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Abstract

Learning latent structure in complex networks has beconimportant problem
fueled by many types of networked data originating from picadly all fields
of science. In this paper, we propose a new non-parametgiedan multiple-
membership latent feature model for networks. Contraryxistieg multiple-
membership models that scale quadratically in the numbeedfces the pro-
posed model scales linearly in the number of links admittimdgiple-membership
analysis in large scale networks. We demonstrate a commneodtween the sin-
gle membership relational model and multiple membershiget®and show on
“real” size benchmark network data that accounting for pldtmemberships im-
proves the learning of latent structure as measured by liedligtion while explic-
itly accounting for multiple membership result in a more @awt representation
of the latent structure of networks.

1 Introduction

The analysis of complex networks has become an importafiecige spurred by the many types
of networked data arising in practically all fields of sciend’hese networks are very different in
nature ranging from biology networks such as protein irtigwa [18,[1] and the connectome of
neuronal connectivity [19] to the analysis of interacti@tvieeen large groups of agents in social and
technology network$[14, 10| [9,120]. Many of the networksibitla strong degree of structure; thus,
learning this structure facilitates both the understagdihnetwork dynamics, the identification of
link density heterogeneities, as well as the predictiomoising” links.

We will represent a network as a gragh= (,)) whereV = {v,..., vy} is the set of vertices
and) is the set of observed links and non-links. Déte {0, 1,7}V >N denote a link (adjacency)
matrix where the element; = 1 if there is a link between vertex andv;, y;; = 0 if there is nota

link, andy;; =7 if the existence of a link is unobserved. Furthermore)gt)y, and)» denote the

set of links, non-links, and unobserved links in the gragpeetively.

Over the years, a multitude of methods for identifying latructure in graphs have been proposed,
most of which are based on grouping the vertices for the ifieation of homogeneous regions.
Traditionally, this has been based on various communitgali®in approaches where a community
is defined as a densely connected subset of vertices thairisedyplinked to the remaining network
[15,[17]. These structures have for instance been identifjesplitting the graph using spectral
approaches, analyzing flows, and through the analysis dfiimiltonian. Modularity optimization
[15] is a special case that measures the deviation of thédraof links within communities from
the expected fraction of such links based on their degreetdison [I5/17]. A drawback, however,
for these types of analyses is that they are based on hesstil do not correspond to an underlying
generative process.



Figure 1: Left: Example of a simple graph where each of théices have multiple memberships
indicated by colors. Right: The corresponding assignmeitim

Probabilistic generative models: Recently, generative models for complex networks have been
proposed where links are drawn according to conditionallependent Bernoulli densities, such
that the probability of observing a link;; is given byr;;,

p(Y|II) = H wy” (1 —myy)tvis, Q)
(i,4)€Y

In the classical Erdds-Rényi random graph model, eadhidinncluded independently with equal
probabilityr;; = mo; however, more expressive models are needed in order tolmauglex latent
structure of graphs. In the following, we focus on two redatgethods: latent class and latent feature
models.

Latent class models:In latent class models, such as the stochastic block mo@gl4iso denoted
the relational modelRMm), each vertex; belongs to a class;, and the probabilitys;;, of a link
betweeny; andv; is determined by the class assignmen@ndc; asri; = pe,c;. Here,pxe € [0,1]
denotes the probability of generating a link between a weirteclassk and a vertex in clasé.
Inference in latent class models involves determining thsscassignments as well as the class link
probabilities. Based on this, communities can be found mmifgs of) classes with high internal and
low external link probability.

In the model proposed by [[7H{v) the class link probabilityp.,, is specified by a within-class
probabilityn. and a between-class probabilify, i.€ pre = 1,(1 — 0e) + 1c0ke.. Another intuitive
representation, which we refer to @B, is to have a shared between-class probability but allow for
individual within-class probabilities, i.e,e = 7, (1 — dxe¢) + 1x0re. Both of these representations
are consistent with the notion of communities with high ingd and low external link density, and
restricting the number of interaction parameters canifat#l model interpretation compared to the
generaRM.

