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Nitroaromatic explosives detection and quantification
using attention-based transformer on surface-enhanced
Raman spectroscopy maps
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Rapidly and accurately detecting and quantifying the concentrations of nitroaromatic explosives is
critical for public health and security. Among existing approaches, explosives detection with Surface-
enhanced Raman Spectroscopy (SERS) has received considerable attention due to its high sensitivity.
Typically, a preprocessed single spectrum that is the average of the entire or a selected subset of
a SERS map is used to train various machine learning models for detection and quantification.
Designing an appropriate averaging and preprocessing procedure for SERS maps across different
concentrations is time-consuming and computationally costly, and the averaging of spectra may
lead to the loss of crucial spectral information. We propose an attention-based vision transformer
neural network for nitroaromatic explosives detection and quantification that takes the raw SERS
maps as input without any preprocessing. We produce two novel SERS datasets, 2,4-dinitrophenols
(DNP), picric acid (PA), and one benchmark SERS dataset, 4-nitrobenzenethiol (4-NBT), which
have repeated measurements down to concentrations of 1 nM to illustrate the detection limit. We
experimentally show that our approach outperforms or is on par with the existing methods in terms
of detection and concentration prediction accuracy. With the produced attention maps, we can
further identify the regions with the higher signal-to-noise ratio in the SERS maps. Based on our
findings, the molecule of interest detection and concentration prediction using the raw SERS maps
is a promising alternative to existing approaches.

1 Introduction
With increasing attention to terrorist and chemical warfare at-
tacks, efficient detection of nitroaromatic explosives can save
lives1–3. Nitroaromatic compounds such as 2,4-dinitrophenol
(DNP) and picric acid have been extensively used for preparing
military-industrial materials2,4. The US Department of Home-
land Security lists them as chemicals of interest. Commercially,
these compounds are used in manufacturing dyes, pesticides, and
wood preserves5,6. However, due to their high toxicity, contam-
ination of food, water, or soil may bring severe physical or even
irreversible damage to human eyes, skin, kidneys, liver, and heart
muscle7–12. Therefore, developing a rapid and accurate method
to detect nitroaromatic explosives is a pressing public health and
safety need.

Many different methods have been used to detect and iden-
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tify nitroaromatic explosives, including chromatography13, mass
spectroscopy14, ion mobility spectroscopy15, and electrochemi-
cal methods16. Despite the success of these approaches, they
usually require complicated operational steps and well-trained
technicians. Together with the expensive cost, it may limit their
usage for the speedy detection of explosives17. Therefore, a cost-
efficient, rapid, simple, and sensitive method is crucial for explo-
sives detection and quantitation.

Surface Enhanced Raman Spectroscopy (SERS) has received
great attention as a highly sensitive, reusable, and fast sensing
platform for various tasks18,19 such as identifying chemical haz-
ards20,21, bacteria22,23, medical diagnosis24,25, and food qual-
ity control26. By adsorbing analytes onto, e.g., a gold or silver
nanostructure surface18,27, SERS can enhance Raman scattering
by a factor up to 1010 ∼ 1011 27.

Explosives detection with SERS is usually carried out by mea-
suring the SERS spectra across multiple spatial locations to form
a SERS map. Preprocessing methods, including smoothing24,
baseline subtraction, and normalization18, are typically applied
to the spectra to remove unwanted variations, such as instrumen-
tal artefacts28. In some cases, signal variation is further reduced
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by mapping onto a lower dimensional representation using tech-
niques such as principal component analysis (PCA)24,25,29. Next,
the spectra are typically averaged across the entire or a suitably
selected subset of the SERS map25 to yield a single noise-reduced
spectrum. Finally, the processed spectrum is used as the input
in algorithms such as support vector machines (SVM)30, logis-
tic models31, k nearest neighbours (KNN)32, neural networks22,
and others18 for detection, classification, or quantitation.

