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Summary: The Indian Buffet Process (IBP) is a stochastic process on binary features that has been
applied to modeling communities in complex networks [4, 5, 6]. Inference in the IBP is challenging
as the potential number of possible configurations grows as 2KN where K is the number of latent
features and N the number of nodes in the network. We presently consider the performance of
three MCMC sampling approaches for the IBP; standard Gibbs sampling, joint Gibbs sampling and
non-conjugate split/merge sampling. Our results indicate that including joint sampling significantly
improves on parameter inference over standard Gibbs sampling while split-merge sampling appears
useful for improving the inference as measured by burn-in-time of the sampler.
Introduction: Recently the Indian Buffet Process (IBP) [1] has been applied to modeling overlap-
ping communities in networks[4, 5, 6]. We currently focus on the model proposed in [6] that is given
by the following generative process

Z ∼ IBP (α),

σ ∼ Beta(β+
c , β

−
c ),

ηlk ∼ Beta(β+
c , β

−
c )

ηlk ∼ Beta(β+
o , β

−
o ) (for l 6= k)

Yij ∼ Bernoulli(1− (1− σ)
∏
lk

(1− ηlk)zilzjk).

Thus, within-community link probabilities are drawn according to Beta(β+
c , β

−
c ) whereas between

community elements according to Beta(β+
o , β

−
o ). A property of the above generative model is

that features act as independent causes of links, and thus if a vertex gets an additional feature it
will result in an increased probability of linking to other vertices formed by the noisy-or process
πij = 1 − (1 − σ)

∏
`k(1 − η`k)zi`zjk , In contrast to the model proposed by [5], where negative

weights leads to features that inhibit links, the above model is more restricted. However, contrary
to [5] the model scales in the number of links rather than the size of the network [6] and directly
generalizes the infinite relational model (IRM) of [3, 7], thus the name infinite multiple-membership
relational model (IMRM)[6].

We will investigate two approaches to enhance inference in the model over standard Gibbs sampling:
joint Gibbs sampling over multiple latent features and split/merge sampling. We note that we can
trivially absorb the noise parameter σ into η by forming a community η00 = σ with no interaction
to other communities, i.e. ηl0 = 0∀l, η0k = 0∀k such that z0i = 1∀i, i.e., by representing the noise
term as an additional community that all nodes are members of. Letting the elements of the matrix
P be given by p`k = log(1− η`k) we have for the joint distribution
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Figure 1: Left panel: The parameters used to generate the data. The generated networks have
250 nodes, a total of 10 clusters each containing 50 nodes such that each node belonged to two
communities. Four undirected networks are considered generated by the two matrices η(a) and
η(b) with and without noise given at the bottom left for the noise case (i.e. σ = 0.1). Right
panels: Inference performance for IMRM for η with 3 and 7 non-zero entries in the off-diagonal
respectively. Given in each plot is the joint posterior likelihood logP versus cpu-time for different
combinations of inference procedures. Solid lines indicate the mean and shaded regions two times
the standard deviation of the mean for 100 random initializations. In the analysis in the top row
σ = 0 (i.e. no-noise) and in the bottom row σ = 0.1 (i.e., noise included). (In the analysis
β+
c = β−c = 1, β+

o = 0.1, β−o = 1 favoring low densities in the off-diagonal elements of η and
α = log (250), ).

where mk is the number of vertices belonging to class k and Kh is the number of columns of Z
equal to h[1].
Inference procedures: Let there be a total of K active components. The number of states of these
K components are for the IBP 2KN , thus the IBP invokes an exponential explosion in the number
of possible states. This makes inference in the IBP challenging compared to the Chinese restaurant
process with KN possible states. We investigate three MCMC strategies for inference in the IBP
given below. These update will be used interlaced with inference of η that is sampled element-wise
by a random walk Metropolis-Hastings procedure.
Standard Gibbs Sampling: Following [1], a Gibbs sampler for the latent binary features Z
can be derived. Consider sampling the kth feature of vertex vi: If one or more other ver-
tices also possess the feature, i.e., m−ik =

∑
j 6=i zjk > 0, the posterior marginal is given by

p(zik = 1|Z−(ik),P ,Y ) ∝ p(Y |Z,P )m−ikN . When evaluating the likelihood term, only the terms
that depend on zik need be computed and the Gibbs sampler can be implemented efficiently by
reusing computation and by up and down dating variables. In addition to sampling existing features,
K(i) = Poisson

(
α
N

)
new features should also be associated with vi. Following [4] we sample the

new features by Metropolis-Hastings using the prior as proposal density.
Joint Gibbs Sampling: Let C denote the set of components to jointly sample and let further
|C| denote the number of components considered. We will Gibbs sample from the distribution
of all 2|C| possible combinations of assignments given by p(ziC = [0, 1]|C||Z−(iC),P ,Y ) ∝

p(Y |Z,P )
∏
k∈C

m
zik
−ik(N−m−ik)

1−zik

N . Again we exploit that when evaluating the likelihood terms,
only the terms that depend on ziC need be computed and the Gibbs sampler can be implemented
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efficiently by reusing computation and by up and down dating variables. In our implementation we
sample random subsets of features for |C| = {4, 5, 6}.
Non-conjugate Split-Merge Sampling: Split-merge sampling in the IBP has previously been dis-
cussed briefly by [4] and [5]. We use the framework proposed in [2] for the Dirichlet process mixture
model (DPMM) that exploits an intermediate launch state. This launch state we define by three re-
stricted Gibbs sampling sweeps forZ and η. Two types of proposals were used evenly; a split/merge
move that randomly selects two features to split or merge, and a birth/death move that chooses either
to introduce an additional feature from the noise cluster (birth) or to merge an existing cluster into
the noise cluster given by σ (death).
Results and Discussion: Figure 1 shows the results of different combination of the inference pro-
cedures. As can be seen the best performing inference is not standard Gibbs sampling. A major
improvement for all considered problems was found when combining Gibbs sampling with joint
sampling. Furthermore, split/merge moves also appeared to slightly speed up the burn-in period of
the sampler for this non-conjugate problem. To conclude, our results indicate that joint sampling is
a very efficient sampling strategy for the IBP relative to standard Gibbs sampling while split/merge
moves also appears to be useful.
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