Based on the Dirichlet proces$] [9.120] propose a non-parangeneralization of the stochastic
block model with a potentially infinite number of classesated the infinite relational modelRm)
and infinite hidden relational model respectively. Thegatfeneralizing the stochastic block model
to simultaneously model potential vertex attributes. l@fiee inlRm jointly determines the number
of latent classes as well as class assignments and clasgrbblabilities. This approach readily
generalizes to thew andDB parameterizations qd.

Latent feature models: In latent feature models, the assumption that each vertloge to a
single class is relaxed. Instead it is assumed that eacbxvgrhas an associated featurg and
that probabilities of links are determined based on intéas between features. This generalizes
the latent class models, which are the special case whefedhees are binary vectors with exactly
one non-zero element.

Many latent feature models support the notion of discressssgs, but allow for mixed or multiple
memberships (see Figurk 1 for an illustration of a netwothk wiultiple class memberships). In the
mixed membership stochastic block modeMsB) [1] the vertices are allowed to have fractional
class memberships. In binary matrix factorization [11] tiplé memberships are explicitly modeled
such that each vertex can be assigned to multiple clusteas lyfinite latent feature model based
on the Indian buffet processfp) [6]. [12] study this approach, for the specific case of a Beth

likelihood, Eqg. [3), and extend the method to include adddi side information as covariates in
modeling the link probabilities. In their model, the probiy of a link ;; is specified byr;; =



fo (O ks zikzjewre + sij), where f,(-) is a function with rang€0, 1] such as a sigmoid, andj,
are weights that affects the probability of generating k& bietween vertices in clustérand/. The
terms;; accounts for bias as well as additional side-informaticor. éxample, if covariateg, are

available for each vertex;, [12] suggest including the termy; = 3d(¢;, ¢;) + B ¢; + ,Bj-Tqu,
wheregs, 3;, and3; are regression parameters, atid -) is some possibly nonlinear function.

In general, the computational cost of the single memberdhigtering methods mentioned above
scales linearly in the number of links in the graph. Unfostiaty, existing multiple membership
models[1[ 11, 12] scale quadratically in the number of eesj because they require explicit compu-
tations for all links and non-links. This renders existingltiple membership modeling approaches
infeasible for large networks. Furthermore, determinimg multiple membership assignments is a
combinatorial challenge as the number of potential states @s2* rather thank in single
membership models. In particular, standard Gibbs samglpgyoaches tend to get stuck in local
suboptimal configurations where single assignment chaagesot adequate for the identification
of probable alternative configurations [11]. Consequetitigre is both a need for computationally
efficient models that scale linearly in the number of linksvedl as reliable inference schemes for
modeling multiple memberships.

In this paper, we propose a new non-parametric Bayesiantléature graph model, denoted the
infinite multiple relational modeliarMm), that addresses the challenges mentioned above. Specifi-
cally, the contributions in this paper are the followingWg propose thevrm in which inference
scales linearly in the number of links. ii) We propose a nonjagate split-merge sampling proce-
dure for parameter inference. iii) We demonstrate how thglsimembershilrm model implicitly
accounts for multiple memberships. iv) We compare existiog-parametric single membership
models with our proposed multiple membership counterpatearning latent structure of a variety

of benchmark "real” size networks and demonstrate thatigdglmodeling multiple-membership
results in more compact representations of latent streictur

2 Infinite multiple-membership relational model

Given a graph, assume that each vertgkas an associatelf -dimensional binary latent feature
vector,z;, with K; = |z;|; assignments. Consider vertexandv;: For all K, K; combinations of
classes there is an associated probability, of generating a link. We assume that each of these
combinations of classes act independently to generaté détweernv; andv;, such that the total
probability,7;;, of generating a link between andv; is given by

mij =1—(1—04) H(l — pre) T, 2
kt

whereg;; is an optional term that can be used to account for noise ondiude further side-
information as discussed previously. Under this model féiaures act as independent causes of
links, and thus if a vertex gets an additional feature it véult in an increased probability of link-
ing to other vertices. In contrast to the model proposed 8}, [i’/here negative weights leads to
features that inhibit links, our model is more restrictedth8ugh this might result in less power
to explain data, we expect that it will be easier to interpinetfeatures in our model because links
are directly generated by individual features and not thhazomplex interactions between features.
This is analogous to non-negative matrix factorizatiort th&nown to form parts-based represen-
tation because it does not allow component cancellatiojs Jithe latent features; have only a
single active element and; = 0, Eq. [2) reduces ta;; = p.,.,, i.€., the proposed model directly
generalizes thekm model; hence, we denote our model the infinite multiple-mexrsiip relational
model (MRM).