Averaging SERS maps properly and using proper preprocess-
ing steps are essential for these methods to work well in prac-
tice18,33. However, designing an averaging scheme that can ef-
fectively extract the fingerprint characteristics from a SERS map
is time-consuming and complicated, especially in real-world sce-
narios where contaminants are unavoidable18. Averaging a SERS
map into a single spectrum may also inadvertently remove use-
ful information, and selecting appropriate preprocessing usually
requires extensive domain knowledge28. To alleviate these prob-
lems, we investigate how to perform explosive detection using
raw SERS maps without preprocessing.

The modality of a SERS map is similar to an image in the com-
puter vision domain, with the key difference that each pixel in
a SERS map represents a SERS spectrum. Deep neural networks
have achieved great success in computer vision tasks such as im-
age classification, object detection, and reconstruction34–37. In-
spired by this, we investigate how recent advances in image anal-
ysis can transfer to the analysis of SERS maps.

In this paper, we propose a deep neural network model based
on a vision-transformer (ViT)36,38 architecture. The ViT model
achieves state-of-the-art results for image processing tasks such as
classification36, object detection39, and image segmentation40.
It is based on a spatial attention mechanism, which furthermore
provides valuable model interpretation. We train a ViT using the
raw SERS maps as input, and our method requires no preprocess-
ing or spectral averaging.

To demonstrate its use for detecting and quantifying explosives,
we produce two novel datasets consisting of SERS maps of two ni-
troaromatic explosives, DNP and picric acid. The datasets consist
of repeated measurements at several concentration levels ranging
from 1 nM to 10 µM and blank measurements. These datasets are
made publicly available to serve as future benchmarks. To demon-
strate the generality of our approach, we additionally test our ViT
model on an existing 4-NBT dataset. We achieve better results for
both detection and quantitation than the previous state-of-the-art
in all our experiments, indicating that the ViT is more efficient
in extracting information from noisy measurements. Besides, our
reported performance on multiple repeated measurements and
experiments are more reliable and unbiased than the existing ap-
proaches that demonstrate detection limit with a single chip ex-
periment41.

As a key benefit, the ViT uses data to learn which parts of the
SERS map are most important, and it produces attention maps
that can be used to interpret fingerprint characteristics. At low
concentrations, in particular, we find that the ViT focuses on the
edges of the SERS substrate, where it has been cut from a larger
wafer. Further analysis indicates that the signal-to-noise ratio is
exceptionally high in this region. The result indicates that the

preferred analyte binding areas are located at the edge of the
SERS substrate.

Compared with recent approaches that use convolutional neu-
ral networks, such as42, our method has several advantages, 1)
we do not need any preprocessing, 2) we do not split a single
SERS map into both training and testing datasets which poten-
tially can confound results (information leakage), and 3) our
method is trained end-to-end without any auxiliary tasks.

Our main contributions are:

• An optimized attention-based vision transformer that
achieves state-of-the-art results in the detection and quan-
titation of nitroaromatic explosives using raw SERS maps.

• Two novel publicly available SERS datasets with repeated
measurements of nitroaromatic explosives at low concentra-
tions.

• A method for producing interpretable attention maps for lo-
cating important spatial regions in the SERS maps, which
in our experiments points to the observation that the SERS
signal is strongest at the edges of the substrate.

2 Materials and methods

2.1 Chemicals and SERS maps measurements
The molecule set as a benchmark is 4-Nitrothiophenol (4-NBT),
technical grade (80% of purity) and purchased from Sigma-
Aldrich. 4-NBT was solubilized in 50 ml absolute Ethanol (EtOH)
(≥ 99.8%) (VWR Chemicals BDH, VWR International, Radnor,
Pennsylvania, USA) to prepare 10 mM stock solution. The stock
solution was diluted in absolute EtOH to prepare standards of 1
µM, 100 nM, 10 nM, 1 nM and 100 pM concentrations.

The first nitroaromatic explosive used is 2,4-Dinitrophenol
(DNP). The molecule was purchased from Sigma-Aldrich (≥
98% purity) and moistened with water. DNP was solubilized
in Methanol (MeOH) (VWR Chemicals BDH, VWR International,
Radnor, Pennsylvania, USA) to prepare a 100 µM stock solution.
The stock solution was diluted in Milli-Q water to prepare stan-
dards of 10 µM, 1µM, 100 nM, 10 nM, and 1 nM concentrations.

