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Abstract

We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which
decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is
an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced
by Smaragdis (2004). We derive and prove the convergence of two algorithms for NMF2D
based on minimizing the squared error and the Kullback-Leibler divergence respectively.
Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives
eagy interpretable decompositions and devise two algorithms for computing this form of
factorization. The developed algorithms have been used for source separation (Schmidt
and Mgrup, 2005) and music transcription (Schmidt and Mgrup, 2006).

Keywords: Non-negative Matrix Factorization (NMF), Sparse Decomposition, NMFD,
translation invariant NMF, NMF2D /SNMF2D.

1. Introduction

In matrix decomposition techniques such as principal component analysis (PCA), indepen-
dent component analysis (ICA), and non-negative matrix factorization (NMF) the matrix
V is explained by an instantaneous mixing of the sources H with the mixing matrix W

V - WH,
Vi, = Zwi,de,j-
d

In convolutive matrix decompositions the mixing is not instantaneous but a convolutive
mixture of the sources H (Parra et al., 1998; Nguyen Thi and Jutten, 1995)

Vv = YW H,
Vi, = ZWEde,j—r,
d,7

—T
where H denotes shifting each column in H, 7 positions to the right. Since each row in V
is a convolutive mixture of the rows of H, we refer to the estimation of W and H as matrix
factor deconvolution.
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Matrix factor deconvolution is currently a topic of great interest — one of the main prob-
lems is finding efficient algorithms (Dyrholm et al., 2006). Smaragdis (2004) has introduced
a fast convolutive non-negative matrix factorization with multiplicative updates based on
Kullback-Leibler (KL) divergence minimization. A similar algorithm based on least squares
(LS) minimization using a transformation matrix to form the convolution was derived by
Eggert et al. (2004). Despite the growing attention given to convolutive models no attention
has to our knowledge been given to models that are convolutive in both the mixing and
source matrices. We extend the models of Smaragdis and Eggert to form a non-negative
matrix factor 2-D deconvolution (NMF2D). We derive and prove the convergence of two
algorithms for NMF2D based on LS-minimization and KL-divergence respectively. Both
algorihtms are extensions of the algorithms for non-negative matrix factorization introduced
by Lee and Seung (2000).

Since the NMF2D decomposition in general is not unique and possibly overcomplete, we
further introduce two algorithms for sparse non negative matrix factor double deconvolution
(SNMF2D). As for NMF2D, the SNMF2D algorithms are completely based on multiplicative
updates extending the approach of Eggert and Korner (2004). We conjecture that both the
SNMF2D algorithms converge to a local minimum of the cost function.

This paper establishes the NMF2D and SNMF2D methods and evaluates the proposed
algorithms. The developed algorithms for NMF2D decomposition have proven useful for
source separation (Schmidt and Mgrup, 2005) and the SNMF2D algorithms have been useful
for music transcription (Schmidt and Mgrup, 2006).

The paper is structured as follows: In Section 2 we give an introduction to NMF2D.
Then, we derive iterative algorithms based on LS and KL-divergence minimization. This
is followed by a derivation of the sparse non-negative matrix factor 2-D deconvolution
algorithms. In Section 3 we demonstrate the algorithms on toy examples. Finally, in
Section 4 we elaborate on the proposed algorithms. A MATLAB implementation of the
algorithms as well as a demo containing the analysed datasets can be downloaded from
http://www2.imm.dtu.dk /pubdb/views/edoc_ download.php/4521 /zip/imm4521.zip.

2. Non-negative Matrix Factor 2-D Deconvolution

Consider the non-negative matrix factorization (NMF) problem (Lee and Seung, 2000):
V ~WH
where V € RIX/ W € RI*P and H € RP*/ are non-negative matrices. Lee and Seung

(2000) devise two algorithms to find W and H: For the least squared error and the KL
divergence they proved that the following recursive updates converge to a local minimum

VH' wv
Least Squares : WWeé—onr--oru H«+Ho —0—,
WHH? WTWH
vV _QyT TV
. Wi L W wa
KL divergence : W< We , H«Heoe —m7m—r!
1-HT WT.1

where A ¢ B and % denotes element-wise multiplication and division respectively. These
algorithms can be derived by minimizing the cost function using a gradient based search



choosing the step size appropriately to yield multiplicative updates. Compared to principal
component analysis (PCA) and independent component analysis (ICA), NMF gives a more
sparse/part based decomposition (Lee and Seung, 1999). Furthermore, the decomposition
is unique under certain conditions (Donoho and Stodden, 2003), making it unnecessary to
impose constraints in the form of orthogonality or independence. These properties have
resulted in a great interest in NMF lately.