The link probability model in Eq[{2) has a very attractiverqmutational property. In many real
data sets, the number of non-links far exceeds the numbenlks present in the network. To
analyze large scale networks where this holds it is a greatradge to devise algorithms that scale
computationally only with the number of links present. As st®w in the following, our model
has that property. Assuming,; = 0 for simplicity of presentation, we may write EdJ (2) more

T
compactly as m;; = 1 — e*iF=i,



where the elements of the matdX arepy, = log(1 — pg;). Inserting this in Eq[{1) we have

Yij 1—yq;
p(Y|Z,P) = H (1 —e Ipzf) (eszzf) = {H(l - eszzf)} exp[Zz;erj}. 3)
(1,5)€Y (4,5) €V (4,5)€Vo
The exponent of the second term, which entails a sum overdbslgly large set of non-links in the
network, can be efficiently computed as

Zpke(zzzk Zzgz - szzﬂ), (4)

J=1  (i,))eV1UY?

requiring only summation over links and “missing” links. sAgning that the graph is not dominated
by “missing” links, the computation of Eq.](3) scales lingadn the number of graph linkg) |.
We presently consider latent binary featuegsbut we note that the model scales linearly for any

parameterizations of the latent feature veetgras long asr;; =1 —e 2Pz ¢ [0; 1] which holds
in general ifz; is non-negative.

As in existing multiple membership models [11] 12] we wilsame an unbounded number of la-
tent features. We learn the effective number of featuresutyin the Indian buffet processsg)
representation [6], which defines a distribution over umizlad binary matrices,

OZK i — M)\ — .
Z ~IBP(a) x HKh!H (N k])\:v(' p—1)! (5)
hejoay P!

wheremy, is the number of vertices belonging to clasand K}, is the number of columns df
equal toh.

As a prior over the class link probabilities we choose indelemt Beta distributions,

are—1

prelake, bre ~Beta(age, bee) o pist " (1— pre) s~ (6)

This is a conjugate prior for the single membership modelsre/the parametets,, andby, corre-
spond to pseudo counts of links and non-links respectivelyween classesand/.

2.1 Inference

In the following we present a method for inferring the pargeneof the model: the infinite binary
feature matrixZ and the link probabilitieg,. In the latent class model when only a single feature is
active for each vertex, the likelihood in Eff] (3) is conjuegiat the Beta prior fop,. In that caseP

can be integrated away and a collapsed Gibbs sampling proeéat Z can be used[9]. This is not
possible in themrM; instead, we propose to samgie~ p(P|Z,Y) using Hamiltonian Markov
chain Monte Carlo{mMc), andZ ~ p(Z|P,Y) using Gibbs sampling combined with split-merge
moves.

HMC for class link probabilities: Hamiltonian Markov chain Monte Carlaif1c) [5] is an auxil-
iary variable sampling procedure that utilizes the gradidnhe log posterior to avoid the random
walk behavior of other sampling methods such as Metrogddistings. In the following we do not
describe the details of themc algorithm, but only derive the required expressions forghedi-
ent. To utilizeHmc, the sampled variables must be unconstrained, but gince a probab|I|ty we

make the following change of variable fropp, € [0,1] to rie € (—00,00), pre = m

rre = — log (pu — 1). Using the change of variables theorem, the prior for thesdiak probabil-

ities expressed in terms of is given byp(rie|ae, bre) oc e®e7re (e7ke 4 1)~ (aretbre)  With this,
the relevant terms of the negative log posterior is given by