The second nitroaromatic explosive is 2,4,6-Trinitrophenol or
picric acid, provided by the CBRN Defence and Security Division
of the Swedish Defence Research Agency FOI. Picric acid was
solubilized in ultrapure water (18.2 MΩcm) from a Milli-Q pu-
rification device (Milli-Q® IQ 7000 Purification System, Merck,
Darmstadt, Germany) to make a 44 µM stock solution. The stock
solution was then diluted in Milli-Q water to prepare standards of
10 µM, 1 µM, 100 nM, 10 nM, and 1 nM concentrations.

2.1.1 SERS substrates fabrication

The SERS substrates used for the analysis were silver (Ag) cov-
ered silicon (Si) nanopillar (NP) structures fabricated using a two-
step fabrication process: (i) maskless reactive ion etching (RIE)
of Si and (ii) electron e-beam evaporation of Ag43,44. In brief, an
RIE process with a SF6 and O2 gas mixture flow was performed
for 5:20 minutes in ICP Metal Etcher (PRO ICP, SPTS Technolo-
gies Ltd., Newport, UK). Two polished 6-inch black Si wafers
were etched to produce vertically standing Si NP structures with
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Fig. 1 Protocols and experimental procedures performed for SERS analy-
sis. (a) 2 h incubation of SERS substrates in 4-NBT solutions of different
concentrations. (b) 2 µl droplet deposition of DNP and picric acid solu-
tions at different concentrations. (c) SERS chip performance evaluation
and map acquisition. (This figure is created with BioRender.com.)

the following features: NP density 20 NP/µm2, height 640 nm,
width 50 nm. The second step of the fabrication process consists
of metal deposition of 200 nm of Ag, using a Temescal FC-2000
e-beam evaporator from Ferrotec (Tokyo, Japan) (Fig. A1.a). The
resulting SERS substrates are Ag-capped Si NPs (Fig. A1.b). Fi-
nally, the processed Si wafers were diced into 3 × 3 mm chips
from the backside using a laser micromachining tool (D-09126,
3D-Micromac AG, Chemnitz, Germany) and stored in a desicca-
tor (Fig. A1.c).

2.1.2 SERS measurements

The 3 × 3 mm2 SERS chips were then exposed to 4-NBT, DNP and
picric acid solutions of varying concentrations (5 chips per con-
centration). In the case of 4-NBT, the SERS substrates were incu-
bated for 2 h in 4-NBT solutions, washed with EtOH to remove
excess (unbonded) 4-NBT and then left to dry (Fig. 1.a). In the
case of DNP and picric acid, 2 µl analyte droplets were deposited
on substrates from the same wafer and left to dry (Fig. 1.b). Each
analyte was prepared and used on different days to avoid cross-
contamination on the SERS substrates. The SERS chip maps were
acquired using a DXRxi Raman Microscope (Thermo Scientific,
Waltham, MA, USA) (Fig. 1.c). All SERS maps were acquired us-
ing a 780 nm laser excitation wavelength, a 10x objective, optical
focus on the chip surface, a single acquisition per point, an ex-
posure time of 0.05 s, and a step size of 50 µm. 4-NBT SERS
maps were acquired using a laser power of 2 mW, while in the
case of DNP and picric acid, the laser power was set to 5 mW. The
SERS maps were produced by mapping the entire 3 × 3 mm2 chip
area (between 1800 and 2000 spectra per chip). See Fig. 2 for an
example of the SERS spectra.

2.2 Methods
We propose a vision transformer (ViT) neural network architec-
ture tailored for low concentration detection and quantitation
from SERS maps. After outling the major components of the ar-
chitecture, we explain each of the components in detail in the
following sections. A schematic overview of the model is given in
Fig. 3.