The NMF2D model extends the NMF model to be a 2-dimensional convolution of W
and H:

16 =T
VA = ) WHY
T,¢

AZ’] = Z W;—_‘bangaj_T’
T,¢,d

1¢
where W denotes the downward shift operator which moves each element in the matrix ¢

—T
rows down, and H denotes the right shift operator which moves each element in the matrix
7 columns to the right, i.e.

1 2 3 12 0 0 0 51 0 1 2
A:<4 5 6), A:(o 0 0), A:(o 4 5).
78 9 1 2 3 0 7 8
We note that the non-negative matrix factor deconvolution model introduced by Smaragdis
(2004) is a special case of the NMF2D model where ¢ = {0}. For illustrations of the NMF2D
model see Figure 1 and 2.

In the following derivation of the algorithms for NMF2D and SNMF2D, the derivative
of a given element of A with respect to a given element of W7 and H? is needed

E : W ¢
0 Z'T—¢,de,j—T
BAZ-,J- _ T9d

— — Hi_i-l
] ! d’, —7!
oW oW7 i
¢
a Z sz(i)adeaj_T
8A,~,j _ T,0,d _ Wj_g: ;
¢ ¢ =g
6Hd’,j’ 6Hdl’jl
2.1 Least Squares Cost Function
First, we consider the least squares cost function
1 2 _ 1 2
Crs =3IV -Allr =5 D (Vij— Aijy)>
2

Minimizing the squared error corresponds to maximizing the likelihood of a homoscedatic
Gaussian noise model. The derivative of Cg with respect to a given element in W7 is given
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Similarly for a given element in H? we find:

0CLs -
oHY ., - Z ig+r = Niger) Wiy a

The factors W and H can be found by minimizing the cost function using a gradient based

search. Consequently, the recursive update for an element in W is given by

0CLs
BWZ’ dl ’

Wig Wiy —1 (1)

Similar to the approach of Lee and Seung (2000), we can choose the step size 7 to cancel
the first term in equation 1

!
_
Wi,

7
D Aigos Hy o
b

77:

which gives us the following simple multiplicative update

¢
Z Vg Hy j

- ;
Z Airyg Hy -
.

WZ, dl (_ WZI dl

A similar step size can be found for H also giving a simple multiplicative update. In matrix
notation the updates of W7 and H? can be written as:

Y v H ka?r v

W e W e H? + H% o —
¢ o7 T 6 Ter
ZA H? ZWTA

¢ T

Alternating between the updates for W and H forms the algorithm for least squares NMF2D
minimization. A proof of the convergence of the algorithm is given in Appendix A.



2.2 KL Divergence Cost Function

Consider the Kullback-Leibler divergence given by:

Ckr = Z Vz’,j log X—:j — Vi,j + Ai,j-
i,j

While least square minimization attempts to retain as much of the variance as posible in the
data, minimizing the KL divergence corresponds to assuming a multinomial noise model.
Following the same steps as for the derivation of the algorithm for the least squares cost
function, we get the following update equations for the KL divergence cost function

T\z/ﬁ _>;T 6T
> (%)= YW (%)
¢ T
W W o —————— H? < H% o

=7 T

T
1 E S W1
¢ T

A proof of the convergence of the algorithm is given in Appendix B.
The two algorithms for NMF2D are summarized in Table 1.

NMF2D Least Squares NMF2D KL-divergence
1. Initialize W and H randomly. 1. Initialize W and H randomly.
16 =7 ¢ =7
2. A=), ,WH’ 2. A=), ,WH?
16 Ter 16 T
W7 V W™ (=
Y, W7 A S 1
¢¢T _’; Lo —T
4. A=3 ,W'H 4. A=Y,  ,WH
1 7T 1¢ T
X,V HY (X Ho
T T = |H
5. W W .ZX‘ﬁﬁ;T 5 W™« W7 e ¢(A)—’T
¢ >,1 HY
6. Repeat from 2 until convergence. 6. Repeat from 2 until convergence.