—Lp =logp(P|Z,Y) = C+210g (1 - eszzj)—kz ziTPzﬁZ aperre+(arctbre) log(e™41),

(1,5) €M (4,5)€Yo Kkl -
7
wherec does not depend oR. From this, the required gradient can be computed,
8£P Pz]
s Z ﬁzzkzﬂpw + Z ZikZjepre + (are + bre)pre — age. (8)
e Gpem - ¢ (i,1)EVo



Again, the possibly large sum over non-links in the seconah tean be computed efficiently as in
Eq. ().
Gibbs sampler for binary features: Following [6], a Gibbs sampler for the latent binary feature
Z can be derived. Consider sampling ftta feature of vertex;: If one or more other vertices also
possess the feature, i.€1, ;;, = Z#i zji > 0, the posterior marginal is given by

m_ik

p(zik =1Z ), P, Y) x p(Y|Z, P) N ©)

When evaluating the likelihood term, only the terms thateteponz;; heed be computed and the
Gibbs sampler can be implemented efficiently by reusing adgatpn and by up and down dating
variables.

In addition to sampling existing featurdgfi) = Poisson(%) new features should also be associated

with v;. [6] suggest. .. computing probabilities for a range of valuesﬁffz) up to some reasonable
upper bound. ..} however, following[[11] we take another approach and santipé new features
by Metropolis-Hastings using the prior as proposal den3ihe values opy; corresponding to the
new features are proposed from the prior in Eg. (6).

Split-merge move for binary features: A drawback of Gibbs sampling procedures is that only
a single variable is updated at a time, which makes the sarppd@e to get stuck in suboptimal
configurations. As a remedy, bolder Metropolis Hasting nsas@n be considered in which multi-
ple changes of assignments help exploring alternative pighability configurations. How these
alternative configurations are proposed is crucial in otdettain reasonable acceptance rates. A
popular approach is to split or merge existing classes gsosed in[[8] for the Dirichlet process
mixture model bpPMM). Split-merge sampling in thP has previously been discussed briefly by

[11] and [12].

Inspired by the non-conjugate sequential allocation-spétge sampler for thepmm [4], we pro-
pose the following procedure: Draw two non-zero element& ofk1, 1) and(ke, i2). If k1 = ko
propose a split — otherwise propose to merge clagsesdk. into a joint clusterk;. Accept the

. . . . Z* ,P*|\Y)q(Z|Z*)q(P|P*
proposal with the Metropolis-Hastings acceptance kétes min (1, p;(zyp‘}‘,);?(z*{z)qgl(,*{lp))).

In case of a merge, we remokg and assign all its vertices o, and we remove the correspond-
ing row and column ofP (this proposal is deterministic and has probability one)r & split, we
remove all vertices except from clusterk; = ko = k and create a new clustér and assigrnis

to it. We then sample a new row and columip, for the new cluster as described below. Next we
sequentially allocaté [4] the remaining original membédrk to eitherk or k* or both in a restricted
Gibbs sampling sweep, and refine the allocation thrauaghditional restricted Gibbs scans [8].

The proposal density fqr;,,, is based on a random walkg;, ,, ~ Beta(ag ¢, birer), Where

Bk/gl = max (1, (1 — ﬁk/g/)mz -1+ ﬁk/gl), Qe = mMax (1 &Bk/g/), (10)

1= e
such thap;,,, has meamy,» and variance equal to the empirical varianggy (1 — prre ) /m3. We
Dkk g/ — k/ — k*

? Z[;ﬁk pe K =k 0 =k

K—1 Ze;&k Pek k= kvél = k"
Pkt otherwise,

new class has a similar within and between class link prditiabias the original class, but such that

the class link probability between the original and new ®uss similar to the remaining between

class link probabilities. This choice is crucial, sinceavdrs splitting classes into two classes that

are no more related than the relation to the remaining cdasse

choose the mean of the random walkoas: = such that the

3 Results

Based on theiw, DB, andrRM parametrization op, we compared our propos@drM to the corre-
sponding single-membershipm [9]. We evaluated the models on a range of synthetically gene
ated as well as real world networks. We assessed model pefme in terms of ability to predict
held-out links and non-links. As performance measure wel tise area under curveyc) of the
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Figure 2: IRM (upper) andMRM (lower) analysis of single (left) and multiple membershiwy
network (right). On the single membership data, both maiitedsthe correct class assignments. On

the multiple membership data, therm finds the correct 10 classes, whiikav extracts 25 classes,
which throughp accounts for all combinations of classes present in the data
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Figure 3:Auc scores for the analysis of the six synthetically generatad sets

receiver operating characteristRdc). We also computed the predictive log likelihood (not shown
here) which gave similar results. For comparison, we inetlithe performance of several standard
non-parametric link prediction approaches based on thexoig scores,