The input to the system is a SERS map, which is first split into
small patches which cover multiple spectra. Each patch is then
mapped to a feature vector using a shared neural network and
augmented with a learned spatial embedding vector. Each patch
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Fig. 2 Example spectra at different concentration levels. We here select
the top 1% of spectra with the highest fingerprint peak intensities from
each SERS map and show the averaged spectrum. The fingerprint peaks
are more obvious at higher concentrations. The prominent fingerprint
peaks for picric acid (820 cm−1 and 1330 cm−1) are not visible to the
naked eye even at the highest concentration of 10µM. The normalised
SERS spectra are shown in the Supporting Information B.2

is thus represented as a single vector, referred to as a token, which
includes information about the spectra and the spatial location of
the patch. From this point, the data is considered as a unordered
set of tokens. In addition to the patch tokens, a special token
called the class embedding (CLS) token is included, which serves
the purpose of representing the entire map. The initial class em-
bedding is taken to be a learnable parameter. Next, the tokens
are updated through a series of self attention steps in order to
contextualize the tokens and capture their dependencies. Each
token is updated using an attention weighted sum of all the other
tokens, where the weights are computed by a measure of compat-
ibility between the tokens. After a number of such self attention
updates, the value of the CLS token is taken as the final represen-
tation for the whole map. Finally, we attach a prediction head in
the form of a neural network classifier or regression model to give
the final output for detection or quantitation. The entire model is
trained supervised end-to-end, on a labelled dataset.
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Fig. 3 Our proposed approach. A vision transformer neural network architecture for detecting or quantifying the concentration of the molecule of
interest using SERS maps. Given a SERS map as the input, we split it into patches and apply a shared MLP layer on each patch to create a feature
vector. (The illustration shows a large patch size here, whereas, in practice, we use patches of size 2×2 pixels.) We then append a learned CLS token
at the beginning of the feature vector and add positional encoding on each feature. The obtained features are used as the input for a transformer
encoder, as shown in (b) and (c), to produce the attention map that indicates the importance of each patch for decision-making. The attention map
is then used as the input for an MLP layer for performing either a detection task or a concentration prediction task.

2.2.1 Patch embeddings

Given a SERS map X ∈ RNx×Ny×Nw , where Nx, Ny are the width
and height of the SERS map and Nw is the number of wavenum-
bers, we reshape the SERS map into a set of flattened square 2D
patches xm ∈ RNp×(m2·Nw) where m is the patch width and height,
and Np =

NxNy

m2 is the number of patches. A shared multilayer per-
ceptron (MLP) layer is then applied to each patch to create feature
embeddings.

Following Dosovitskiy et al. 36 , Devlin et al. 45 , we prepend
a learnable class embedding (CLS token) to the feature vector,
which serves to aggregate the learned representation from the en-
tire input45. As there are no convolutional operations to preserve
the spatial information, we add learnable positional encodings to
the input embeddings to capture the relative and/or absolute spa-
tial position of a patch46 and provide the sum as the input to the
transformer encoder.

2.2.2 Transformer encoder

The transformer encoder is a stack of D transformer layers, where
each layer consists of a multi-head self-attention layer followed by
an MLP block (Fig. 3.b). Each transformer layer takes a set of fea-
ture embeddings as the input and outputs a new set of features
with the same dimensionality. We also employ residual connec-
tions35 and layer normalization47. Depending on the orders of
layer normalization, residual connection, multi-head attention,
and MLP blocks, there are different variants of transformer ar-
chitectures in the literature. In this study, we use layer norms
prior to both the multi-head attention and MLP since this archi-
tecture has been demonstrated to be more efficient and produce
more stable gradients, especially at the beginning of the network
training48,49.

The attention head is composed of three vectors (query, key,
and value) computed from the embedded feature of each token
by an MLP. For each token, the attention to every other token
is computed as the scale dot-product similarity between its query
and their keys, and the output of the attention head for each patch
is the sum of the values weighted by the attention. We use H at-

tention heads in parallel as shown in Fig. 3.c as it is more benefi-
cial to extract information from different representation spaces46

simultaneously. We concatenate the multi-head attention outputs
and project them into the final output using an MLP. We then use
the output from the multi-head attention block as the input for
another layer normalization and MLP block as shown in Fig. 3.b.