Table 1: Algorithms for Non-negative Matrix Factor 2-D Deconvolution.



2.3 Sparse Non-negative Matrix Factor 2-D Deconvolution

In the following we will extend the two NMF2D algorithms to give sparse decompositions,
ie. form a sparse NMF2D (SNMF2D). There are several reasons why a SNMF2D is of
interest.

e The NMF2D is not in general unique. If the data does not span the positive octant
adequately, a rotation of W and opposite rotation of H can give the same result (as
for NMF, see Donoho and Stodden, 2003). By imposing sparseness the solution being
the sparsest (which is often also the most interpretable) can be found.

e For double convolutive models the structure of a factor in H can to some extend be
put into the signature of the same factor in W and vice versa (see also Figure 2). By
imposing sparseness on H this ambiquity can be relieved by forcing the structure onto
w

o Let T and ® denote the total numbers of 7 and ¢ shifts respectively. Then the free
parameters of the NMF2D model is (I -7 + J - ®) - D where the size of the analyzed
data is I-J. Consequently, the NMF2D model tends to be overcomplete when allowing
many shifts and components. In these overcomplete situations imposing sparseness is
known to give good representations (Olshausen, 1996).

Consequently, the main problem of NMF2D is component ambiguity, i.e. lack of uniqueness
in the decompositions. To improve uniqueness constraints in the form of sparsity has proven
usefull (Hoyer, 2002, 2004; Eggert and Korner, 2004). While Hoyer (2002) uses the L;-
norm to penalize H, we here derive in line with the approach of Eggert and Korner (2004)
algorithms based on multiplicative updates using a general sparsity penalty term on H given
by f(H). This yields the following cost functions for the SNMF2D

1 ~
Css = 5 Z(Vz’,j — Aij)’ +Bf(H)
2y}
V. . ~
Cskr = » Vijlog K—” — Vij+Aij + Bf(H).
i 1,J

Here, A is the model computed with factor wise normalized W such that the sparsity term
f(H) can’t be minimized simply by letting H go to zero while W goes to infinity

~ 39 o7 — W7 W7
A= ZWT H? where WI,= id _ ”Wwﬁ _
’ 2 dll2
e > (W)

T,

The parameter 8 weights the importance of the sparsity term to the reconstruction. Fol-
lowing the same steps for minimizing these cost function as for the previously discussed
algorithms, we get the following updates for SNMF2D summarized in Table 2.

Since the derivative of f(H) is used in the updates a negative derivative can potentially
result in negative updates. Consequently, f(H) can be any function with positive derivative.



SNMF2D Least Squares

1. Initialize W and H randomly.

—_— W7
T i,d
2. Define Wi’d = W.ls

T

6. WN—}?\?T.

Ed,{ﬁﬂ’ +W7diag(3, 1((A’ H? )eWT))

1:?—)7"1‘ — T¢—>TT —
YA H? +Wrdiag(3, 1((V H? )eWT))

7. Repeat from 2 until convergence.

SNMF2D KL-divergence

. Initialize W and H randomly.

. Define W7 ; = m
19 7
A=y, 5, W B
,;L_? T ;‘r
2. Wr (=
H? «— H? o

¢
W~ . of (H)
ETW 145 oH?

3 o7

A=Y, Y, W HY

L W7 W7e
T¢ 4, T - T
£, (¥) He +W7diag (T, 1R )W)

—)TT

—)TT —_~ o~
51 He +Wrdiag(S, 1((( %) H )oWr)

. Repeat from 2 until convergence.

Table 2: Algorithms for Sparse Non-negative Matrix Factor 2-D Deconvolution. Here,
diag(-) denotes a matrix with the argument on the diagonal.




For example f(H) can be the Ly-norm (a > 0) given by
1/a

FH) = [Hlo = | > [H] then

#,d,j

af(H) B H¢o(o¢—1)
oHe = jH|e

Where H**“™" denotes raising each element in H? to the power (o — 1).

