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hard Petersens Plads, Building 3212800 Kgs Lyngbyemail: {mm,mns}�imm.dtu.dkEditor: Abstra
tWe re
ently introdu
ed two algorithms for sparse non-negative matrix fa
tor 2-D de
onvolu-tion (SNMF2D) (Mørup and S
hmidt, 2006) that are useful for single 
hannel sour
e separation(S
hmidt and Mørup, 2006a) and musi
 trans
ription (S
hmidt and Mørup, 2006b). We here ex-tend this approa
h to the analysis of the log-frequen
y spe
trograms of a multi
hannel re
ording.The model proposed forms a non-negative tensor fa
tor 2-D de
onvolution (NTF2D) based onthe parallel fa
tor (PARAFAC) model. Two algorithms are given for NTF2D; one based on leastsquares the other on Kullba
k-Leibler divergen
e minimization. Both algorithms are extended togive sparse de
ompositions. The algorithms are demonstrated to su

essfully identify the 
ompo-nents of both arti�
ially generated as well as real stereo musi
.Keywords: Non-negative Matrix Fa
torization (NMF), PARAFAC, Sparse Coding, SNMF2D,SNTF2D.1. Introdu
tionWe re
ently proposed the non-negative matrix fa
tor 2-D de
onvolution (NMF2D) model extendingthe regular non-negative matrix fa
torization (NMF) model to a 2-dimensional 
onvolution of thenon negative matri
esW� 2 RF�D and H� 2 RT�D , that isVf;t � �f;t =X�;� W�f��;dH�t��;d; where � 2 f0; 1; : : : ;�g and � 2 f0; 1; : : : ;�g: (1)The model 
an be 
onsidered an extension of the non-negative matrix fa
tor de
onvolution (NMFD)independently proposed by Smaragdis (2004), Eggert et al. (2004) and FitzGerald et al. (2005b)
orresponding to either � = f0g or � = f0g.The NMF2D model has proven useful in the analysis of the log-frequen
y spe
trogram V of asignal of mixed musi
al instruments. Here the �-th notes played by the instruments are 
aptured byH� while the frequen
y stru
ture, i.e. the harmoni
s of the instruments at time lag � are 
apturedby W� . As a result, the 
hange in pit
h of an instrument 
orresponds to a verti
al shift in thelog-frequen
y spe
trogram 
aptured by the � shifts while ea
h instruments is assumed to have a�xed temporal frequen
y stru
ture 
aptured by the � shifts, see also S
hmidt and Mørup (2006b)for details.Often musi
 is not solely represented by the spe
trogram of one single 
hannel but by several
hannels, i.e. by several mi
rophones or the two stereo signals in stereo re
ordings. The NMF2Dmodel 
an only handle su
h data by either analyzing ea
h 
hannels separately or unfolding theextra 
hannel modality onto one of the existing modalities to form an analyzable matrix. However,unfolding 
an, to some extent, hamper interpretation but, more importantly, potentially dismiss