2.2.3 Prediction head

After applying the transformation layer D times (Fig. 3.b), the
updated CLS token is taken as the attention map that shows an
aggregation of the representations over all the patches. This at-
tention map then serves as the input for a prediction head that
consists of a single linear layer. For the detection task, we output
the probability of a SERS map containing the explosive molecule.
For the quantification task, we directly produce the predicted con-
centration.

2.3 Comparison baselines

We compare our approach with established deep neural networks
as well as classical machine learning methods that take an aver-
aged spectrum from a SERS map as the input. Spectral averaging
combined with a suitable supervised machine learning method
is an often used practical approach18,26,30,50–53 and we consider
this to be the current state of the art. Different preprocessing
methods exist for calculating the averaged spectrum from a SERS
map, such as averaging over the entire map or averaging over
a subset of spectra per map33. To set the baselines in the best
light, we assume access to information about the Raman peak re-
gions of the analyte, and following33 we choose the spatial region
based on the signal intensity summed over the peak regions. We
rank the spectra in the SERS map according to

Px,y = ∑
w∈P

Xx,y,w, (1)

where P denotes the set of wavenumbers that are identified as
peak locations, and we then select the top α percentage of spectra
according to Px,y. Fig. 4 shows an example of selecting the top 5%
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Fig. 4 Baseline approaches. Explosive detection and quantitation using the average spectrum per SERS map. For example, (a) shows a 4-NBT SERS
map with 56×56 = 3136 spectra. We first rank the extracted spectra from the SERS map in (a) based on the summed intensities over the peak regions
(green) and use the ranking to select a subset, here chosen as the top 5% = 157 spectra (red) in (b). The average of the selected spectra, as shown
in (c), is used as the input in a supervised machine learning model in (d) (e.g., an Xception deep neural network), which predicts the detection and
concentration results.

spectra according to this criterion. Results for other selection cri-
teria (such as spectral mean or standard deviation) can be found
in Supporting Information A.

We average the selected spectra to produce a single spectrum
per SERS map and repeat this process for all the SERS maps. As
different choices of α can influence the averaged spectrum, we
optimize the averaging scheme by performing a grid search to
select both the percentage of spectra used for training, αtrain, and
for performance evaluation at test time, αeval.

Using the averaged spectrum from a SERS map for tasks such
as detection and concentration can be used with many different
supervised machine learning methods. In this paper, we choose
eight different models that have achieved success in many differ-
ent domains: K Nearest Neighbors (KNN), Gradient Boosting54,
Random Forest55, Support Vector Machine (SVM)55, Decision
Tree56, Xception32,34,57, U-CNN58, and ResNet22,35. Detailed in-
formation about each method is shown in Supporting Information
C. We denote these as “spectra-based models” and train them in
a similar fashion as ViT as documented below.

2.4 Model training

We train the detection model using the binary cross-entropy ob-
jective with an L2 regularization term as shown in Eq. 2a, where
θ denotes the parameters in the neural network. We train the
quantification model using mean-squared-error (Eq. 2b) between
the predicted concentrations ĉi and the true log-concentration ci

as this can emphasize the prediction of the lower concentrations.

L =− 1
N

N

∑
i=1

yi log pi +(1− yi) log(1− pi)+λ1||θ ||2, (2a)

L =
1
N

N

∑
i=1

||ci − ĉi||22 +λ2||θ ||2. (2b)

2.4.1 Data preparation and augmentation

As the number of SERS maps is limited, we perform leave-one-out
cross-validation to demonstrate our model performance. In each
experiment, we leave one SERS map out as the test data. We then
select one map per concentration from the rest of the data and use
those as a validation dataset to optimize model hyperparameters.
The rest of the data are used as the training data. There is no
overlap between training, validation, and test data. We repeat
this process N times where N equals the number of SERS maps

per dataset.
Since the performance of a deep neural network is highly in-

fluenced by the size of the dataset32,58, it is common to augment
the data, for example, by adding slightly modified copies of the
existing data. We propose to augment the training and valida-
tion dataset following32. We augment each spectrum in the SERS
map by adding noise simulated to mimic realistic spectra varia-
tion with the highest variance near the peaks. See Supporting
Information C for more details.