While the convergence of the updates of H using least square minimization with the L
norm follows straight forward from the proof of convergence of the H update given in Hoyer
(2002), see also Appendix A the convergence of the H update is also easily proven for the
KI-algorithm, see Appendix B. We haven’t been able to prove the convergence of W for
any of the two algorithms. Eggert and Korner (2004) conjectured their sparse algorithm
for NMF least square minimization is convergent. We will conjecture the SNMF2D based
on LS as well as KL.-minimization are also convergent since extensive tests of the SNMF2D
algorithms showed no signs of divergence.

3. Examples

The NMF2D based on LS and KL-divergence minimization were tested in their ability to
find the components of two different simulated data sets. The first dataset was created to
have little ambiguity between H and W while the second data set had a high degree of
ambiguity.

As shown in Figure 1 both methods give a good reconstruction of the first simulated
data set correctly identifying the three circles and crosses in W. Since the amount of ¢
shifts were less than the size of the structure in W the data could not be reconstructed by
putting the structure in W onto H.

In the second data set the shifts ¢ was in the range of the two components in W now
only consisting of one circle and a cross. Consequently, the data could be reasonable well
explained by letting H draw some or all of the circles and crosses as seen in Figure 2. As
shown in the figure imposing sparseness relieves this ambiguity between W and H.

4. Discussion

From the first simulated data set it is seen that when no ambiguity between W and H
is present, both NMF2D algorithms correctly identifies the components. However, when
ambiguity is present as in the second simulated data set the NMF2D algorithms failed in
always identifying the correct components. However, the SNMF2D algorithms here using
the Ly — norm could resolve the ambiguity by forcing all structure in H onto W giving the
correct components. However, the sparseness constraint is not guaranteed to always remove
the cost function from a suboptimal solution.

Notice how only half the cross is recovered as the algorithm converges to the Local
Minimum 2 in figure 2. Once the algorithm has placed the components in W it cannot
always relocate the component as it becomes better identified. The NMF2D model suffers
from a shift redundancy between the factors of W and H, such that a factor in W can be
shifted in any direction as long as the corresponding factor in H is shifted conversely, if we
disregard edge effects. In order to relive this shift ambiguity W and H can be aligned to
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Figure 1: NMF2D on a toy problem: (a) The simulated data. W consists of three crosses
of varying size in the first factor and three circles of varying size in the second.
These signatures are convolved with H given in the top of the figure to yield
the data matrix V which is a mix of both components. (b) The Result when
analyzing the simulated data V using NMF2D based on least square minimization.
Clearly, the algorithm successfully identifies the two components. (¢) The result
when analyzing the simulated data V using NMF2D based on the KL-divergence
minimization. Again the two components are successfully identified.

meet specific criteria, for example by shifting the factors such that the mean value of the
column coefficients in each component in W are set to attain the maximum at the center
column of W and likewise for the rows of H. Aligning W and H would have circumvented
this local minimum.

While the LS-algorithm very often ended in suboptimal solutions the KL algorithm
almost always identifyed the correct components in the data set having ambiguities. Con-
sider the model error E; ; = V;; — A; ;. We then have Crs = Eij Ef’j while Ckr =
Constant+ 3, —Vijlog(Vi; — E; ;) — E; j. Consequently, outliers are weighted relatively
stronger for the LS than the KL algorithm. The stronger focus on outliers might result
in more local minimas in the LS cost function since the improvement (reduction) of some
of the residuals E;; has to counteract potential increase in error of other residuals Ey ;.
This could be the reason why the KL algorithm more often attained the global optimum.
However, this issue needs further investigation.