modality spe
i�
 information by mixing information in a given modality with the more or lessarbitrarily 
hosen modalities that it has been unfolded to. Rather than unfolding, we will extendthe NMF2D model to handle spe
tral data of more than one 
hannel. The model proposed turnsout to be a 2-D 
onvolutive PARAFAC model, i.e. a non-negative tensor fa
tor 2-D de
onvolution(NTF2D).The paper is stru
tured as follows: First, the NTF2D model is introdu
ed and two algo-rithms ensured to 
onverge are given. These algorithms are extended to form sparse de
ompo-sitions in order to handle ambiguity between the fa
tors in W and H and to improve inter-pretability of the 
omponents. This is followed by a demonstration of the ability of the algo-rithms to identify the 
omponents of syntheti
 data. Finally, we demonstrate how the algorithmsalso 
orre
tly identify the 
omponents of real stereo musi
. The algorithms 
an be downloadedfrom www2:imm:dtu:dk=pubdb=views=edo
_download:php=4652=zip=imm4652:zip. To illustratethe NTF2D algorithm we presently put it in the framework of musi
 analysis. However, the al-gorithm is in general useful when a �xed translated 2-D stru
ture is present in the data.2. MethodConsider the signal V 2 RC�F�T being a three way array where V
;f;t denotes the spe
tral 
oe�-
ients at 
hannel 
 at frequen
y f and time t. In the following we will assume that the frequen
yharmoni
s of ea
h instrument given inW� and ea
h note played given in H� is the same regardlessof the 
hannels analyzed. We will further assume that ea
h 
hannel has an instantaneous linear mixof these signatures given by D 2 RC�D , i.e. we will for 
onvenien
e assume all frequen
ies of a giveninstrument to be mixed with same strength. From these assumptions the log-frequen
y spe
trogram
an be approximated as V
;f;t � �
;f;t = Xd;�;�D
;dW�f��;dH�t��;d: (2)Consequently, H�t;d represents the degree in whi
h the �-th note is present at time t in instrumentd. W�f;d is the harmoni
al stru
ture at lag � at frequen
y f of the d-th instrument and D
;d isthe degree in whi
h instrument d is present in 
hannel 
. Noti
e, if � = f0g and � = f0g thismodel be
omes the 
onventional PARAFAC model (Welling and Weber, 2001) as proposed for theanalysis of sound signals by Parry and Essa (2006) and FitzGerald et al. (2005a) whereas thesingle 
onvolutive model re
ently proposed by FitzGerald and Coyle (2006) 
orresponds to � = f0g.Consequently, the NTF2D model forms a PARAFAC model that is 
onvolutive in two of the threemodalities, i.e. 
onvolutive in the time and frequen
y domain. While the instantaneous mixing intothe 
hannels in general is a rough assumption it be
omes reasonable when 
onsidering the time-frequen
y representation. Here ea
h time-frequen
y point in the spe
trogram is an average of thefrequen
y a
tivity over the time window used for the representation. Delays present between the
hannels are, in general, far less than the extend of this time frame.De�ne the Khatri-Rao produ
t A�B = [A1 
B1 ::: AF 
BF ℄ and the matri
izing operation,i.e. V(1) = VC�F �T , V(2) = VF�C�T andV(3) = VT�C�F . Let further #qA and "pA denotes the upwardand downward shift operator on the matrix A given by shifting and zero padding the rows of A, i.e.:A = 0� 1 2 34 5 67 8 9 1A ; #2A= 0� 0 0 00 0 01 2 3 1A ; "1A= 0� 4 5 67 8 90 0 0 1A
2



2 METHOD 3The NTF2D model 
an then be formulated as the following three equivalent approximations:V(1) � �(1) = D(X�;� #�H� � #�W� )T ; (3)V(2) � �(2) =X�;� #�W� ( #�H� �D)T ; (4)V(3) � �(3) =X�;� #�H� ( #�W� �D)T : (5)We will give two algorithms to estimate D, W and H �one based on least squares (LS) andthe other on Kullba
h-Leibler (KL) divergen
e minimization, forming the following three equivalentminimizations CLS = 12 jjV(1) ��(1)jj2F = 12 jjV(2) ��(2)jj2F = 12 jjV(3) ��(3)jj2F (6)where jjAI�J �BI�J jj2F = Xi;j (Ai;j �Bi;j)2; (7)CKL = D(V(1)j�(1)) = D(V(2)j�(2)) = D(V(3)j�(3)) (8)where D(AI�J jBI�J) = Xi;j Ai;j log Ai;jBi;j �Ai;j +Bi;j : (9)However, 2-D 
onvolutive models su�er from ambiguity betweenW andH (Mørup and S
hmidt,2006). Consequently, the harmoni
s of the 
omponents 
an be 
aptured in both H andW. Further-more, when in
luding many � and � shifts the number of free parameters of the model 
an be
omelarger than the number of data points available, i.e. the representation 
an be
ome over
omplete.As a result, 
onstraints in the form of sparseness have proven useful (Mørup and S
hmidt, 2006).Consequently, we impose the sparseness 
ost CSparse(H) to restri
t H to be sparse in order for theharmoni
 frequen
y stru
ture of the instruments to be solely present inW. CSparse(H) 
an be anyfun
tion with positive derivative (Mørup and S
hmidt, 2006), we will in the present analysis use theL1 � norm sin
e this 
orresponds to a probability density whi
h is highly peaked at zero and haveheavy tails hen
e form a sparse representation (Hoyer, 2002):CSparse(H) = �kHk1 = �Xj;�;dH�t;d (10)Adding this penalty to the existing 
ost fun
tions, � be
omes the weight of sparseness to the re
on-stru
tion error. This sparseness 
onstraint is, however, easily minimized letting the 
omponents inHgo to zero while letting the 
orresponding 
omponents inW and D go to in�nity. Consequently, weimpose extra 
onstraints of unit Frobenius-norm to the 
omponents inW and D, i.e. kWdkF = 1,kDdkF = 1 where Wd =W::;d , Dd = D:;d and : is the MATLAB shorthand notation denoting allelements of the given modality. As proposed for 
onventional NMF by Eggert and Korner (2004)we reformulate the re
onstru
tion to be invariant of this normalization:~�
;f;t = X�;�;dW�f��;dkWdkF D
;dkDdkF H�t��;d: (11)Consequently, the p-th of the three equivalent 
ost fun
tions in Equation 6 and 8 using this re
on-stru
tion also be
ome invariant of the normalization:CSparseLS = 12 jjV(p) � ~�(p)jj2F + CSparse(H) (12)