2.4.2 Ensembling

Rather than using a single model, we use an ensemble of mod-
els to boost the detection and quantification performance57,59–61.
Following62, we train an ensemble of five models with the same
training data but different random initialization. We then use the
averaged predictions from the ensemble to make decisions for the
detection and quantification tasks.

2.4.3 Evaluation criteria

We evaluate the detection accuracy using Eq. 3a and quantifi-
cation accuracy using Eq. 3b as these are commonly used met-
rics for demonstrating the classification accuracy and goodness-
of-fit42. For optimizing the preprocessing procedure in the base-
line approaches, we evaluate the validation binary cross-entropy
loss (Eq. 2a with λ1 = 0) for the detection task and R2 (Eq. 3b)
for the quantification task across multiple {αtrain,αeval}. We then
adopt the combination of {αtrain,αeval} that achieves the lowest
validation loss in the detection task and the highest R2 in the
quantification task for evaluating the test performance on each
dataset and each model.

Global accuracy =
TP+TN

TP+TN+FP+FN
. (3a)

R2 = 1− ∑
N
i=1

(
ci − ĉi

)2

∑
N
i=1

(
ci − ∑

N
i=1 ci
N

)2 . (3b)

2.4.4 Experimental setup

For the ViT model, we use D = 2 stacked transformer encoders
and H = 3 attention heads. We choose to use a patch size of two-
by-two pixels (m = 2) to reduce the computational cost but also
to get fine-grained attention maps. For the spectra-based deep
neural network models, the architectures are explained in Sup-
porting Information B. For the grid search, we include α-values
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0.2%, 0.5%, 1.0%, 2%, 5%, 10%, 20%, 50% and 100%, where
the latter corresponds to averaging the entire SERS map. We train
all the models in our study with the Stochastic Gradient Descent
(SGD) optimizer with a momentum of 0.9. Following36, we use
a linear learning rate warmup up to 50 epochs and cosine learn-
ing decay until the learning rate reaches 10−5. The learning rates
are tuned experimentally based on the validation performance.
All the weight matrices W are initialised by the Xavier initializa-
tion63 such that each element in the weight matrices Rnin,nout are
drawn from Gaussian distribution N (0, 2

nin+nout
). The bias vec-

tors are initialized by zeros. We also apply gradient clipping at
global norm one as we found that it can help to stabilize the train-
ing36,49.

3 Results and discussion

We report and compare the performance between the model that
takes a raw SERS map as the input and the models that take
the averaged spectrum as the input in this section. We quanti-
tatively show the detection and concentration prediction perfor-
mance over the three datasets: 4-NBT, DNP, and picric acid.

3.1 Detection performance

We first look at the influence of the choices of {αtrain,αeval}
on the detection performance in the baseline approaches in
Fig.D.1 (Supporting Information D). We observe that the opti-
mal {αtrain,αeval} tends to be different for different datasets and
models. For example, we benefit more by using a bigger αtrain
and a smaller αeval for the 4-NBT dataset and benefit more by us-
ing similar αtrain and αeval (diagonal) for the DNP and picric acid
dataset. Compared to averaging the entire SERS map into a sin-
gle spectrum, we perform better by averaging a subset of spectra.
These observations indicate that selecting a generally appropriate
preprocessing procedure for analyzing SERS maps in the tradi-
tional spectra-based approaches is difficult and usually requires
domain knowledge.

We then report the test performance using the baseline
approaches by selecting the most optimal combination of
{αtrain,αeval} and our proposed approaches in Fig. 5. Each
marker in Fig. 5 represents the predicted probability of the correct
class for a single SERS map measurement. We count predictions
as correct if the probability of the correct class is higher than 50%
(50% is a commonly used threshold for classification/detection
tasks in the literature22,40). Different colours represent the mea-
surement indices within a single concentration level, allowing di-
rect comparison across methods. The same colour across differ-
ent concentrations corresponds to different measurements. The
averaged predicted probability per concentration level is shown
as the red line. The spectra-based models tend to make more
and the same mistakes at lower concentrations. For example,
all the spectra-based models make a wrong classification for the
same (orange) measurement at a concentration of 0.1 nM. For all
the datasets, ViT performs better or is on par with the methods
that take the spectra as the input without the need to search for
the most appropriate way of preprocessing the SERS maps. The
slightly worse performance on the picric acid may be due to the

low signal strength as shown in Fig. 2.