Choosing f(H) as well as the weight of sparseness to the reconstruction, [, significantly
impact the solutions found. In general choosing f(H) to be the Ly-norm where @ < 1 will
penalize small values relatively more than large values of H and vice versa for a > 1. It is
worth noting that norms less than 1 are non-convex and consequently results in cost functions
suffering of many local suboptimal solutions. Furthermore, the Lj-norm corresponds to
translating the data towards the x-axis which results in a form of thresholding of the values
in H. By the algorithm devised for SNMF2D the sparsity penalty f(H) the most adequate
for the given data can be chosen.
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Figure 2: (a) The simulated data now with the W matrix only having one circle and a cross
. (b), (d) Examples of results ending in suboptimal solutions when analyzing the
data. The ambiguity between W and H is so large that all of the crosses in
b and part of the crosses and circles in d are described by drawing them in H
instead of W. (c¢) When imposing sparseness (f(H) given by the L1 —norm) this
ambiquity is circumvented. Primarily, the suboptimal solutions were reached by
the LS algorithm while the KL algorithm almost always correctly identified the
components.
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Let T and @ denote the total numbers of 7 and ¢ shifts respectively. Then all the
algorithms presented here are O(I-J-D -T - ®) i.e. for a given D - T - ® the algorithms
grow linear with the size of V' = I - J. Consequently, even for large problems the algorithms
efficiently fit convolutive (¢ = 0 or 7 = 0) and double convolutive models. Furthermore,
as the convolutive non-negative matrix factorization introduced by Smaragdis (2004) is a
special case of the double convolutive non-negative matrix factorization presented here. The
convergence of Smaragdis single convolutive factorization follows from the convergence of
the corresponding double convolutive algorithm by setting either 7 or ¢ to 0.

The algorithms above were derived for non-negative decomposition yielding multiplica-
tive updates. However, the derived gradients can be used to form a gradient based algorithms
for a general matrix factor 2-D deconvolution where W and H is not assumed non-negative.

5. Conclusion

We gave two algorithms for NMF2D and proved their convergence. We further gave two
algorithms we conjecture convergent for sparse NMF2D (SNMF2D). While NMF2D success-
fully identified the components of data where the structure of the components was greater
than the possible shifts, the SNMF2D was capable of correctly identify the components of
data having ambiguity between W and H. The NMF2D and SNMF2D have proven useful
in separation (Schmidt and Mgrup, 2005) and transcription of music (Schmidt and Mgrup,
2006). It is our strong belief that the NMF2D and SNMF2D model will be useful in a wide
range of signal analysis primarily where NMF already has been applied.

Appendix A. Convergence of the LS Algorithm

The proof is based on the use of an auxiliary function and follows closely the proofs for
the convergence of NMF algorithm of Lee and Seung (2000). Briefly stated, an auxiliary
function G to the function F is defined by: G(H,H!) > F(H) and G(H,H) = F(H). If G
is an auxiliary function then F is non-increasing under the update H = arg ming G(H, H?).

The proof of convergence of the least squares updates follows essentially the proof of the
least squares NMF updates of Lee and Seung (2000). We start by defining:

2

FH) = 5 Z Vij— Z WiT—qﬁ,dHS,j—T
i,j T7¢,d

Notice that F is just the regular least square cost function Crg. Define the vector h, as
h, = Hﬁ x- This vector is simply a vectorization of H where a indexes all combinations of
¢, d, and k . The gradient vector VF; and Hessian matrix Q,; found by differentiating F

with respect to the element Hg, i and Hg,’, w denoted by a and b, gives:

0Crs

VE=—57 = =) (Vigr = Aigrir) Wy g
aHd’,k;’ T,
OF (H)? L
Qap = _OME ZW5—¢,de—f’,§7

T

T8
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Since F(H) is a quadratic function it is completely described by a second order Taylor
expansion here expressed in terms of h as:

F(h) = F(h!) + (h — b)TVF(h) + %(h —1b)TQ(h — 1)
Now let K (h') be a diagnoal matrix defined by
K (h")ap = 0ap(Qh’)a/(h)s.
Further, define the auxiliary function
G(h,h’) = F(h') + (h — W")VF(h') + %(h —1h)TK (h')(h — h?).
Clearly G(h,h) = F(h). Finding G(h,h?) > F(h?) corresponds to
(h—h")T(K(h") ~Q)(h—h") >0

This requires the matrix (K (h*) — Q) to be positive semidefinite (Lee and Seung, 2000).
The rest of the proof follows closely the convergence proof of the regular NMF (Lee and

Seung, 2000). Define the matrix M, ;(h’) = h! (K (h') — Q)4 sh!. This is just a rescaling of

the elements in (K (h?) — Q). Then (K (h?) — Q) is semipositive definite if and only if M is

V'My = Zl/};Ma’bl/b
ab
_ i t t t t
= Z Vi (b} (6ap(Qh)a/(h")a — Q)aphh)vs
= thQabth — v,h! Qhly,

1
= Z Qa,bhflh,t)(?/a + 51/}; — Uglp)
ab

1
= 52 Quphihi(va —1)* >0
ab

all that is left to prove is that minimizing G yield the least square updates

0G(h,h?)
onh
& h="h'—-K(h")"'VF(h)

& h, =h - (gll?t) VF(h'),.