CSparseKL = D(V(p)j~�(p)) + CSparse(H): (13)The 
ost fun
tions given in Equations (6) and (8) and in
luding sparseness in Equation 12 and 13were all di�erentiated with respe
t to given elements in W, H and D. The parameters were thenupdated using a gradient based sear
h with a step size giving multipli
ative updates (see Mørup andS
hmidt (2006) as well as Lee and Seung (2000) for details of this approa
h). The algorithms aregiven in Table 1 and 2. Here A �B denotes element-wise multipli
ation and AB denotes element-wisedivision. Furthermore, diag(a) is a square matrix 
ontaining the elements in the ve
tor a along thediagonal while 1 is a matrix of ones.NTF2D/SNTF2D Least squares1. InitializeW, H and D randomly.2. �(1) = D(P�P� #�H� � #�W� )T3. D D � V(1)Z+Ddiag(1((DZTZ)�D))DZTZ+Ddiag(1((V(1)Z)�D)) where Z = (P�P� #�W� � #�H�)4. D�k;d = D�k;dkDdkF , �(2) =P�P� #�W� ( #�H� �D)T5. W�  W� � P� "�V(2)( #�H��D)+W�diag(1P� ( "��(2)( #�H��D))�W� )P� "��(2)( #�H��D)+W�diag(1P� ( "�V(2)( #�H��D))�W� )6. W�i;d = W�i;dkWdkF , �(3) =P�P� #�H� ( #�W� �D)T7. H�  H� � P� "�V(3)( #�W��D)P� "��(3)( #�W��D)+� �CSparse(H)�H�8. Repeat from step 2 until 
onvergen
e.Table 1: Algorithm for NTF2D/SNTF2D by Least Squares. The algorithm is given for SNTF2D butby omitting everything in gray the 
orresponding algorithm without sparseness 
onstraint,i.e NTF2D is a
hieved. The 
onvergen
e was in the present analysis set to a maximum of250 iterations or when the relative 
hange in the 
ost fun
tion was less than 10�6A

ording to Equation (3) the updates 
an be transformed into the framework of regular matrixanalysis. Consequently, the 
onvergen
e of W� is given by repla
ing H� with Z = H� �D and Vwith V(2) in the proof of the W� update given by Mørup and S
hmidt (2006) while in the proofof the 
onvergen
e of H� repla
ing W� with Z = W� �D and V with V(3). The 
onvergen
e ofthe D update follows straight from the proof of the regular NMF updates given by Lee and Seung(2000): Noti
ing V(1) � �(1) = D(P�;� #�H� � #�W� )T ; and de�ning Z = (P�;� #�H� � #�W� )T , thisbe
omes the 
onventional NMF, i.e. �(1) = DZ. While the 
onvergen
e of the updates in
ludingsparsity for 
onventional NMF (Eggert and Korner, 2004) and the SNMF2D (Mørup and S
hmidt,2006) has not been proved, they were all 
onje
tured 
onvergent. Although extensively analyzed,we never experien
ed divergen
e in any of the updates of H� and W� nor D in the two SNTF2Dalgorithms. Consequently, we 
onje
ture that also the algorithms in
luding sparsity are 
onvergent.4