.
ComN T DegPr __ Jace _ Yi Y, ShP _ 1

Yoy = ylyy, vt = kiky, W= e, T = :
" R T ki k —ylyy Y ming {(YP)i > 0}

wherek; = Zj yij is the degree of vertex;.

In all the analyses we remov@d;% of the links and an equivalent number of non-links for cross-
validation. We analyzed a total of five random data splits alh@f the analyses were based on
2500 sampling iterations initialized randomly with = 50 clusters. Each iteration was based on
split-merge sampling using sequential allocation witk= 2 restricted Gibbs scans followed by
standard Gibbs sampling. Our implementation of ki@ was based on collapsed Gibbs sampling
(i.e. integrating oufp) as proposed in [9] but we also included a conjugate singteabership
split-merge step corresponding to the proposed non-catgLgplit-merge sampler. The priors were
chosen asv = log(N), axr = 5, age = 1Vk # £ andby, = 1, bie = 5Vk # ¢ which renders the
priors practically non-informative.

Synthetic networks: We analyzed a total of six synthetic networks generatedrdaogto theHw,
DB andrRM models based on the vertices having either one or two meimpsr®o the underlying
classes. For the single membership models we generatedl aftdt = 5 groups each containing
100 vertices. For thew generated network we st = 1 andp, = 0 while for thebB generated
network we used a within community densities ranging from 0.2 to 1 whilepy = 0. TheRmMm
generated network had same within community densitiesesghnetwork but included varying
degrees of overlap between the communities. The multipraloeeship models denotediw, MDB
andMRM were generated from the corresponding single membershielnasy vV RY R (where
V denotes element-wise or aitlis a random permutation matrix with diagonal zero), suchehah
vertex belongs to two classes.

While theimrRM model explicitly accounts for multiple memberships, the model can also im-
plicitly account for multiple memberships through the beén class interactions. To illustrate this,
we analyzed the generatedv and MHw data by theilRM model as well as the propos@drm
model (see FigurEl2). When there are only single memberstiipsMrRM reduces to therm
model; however, when the network is generated such thate¢hees have multiple memberships
the IMRM model correctly identifies the2(- 5 = 10) underlying classes. Th&wm model on the
other hand extracts a larger number of classes correspwptudall possible 2 = 25) combinations
of classes present in the data. The estimat@wicates how thes25 classes combine to form the
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Figure 4:Auc scores for the analysis of the five real networks.

Table 1: Summary of the analyzed real networkdenotes the networks assortativitghe cluster-
ing coefficient[[19],L the average shortest path.

NETWORK N [ V1] T c L Description

Yeast 2,284 6,646 -0.10 0.13 4.4 Protein-protein intevaatietwork[18]
USPower 4,941 6,594 0.00 0.08 19.9 Topology of power @ridl [19

Erdos 5,534 8,472 -0.04 0.08 3.9 Erdos 02 collaboratiowardt [2]

FreeAssoc 10,299 61,677 -0.07 0.12 3.9  Word relations sndssociatior [13]
Reuters911 13,314 148,038 -0.11  0.37 3.1  Word co-occuiBhce

10 underlying multiple membership groups in the network. AstsuihelrRM model has the same

expressive power as the proposed multiple membership mbdelinterpreting the results can be
difficult when multiple membership community structure ditsinto several classes with complex
patterns of interaction.

Figure[3 shows the link-predictionuc scores from the analysis of the six generated networks.
Results show that all models work well on data generatedrdoapto their own model or models
which they generalize. We also notice, that th& model accounts well for multiple membership
structure as discussed and illustrated in Fidilire 2. AlveandDB models on the other hand fail in
modeling networks with multiple memberships.