3.2 Quantification performance

In addition to detection, it is beneficial to quantify the concen-
tration of the explosives, as different strategies may be required
given the concentration of the explosives. Therefore, we next
show the quantification experiment results.

We follow the same procedure as for the detection experiment:
we first choose αtrain and αeval based on the validation perfor-
mance as shown in Fig.D.2 (Supporting Information D). We ob-
serve a similar trend with best results near the diagonal, corre-
sponding to approximately the same percentage of spectra used
for training and testing. Again, averaging over a subset of spec-
tra is better than averaging the entire SERS map, but the optimal
selection of αtrain and αeval depends strongly on the data and to a
slightly less degree on the model. We take the optimal combina-
tion of αtrain and αeval for each model and apply them to the test
dataset to report the quantification test performance.

Fig. 6 shows the quantification performance across multiple
datasets and models. Each marker represents the predicted con-
centration for a single SERS map measurement, with the true con-
centration on the x-axis. Following Fig. 5, we use the same colour
coding here such that each colour represents a single measure-
ment within one concentration level and the same colour over
concentrations corresponds to different measurements. The red
line shows the averaged predicted concentration with a 95% con-
fidence interval 1.95σ(ĉ)√

5
. The grey diagonal line indicates the op-

timal prediction.
All the models give very accurate predictions at the highest con-

centration level. However, classical spectra-based models, such
as Random Forest, Decision Trees, SVM, and Gradient Boost, can
hardly differentiate between the measurements at low concentra-
tions due to the weaker signal. Additionally, they tend to make
the same mistake as in the detection experiment (Fig. 5). For
example, all the spectra-based models predict a higher concen-
tration value for one of the measurements at 0.1 nM (orange)
for 4-NBT, which is also predicted wrong by all the spectra-based
models in the detection task. Our model ViT outperforms or is
on par with the methods that take the spectra as the input. We
can better differentiate the concentrations until the second low-
est concentration level as the 95% confidence interval are non-
overlapping until the second lowest concentration level.

3.3 Attention maps

We next provide an analysis of why and how ViT performs better
than the baseline approaches. Specifically, we show and compare
the selected spectra from the baseline approaches and the atten-
tion map from our proposed method. Fig. 7 shows an example of
using the 4-NBT dataset. The attention maps for other datasets
are described in Supporting Information D.

We take a single SERS map from each concentration and show
the sum of the SERS maps at the fingerprint peak locations in the
first column in Fig. 7. To understand what kind of spectra are
contributing more to learning the models, we show the selected
spectra locations based on the peak intensities from the spectra-
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Fig. 5 Detection performance on multiple datasets. Each marker represents a single measurement, and the colour represents the measurement index
within a single concentration level. The same colour across concentrations corresponds to different measurements. We achieve better detection
accuracy using ViT on all the datasets compared to the spectra-based methods.

based models and the attention maps from the ViT. The attention
map is an aggregation of the learned representations over all the
patches and thus can be used to infer the spectra that contribute
more to decision-making46.