2 METHOD 5

NTF2D/SNTF2D KL-divergen
e1. InitializeW, H and D randomly.2. �(1) = D(P�P� #�H� � #�W� )T3. D D � V(1)DZT+Ddiag(1�((1Z)�D))1Z+Ddiag(1�( V(1)DZT Z�D)) where Z = (P�P� #�W� � #�H�)4. D�k;d = D�k;dkDdkF , �(2) =P�P� #�W� ( #�H� �D)T5. W�  W� � P� "��V(2)�(2) �( #�H��D)+W�diag(1�P� (1( #�H��D))�W� )P� 1 #�H�+W�diag(1P� ( "��V(2)�(2) �( #�H��D(i))�W� )6. W�i;d = W�i;dkWdkF , �(3) =P�P� #�H� ( #�W� �D)T7. H�  H� � P� "��V(3)�(3) �( #�W��D)P� 1( #�W��D)+� �CSparse(H)�H�8. Repeat from step 2 until 
onvergen
e.Table 2: Algorithm for NTF2D/SNTF2D by KL-divergen
e minimization. The algorithm is givenfor SNTF2D but by omitting everything in gray the 
orresponding algorithm withoutsparseness 
onstraint, i.e. NTF2D, is a
hieved.
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Figure 1: The �rst eight bars of �The Fog is Lifting� by Carl Nielsen3. ResultsThe algorithms were tested on an arti�
ial generated data set simulating a harp and �ute playing"The Fog is Lifting" by Carl Nielsen, see Figure 2 (here for illustrative purposes disregarding 
orre
tfundamental frequen
y of the two instruments to redu
e number of � shifts required to 
over allnotes). The s
ore of the musi
 
an be seen on Figure 1. The data set was generated having 175frequen
y bins 
overing from 50 Hz to 8kHz 
orresponding to 24 bins per o
tave. The distan
ebetween ea
h time point was one third of a 16th note. Consequently, W had seven lags, i.e. � =f0; 1; 2; : : : ; 6g 
orresponding to a time signature 
overing the duration of slightly more than an 8thnote. The s
ores were represented in H where � = f0; 1; 2; : : : ; 72g thereby 
overing 3 o
taves. Theinstruments were mixed in ea
h 
hannel su
h that the harp was dominant in 
hannel 1 whereasthe �ute was dominant in 
hannel 2. Noti
e, the position of the s
ores in H 
an be 
ompensatedby a 
ounter 
hange in the pit
h of the frequen
y signature in W while the onset of the frequen
ystru
ture in W 
an be 
ompensated by a 
hange in onset of the s
ore in H (S
hmidt and Mørup,2006b; Mørup and S
hmidt, 2006). Consequently, in the following the geometri
 mean of the notesin H was set to be at the 
enter of all the � shifts present in H while the geometri
 mean of thefrequen
y stru
ture was set to be at the 
enter of all the � shifts.The algorithms were also tested on a real re
ording of "The Fog is Lifting" by Carl Nielsen(Jensen and Johansen). We sampled the musi
 at 44.1 kHz and analyzed it by the short timeFourier transform with a 8192 point Hanning windowed FFT with 50% overlap. This gave us 283FFT sli
es. We grouped the spe
trogram bins into 210 logarithmi
ally spa
ed frequen
y bins inthe range of 50 Hz to 22 kHz with 24 bins per o
tave, whi
h 
orresponds to twi
e the resolution ofthe equal tempered musi
al s
ale. To 
over the duration of an eight note played we 
hose � to be� = f0; 1; 2; :::; 9g while � = f0; 1; 2; :::; 82g 
overing 3.5 o
taves, i.e. slightly more than the rangeof all the notes played. The results obtained analyzing the absolute values of these spe
trograms isshown in Figure 3.