Changing the indexing a to be of the parameters ¢, d, and j, we get

+
Q=YW o 3 WL - W b
J'd ¢ Tl
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Consequently

Hﬁ . = Hd’t + 2,tk Zm' Wg—¢,d(vi,r+k - Az‘,r+k)
’ Zm' sz¢,dAi,k+T
Hﬁtk >ri Wiy aVirtk ’
ZT i Wz @, dAz',r+k

which concludes the proof. By the symmetry of W and H the proof of convergence of the
W update is achieved by interchanging the roles of W and H in the above.

For the SNMF2D algorithm based on LS the convergence of the H update is easily proven
for L; defining K (h?),, = 6ab% as proposed by Hoyer (2002) for regular NMF. The
convergence of H for any « # 1 is however not easy to prove since the auxiliary function
is neither fully explained by a second order Taylor expansion, nor can a simple K (h'),; be
defined to give the correct updates. We were also unable to proof the updates of W since
the normalization of the factors W results in the cost function not being explained fully by
any finite Taylor expansion.

Appendix B. Convergence of the KL Algorithm

This proof follows straightforward the proof of the convergence for NMF given by Lee and
Seung (2000) again the proof is based on the use of auxiliary functions, see B. The main
ingredient is to note than by the convexity of the log function, we have:

—logZa:a < —Z(Jzalogﬁ if Zaa =1
a a aa a

Define a4 by the three indices d, ¢ and 7:

Ht¢

-
Wi d,j—T

i—p,d
Qg =
Aty

Where At is the reconstruction found using H. Notice ), 6,7 @ = 1. We now have:

FH) = Z(leogX — Vi, )

ij
= D (VijlogVi; — VijlogAij — Vi + Aij)

ij
= Y | ViglogVij— Vijlogd Wi, HY.  —V,;+ Ay

2] ¢dt

d 3 j Wi d 3

< Z V,;logV;;— ”Z Wi ¢ P77 Jog WZT %, t¢’] T —Vij+ A

irj gdr A Whoa asor

i.j

= G(H,HY)
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Since G(H,H) = F(H) which is easy to see from the above - we only need to prove that
minimizing G yields the KL-updates:

t ¢
w — i Z N\, . Z Z @b, dH d,j—T log WZ'Tf¢,de’j_7- n AZ' .
H¢ H¢ »J Atz,j WZ——d),dHtg,j—q— »J
d,k d,k t,j — =¢84 4= T
’ t) 3 Ati ]

S \% W oaH'Gr log W1, ;HY A

T oY Z Y Z At—” 0g Wi g atlyg ;T Nij
d,k 1, T )

t. . ¢
A J Wz ¢dek

2,T

Wi_
— ¢d :J T
= H¢ D Vikpr—— AT +sz pd
dk 1
Equating this gradient to zero gives:
W;r—qﬁ dHtZ Jj—T
o Dig Viktr ——je
bk Zi, WLM
WT t¢ ir
i Viktr— R0 Tt ,
Z- Wi 4

Vi k4T
1o ZZT l ¢, d At; Jk+T

Hy
dir Wi 44

Which concludes the proof. By the symmetry of W and H the proof of convergence of the
W update is achieved by interchanging the roles of W and H in the above.

For the SNMF2D algorithm based on KL the proof of the H updates follows by replac-
ing A with A and W with W in the above while defining F(H) = F(H) + 8f(H ) and
G(H,H!) = G(H,H') + 8f(H). Clearly G(H,H") is then an auxiliary function of F(H)
while equating the gradient of G (H,H") to zero gives the H update.

Contrary to the H update we were unable to prove the convergence of the W update.
Defining the auxiliary function G(W, W) and equating the derivative of this function to
zero we were unable to isolate W as a function of W*.
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