We choose to select the top 5% and 20% of spectra based on
the peak intensities and annotate their locations in a map with
the same shape as the SERS map. For example, the yellow dots
in the third column in Fig. 7 means the corresponding spectra

are used to calculate the averaged spectrum as shown in the fifth
column in Fig. 7. We show the averaged spectrum for when α

is 5%, 20%, and 100% in the last column. For the ViT model,
we select the locations whose attention weights are higher than
the 99%-th quantile of the attention map and average the spectra
within those locations. Note that we learn the ViT model with
the raw SERS maps and only average the spectra here for visual
comparison purposes.
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Fig. 6 Quantification performance. Predicted concentrations together with 95% confidence interval over five runs (1.96 σ(ĉ)√
5

). Each marker represents
a single measurement, and the colour represents the measurement index within a single concentration level. We achieve better performance using ViT
on all the datasets compared to the spectra-based methods

As the signal is strong (for the concentration of 1 µM), we can
observe clear peaks at the fingerprint regions no matter how we
average the spectra. However, when we inspect lower concen-
trations such as 1 nM, spectra-based methods select more spec-
tra at the centre of the SERS maps, whereas ViT focuses more
on the edges maps. We can only observe the fingerprint peaks
at wavenumber 1081 cm−1 and 1571 cm−1 when we look at the

spectrum from ViT. We also observe a similar pattern for DNP and
picric acid (the results can be found in Supporting Information D)
that the attention maps can capture the fingerprint peak better.
Therefore, it shows that the ViT is better at utilizing the finger-
print characteristics of the corresponding molecule compared to
the methods that select the spectra based on the peak intensities.

The above results indicate that the preferred analyte binding
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Fig. 7 Example SERS maps and the selected spectra from dataset 4-NBT. Each column from left to right is the sum of the SERS maps from the
peak locations, the locations of the top 5% and 20% spectra that are selected based on the peak intensities, attention map, and the corresponding
spectra. Comparably, ViT can capture the fingerprint characteristics better than the peak-intensity selection criteria. Averaging over the entire map
(100%) tends to alleviate the signal strength, especially at low concentrations.

areas are located at the edge of the SERS substrate. The drying
of the analyte is usually denoted as the coffee ring effect64. De-
spite this effect and the inhomogeneous distribution of the SERS
signal, our proposed approach is robust and accurate compared
to the approaches where spectra are extracted based on statistical
criteria.

4 Conclusion

In this paper, we proposed to use a vision transformer-based neu-
ral network for nitroaromatic detection and quantification with
Surface-enhanced Raman Spectra maps. Given a raw SERS map
as the input, we trained the vision transformer to learn an at-
tention map that showed which regions in the SERS map con-
tained the best representative fingerprint characteristics. We
then performed detection and quantification of the explosives
based on the attention maps. To demonstrate the benefit of
our approaches, we produced two novel nitroaromatic explo-
sive datasets consisting of DNP and picric acid and one bench-
mark dataset, 4-NBT. We make these datasets publicly available
for the benefit of future benchmarking. We empirically demon-
strated that our proposed approach is more accurate and efficient
in identifying and quantifying explosive compounds, especially

at lower concentrations. Our method uses raw SERS maps and
exempts us from designing preprocessing procedures, which usu-
ally require extensive domain knowledge. Our model applies to
all planar SERS substrates to detect SERS-active analytes in the
gas/liquid phase as we have no requirements on the SERS sub-
strates that are being used. We experimentally observed that we
only need around 0.4 seconds to perform explosive detection and
quantification for each SERS map on a computer equipped with a
medium-grade CPU. The computational software will be released
upon publication.

By taking a closer look at the attention maps, we discovered
that the signal-to-noise ratio is higher on the edges of the SERS
substrate. The observation indicates that in the low-concentration
regime, analyte binding is most efficient at the boundary of the
chip. This could be attributed to the intrinsic nanopillar SERS
substrate properties utilized in this study, which is likely related
to the nanopillar leaning effect. Importantly, the results show that
the ViT model can be used to extract quantitative SERS data from
a SERS map displaying inhomogeneous analyte binding patterns,
which is highly relevant for researchers working on real-life SERS
applications that utilize different types of SERS substrates.
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Data and code availability
We implement all the models in Python 3.7.9 using PyTorch
Lightning 1.5.1. For the reviewing process, we have provided a
private link https://figshare.com/s/0596e7a36420911d28c3
that contains the experiments (model checkpoints for the ViT
models), SERS maps (4-NBT, DNP, and picric acid), and the soft-
ware, which can be used to reproduce the results in the paper.
Detailed instruction is explained in the software description. We
will open-source this information upon paper publication.
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