6



3 RESULTS 7

Figure 2: Top �gures: Left panel; the arti�
ially generated signature of a harpW along with thes
ores played given by H and the 
orresponding time-frequen
y signature arising from
onvolvingW and H. The mixing in the two re
ording 
hannels is given by the arrows.Right panel; the 
orresponding signatures for the �ute. Middle �gures: Time-frequen
yplot of the two 
hannels generated from mixing the time-frequen
y signatures of bothinstruments. Bottom �gures: The estimated signatures of the harp and �ute found bythe SNTF2D algorithm, here shown using LS-minimization (the KL algorithm gave similarresults). The algorithms re
overed more than 99% of the varian
e in the original data.From the de
omposition it 
an be 
learly seen that the s
ores H are perfe
tly re
overedas well as the mixing in the 
hannels D and the harmoni
 stru
ture of ea
h instrumentW. To resolve ambiguity between W and H, � was set to 0.1 while the data was in therange [0; 0:66℄.



Figure 3: SNTF2D analysis of real stereo musi
 here shown for LS-minimization (again the KL-minimization gave similar results). Top images: The log-frequen
y spe
trogram andraw signal of ea
h of the two stereo 
hannels. Bottom images: The 
omponents foundwhen de
omposing the spe
trogram. The �rst 
omponent mainly 
aptures the harp whilethe se
ond 
omponent whi
h the �ute and harp 
omponents have been mixed in the twostereo 
hannels. Underneath the 
omponents are given the raw instrument signals foundby spe
tral masking. The two 
omponents a

ounted for 86.9 % of the varian
e in the twolog-spe
trograms. To resolve ambiguity betweenW and H � = 50 while the data was inthe range [0; 222℄.
8



4 DISCUSSION 94. Dis
ussionThe developed algorithms su

essfully 
aptured the 
omponents of the arti�
ially generated log-spe
trogram of musi
. For ease of interpretability of the 
omponents the results have only beenshown for the SNTF2D algorithms.From the stereo musi
 of the true re
ording of "The Fog is Lifting" (Jensen and Johansen) it wasseen that the method separated well the spe
trograms into two 
omponents 
orresponding mainly tothe harp and �ute respe
tively. From the signatures found the s
ores of ea
h instrument 
ould be readfrom H and the signature of the instrument fromW. Consequently, the SNTF2D algorithms workwell for musi
 trans
ription performing better than the single 
hannel SNMF2D analysis (S
hmidtand Mørup, 2006b) as the information from several 
hannels are in
orporated while in
luding onlya few extra model parameters. Furthermore, the algorithms 
an be used for sound separation asindi
ated by the re
onstru
ted signals found by using the time-frequen
y signatures of ea
h estimatedinstrument to perform spe
tral masking in the 
hannel the instrument was the most present. Ratherthan evaluating the statisti
al properties of the raw time signals to separate the sour
es as 
ouldhave been done by an ICA algorithm (Hyvarinen et al., 2001) or 
onvolutive ICA algorithm (Parraet al., 1998), the SNTF2D uses prior knowledge namely the presen
e of harmoni
al stru
tures inthe log spe
trogram to sear
h for systemati
 patterns through the spe
trograms. Consequently, theSNTF2D better models the data when the signals indeed 
an be assumed formed by su
h patterns.It is our strong belief that the SNTF2D algorithms will be useful for the analysis of other soundsignals su
h as spee
h and noise when su
h patterns are present.From the mixing of the 
omponents found by the model the degree in whi
h ea
h 
omponentis present in the 
hannels 
an be estimated. Although, it is not in general 
orre
t to assume themixing to be 
onstant over frequen
ies, the linear mixing presently used is easy to implement andwe believe it to be a reasonable approximation. Furthermore, the mixing D of the sour
es to the
hannels found by the model 
an be used to estimate the lo
ation of the sour
es when 
ombinedwith information of the position at whi
h ea
h 
hannels re
orded the sounds. As for the SNMF2Dmodel the assumptions of same harmoni
 stru
ture a
ross pit
h for a given instrument is a roughassumption (S
hmidt and Mørup, 2006b), however within a limited range this is likely to hold.Nevertheless, this is probably the main reason why the harp and �ute wasn't perfe
tly re
overedfrom the real musi
 by the algorithms.The algorithms developed are an extension of the PARAFAC model to in
lude double 
onvolutivemixtures. Consequently, the algorithms devised here gives both a single 
onvolutive mixture, i.e.either � = f0g or � = f0g as proposed by FitzGerald and Coyle (2006) and a double 
onvolutivemixture, i.e. � 6= f0g, � 6= f0g. These algorithms are all presently proved to 
onverge when nosparsity is imposed. Noti
e, that if both � and � are zero the SNTF2D algorithms be
omes asparse PARAFAC model. Furthermore, the developed model 
an easily be extended to in
lude moremodalities and also to in
orporate 
onvolutive mixtures in these extra modalities, i.e. a model thatis 3-D 
onvolutive, 4-D 
onvolutive et
. Consequently, the framework used here is generalizable toa wide range of higher order data analysis. Furthermore, the 2-D de
onvolution represents the dataas �xed translation invariant 2-D stru
tures. Consequently, the algorithms proposed is useful ingeneral when data 
an be represented as su
h stru
tures.Let � be the number of � shifts, � be the number of � shifts and D the number of 
omponents.The free parameters in the double 
onvolutive model is given by (C+F�+T�)D while the amountof data points is CFT . However, the data 
ould have been analyzed by 
on
atenating the time-frequen
y signatures of ea
h 
hannels using SNMF2D. This would have given (F� + CT�)D >>(C + F�+ T�+K)D free parameters. Consequently, the NTF2D is likely to be less over
ompletewhen operating with many lags of � and �. Furthermore, the PARAFAC model is, 
ontrary tofa
tor analysis, in general unique (Kruskal, 1977; Sidiropoulos and Bro, 2000). Consequently, havingthe analysis in the framework of the PARAFAC model improves the uniqueness properties of the
omponents found. This is a
hieved through a more restri
ted model here assuming the time-