Real Networks: We finally analyzed five benchmark complex networks sumredrin Table L.
The sizes of most of the networks makes it computationafgasible for us to analyze them using
the existing multiple-membership approaches proposétlib][12]. For all the networks, multiple
memberships are conceivable: In protein interaction nedsveuch as the Yeast network proteins
can be part of multiple functional groups, in social netwgoskich as Erdos scientist collaborate
with different groups of people depending on the reseangittand in word relation networks such
as Reuters911 and FreeAssoc words can have multiple me#&rongexts. For all these networks
explicitly modeling these multiple contexts can potemyfi&hprove on the structure identification
over the equivalent single membership models.

In Figure[4 theauc link prediction score is given for the five networks analyzé@ can be seen
from the results, modeling multiple memberships signifilyaimproves on predicting links in the
network. In particular when considering thew andibeB models and the corresponding proposed
multiple membership models, the learning of structure iprioned substantially for all networks
except USPower. Furthermore, it can be seen thatRkiemodel that can also implicitly account
for multiple memberships in general has a similar perforcean the multiple membership models.
The poor identification of structure in the USPower netwoiggtmbe due to the fact that the average

Table 2: Top table: The number of extracted components for tke1 and IMRM models. Bold
denotes that the number of components are significantlgreift between the two models (i.e.
difference in mean is at least two standard deviations afgattom table: cpu-time usage in hours
for 25001IrRM andIMRM sampling iterations.

| Yeast | USPower | Erdos | FreeAssoc | Reuters9ll |
IRM | 24.0+f08 | 86+0.4 [ 104+£0.3 | 586 £0.7 | 39.8 F 2.1 |
IMRM | 154+ 09 | 6.8+05 | 68+06 | 156+009 | 448 F 1.0 |
| Yeast | USPower | Erdos | FreeAssoc | Reuters9il |
IRM_ | 23+£0.1 | 40%£0.2 | 146 5.9 [ 30.1 £06 | 32.5 £5.4 |

IMRM | 1.7 £0.1 | 89+08 | 7.1+0.5 | 281 +1.9 | 71.5+3.2 |




path between vertices are very high rendering it difficuldébect the underlying structure for any
but the most simpledw model. While theRm andiMRM perform equally well in terms of link
prediction it can be seen in talfle 2 that the average numbertedcted components for thierRm
model is significantly smaller than the number of componentsacted by therm model for all
networks except the Reuters911 network where no signifdiffierence is found. As a result, the
IMRM model is in general able to extract a more compact represemiaf the latent structure of
networks. In tabl€12 is given the total cpu-time for estimgtthe 2500 samples for each of the
network using therm andiMRM showing that the order of magnitude for the computationsat 06
the two models are the same.

4 Discussion

While single membership models based onithe indirectly can account for multiple memberships
as we have shown, the benefit of the proposed framework ist thikaws for these multiple mem-
berships to be modeled explicitly rather than through cexpktween-group interactions based on
a multitude of single membership components. On syntheiicraal data we demonstrated that
explicitly modeling multiple-membership resulted in a meompact representation of the inherent
structure in networks. We further demonstrated that matieliscan capture multiple memberships
(which includes therm model) significantly improve on the link prediction relagito models that
can only account for single membership structure, i.e.|HneandiDB models. We presently con-
sidered undirected networks but we note that the proposagebaph readily generalizes to directed
and bi-partite graphs. Furthermore, the approach alsmégt® include side information as pro-
posed in[[12] as well as simultaneous modeling of vertexoattes [20]. We note however, that the
inclusion of side information requires a linearly scalaps&ameterization in order for the overall
model to remain computationally efficient. An attractiveperty of thelRm model over theMRM
model is that therM model admits the use of collapsed Gibbs sampling which we fawnd to be
more efficient relative to sampling the non-conjugate midtmembership models where additional
sampling of thep parameter is required. In future research, we envision @umgpthe IRM and
IMRM model, using therm as initialization for themrm or by forming hybrid models.
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