sign ((add x3)
((add -1) (sqr (exp x2))))))). After several more iterations, at iteration 56, a significantly
more complicated programmatic policy was found which resembles the neural policy more closely
but yields only a minor performance improvement, while being significantly less interpretable. This
imitation policy has a length of 121 tokens, i.e. function calls plus arguments.

4 Discussion
We have presented and evaluated our method with simple experiments, and much remains to be
done. As mentioned, one goal is to integrate the local search with reinforcement learning as described
by alg. 3. While simple, we believe that the presented results show potential, especially through
the programs that were discovered in only a few iterations. In particular, it would be interesting
to evaluate this approach on more structured tasks, where neural networks might struggle with
generalization while a program could be found that immediately generalizes. In such a setting, we
could also take better advantage of type-directed search, with more complicated DSLs containing
e.g. logic, matrix or computer vision functions potentially still remaining computationally tractable.

It should also be mentioned that local, iterated synthesis as a concept remains orthogonal to
several other improvements in program synthesis; for example, enumerating or sampling programs
according to a learned probability distribution as in e.g. Ellis et al., 2018 is possible, as is better
filtering as in Katayama (2008). Instead of depth-limited search, it would be possible to limit the
search to programs above a certain likelihood. However, it seems unclear how this distribution
would be effectively learned for policies.

4.1 Related work
Previous work on synthesizing programmatic policies at the intersection of RL and genetic pro-
gramming (GP) include GPRL (Hein et al., 2017) which is based on offline GP, performed in a
previously learned parametric model of the system of interest. They include a comparison with
behavioral cloning, i.e., direct imitation of the actions of a trained policy. Their method performs
better on the actual (simulated, but not learned) system. It is well known that behavioral cloning
can lead to poor performance, e.g. Ross et al. (2010), which could explain the observed performance
gap. It seems likely that interaction with the model can overcome some of the distributional issues
arising from behavioral cloning. In RL, it might be preferable to not learn a parametric model if
it is used for credit assignment (i.e. policy learning) (Hasselt et al., 2019). Gupta et al. (2020)
proposed a method for using program repair in neural program synthesis. After neural synthesis,
the resulting program might not be correct or even satisfy the input-output relation. The authors
propose to learn a neural debugger that outputs so-called edits which correct potential errors in
the program. The relation to this work is apparent in how we use an edit operator to define the
neighborhood of a program. Kamio et al. (2003) describe a way to integrate GP, RL and simulated
systems. By first synthesizing a policy using GP in the simulated system, it can later be adapted
and fine-tuned through RL, allowing the policy to function on a real robot. Inala et al. (2020)
describe an imitation learning method that improves the inductive generalization by adapting the
teacher distribution according to the imitating policy. The presented neighborhood search method
can be considered an instance of the (Very) Large-Scale Neighborhood Search framework (Pisinger
and Ropke, 2010). Deterministic versions of genetic algorithms have been considered before, such
as in Salomon (2003).
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