frequen
y signatures of the underlying 
omponents to be instantaneously, linearly mixed in the
hannels.The above algorithms were developed under non-negativity 
onstraints. This was the 
ase sin
ethe amplitude of the spe
trogram is positive and the 
omponents assumed additive, i.e. no 
an
ella-tion of 
omponents within the spe
trogram. Although algorithms 
ould be developed to implementother assumptions the algorithms developed here are fast and easy to implement. One drawba
k ofthe sparse algorithms is that the 
hoi
e of sparseness penalty � is not obvious while still in�uen
ingthe solutions found.5. Con
lusionWe developed two algorithms for NTF2D with non-negative 
onstraints and showed how they wereuseful in the analysis of multi-
hannel sound signals. While the algorithms without sparseness 
on-straints were proven to 
onverge we 
onje
tured the sparse algorithms to 
onverge. The algorithmswere able to both 
orre
tly identify the 
omponents of arti�
ially generated data as well as realmusi
. MATLAB implementations of the algorithms 
an be download from(www2:imm:dtu:dk=pubdb=views=edo
_download:php=4652=zip=imm4652:zip).Referen
esJ. Eggert and E. Korner. Sparse 
oding and nmf. In Neural Networks, volume 4, pages 2529�2533,2004.J. Eggert, H. Wersing, and E. Korner. Transformation-invariant representation and nmf. In NeuralNetworks, volume 4, pages 2535� 2539, 2004.D. FitzGerald and E. Coyle. Sound sour
e separation using shifted non-negative tensor fa
torisation.In ICASSP2006, 2006.D. FitzGerald, M. Cranit
h, and E. Coyle. Non-negative tensor fa
torisation for sound sour
eseparation. In pro
eedings of Irish Signals and Systems Conferen
e, pages 8�12, 2005a.Derry FitzGerald, Matt Granit
h, and Eugene Coyle. Shifted non-negative matrix fa
torisation forsound sour
e separation. In Pro
eedings of the IEEE 
onferen
e on Statisti
s in Signal Pro
essing,2005b.P.O. Hoyer. Non-negative sparse 
oding. Neural Networks for Signal Pro
essing, 2002. Pro
eedingsof the 2002 12th IEEE Workshop on, pages 557�565, 2002.A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley and Sons.,2001.Thomas Jensen and Benedikte Johansen. Tåken letter (the fog is lifting) for �ute and harp 
omposedby 
arl nielsen. Naxos.J.B Kruskal. Three-way arrays: rank and uniqueness of trilinear de
ompositions, with appli
ationto arithmeti
 
omplexity and statisti
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