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ABSTRACT

Sparse coding is a well established principle for unsupervised learn-
ing. Traditionally, features are extracted in sparse coding in spe-
cific locations, however, often we would prefer invariant representa-
tion. This paper introduces a general transformation invariant sparse
coding (TISC) model. The model decomposes images into features
invariant to location and general transformation by a set of speci-
fied operators as well as a sparse coding matrix indicating where
and to what degree in the original image these features are present.
The TISC model is in general overcomplete and we therefore in-
voke sparse coding to estimate its parameters. We demonstrate how
the model can correctly identify components of non-trivial artificial
as well as real image data. Thus, the model is capable of reducing
feature redundancies in terms of pre-specified transformations im-
proving the component identification.

1. INTRODUCTION

Sparse coding and the closely related independent component anal-
ysis (ICA) are well established principles for feature extraction in
multi-media data [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The principle of sparse
coding is to account for as much information as possible while trans-
mitting as little information as necessary. Mathematically, this corre-
sponds to attaining as few non-zero elements as possible in the code
(i.e., an NP hard l0 norm minimization problem), and sparse coding
is thus closely related to redundancy reduction [11, 12]. Olshausen
and Field [1] argue that the brain might employ sparse coding since
it allows for increased storage capacity in associative memories; it
makes the structure in natural signals explicit; it represents complex
data in a way that is easier to read out at subsequent level of process-
ing; and it is energy efficient. Thus, sparseness is a natural constraint
for unsupervised learning, and often yields parsimonious features.

When we experience our surroundings, it is well known that our
perception does not alter when we move the head or change gaze.
Thus, our brain manages to interpret the world, despite the location,
scale and orientation of the objects we navigate among. The visual
area 1 (V1) in the visual cortex of the human brain is retinotopi-
cally organized, such that neighboring regions of the retina are also
neighboring regions in V1 [13]; however, the visual processing in
the human brain is also organized into orientation selective columns
[14, 15]. Here, a typical simple cell responds best to some opti-
mum stimulus orientation (illustrated in Figure 1), and the response
measured by the number of impulses, as the receptive field is passed
through, falls off over 10–20 degrees to either side of the optimum,
declining steeply to zero outside this region. If an electrode is pushed
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through the cortex in a direction parallel to the surface, an amazingly
regular sequence of changes in orientation occurs. Every time the
electrode advances 0.05 millimeter, the preferred orientation shifts
on average about 10 degrees clockwise or counterclockwise [15].
Thus, it seems neurons in the visual cortex are tuned to respond to
given orientation and location of feature objects. Furthermore, as
pointed out by Tanaka [16], neurons in the inferotemporal cortex
respond to moderately complex features, icon alphabets, which are
invariant to the position of the visual stimulus. Hence, these fea-
tures are complex patterns rather than the Gabor-like features often
obtained by sparse coding or ICA decomposition.

Inspired by these properties of feature extraction in the brain
we find ample motivation for sparse coding incorporating invariance
such as shift and rotation for analyzing image data. Furthermore,
features invariant to shift could potentially constitute icon alphabets
as observed in inferotemporal cortex.

2. TRANSFORMATION INVARIANT SPARSE CODING

It is demonstrated in [2] how sparse coding of image patches results
in Gabor like features, based on the following model [2, 5]

I(k)(x, y) ≈ R(k) =

D∑
d=1

αk,dΨd(x, y). (1)

where, I(k)(x, y) denotes the kth image patch of the same size as the
desired feature images, Ψd(x, y), and αd is the sparse code. Hence,
each image patch is approximated by a sparse linear combination of
the feature images.

In [17, 18] it is demonstrated how the sparse coding model can
be extended to general transformation invariances of the feature im-
ages. The features are invariant to a pre-specified set of operators,
Tr

Ik(x, y) ≈ R(k) =
D∑
d=1

R∑
r=1

αk,d,rTr(Ψd)(x, y). (2)

These operators, Tr , account for any desired transformation within
each patch, such as scaling and rotation. The model is based on sub-
dividing the image into image patches; thus, a drawback of the above
approach is that the extracted features depend on how the image is
subdivided, and the model cannot account for simple transforma-
tions such as shifts without introducing redundant features.

The models are estimated by

arg min
α,Ψ

K∑
k=1

(D(I(k),R(k)) + λ

D∑
d=1

log sp(αk,d)) (3)

where λ is a parameter, that defines the tradeoff between reconstruc-
tion error and sparseness of the code. D(·, ·) is a distance measure of



Fig. 1. Typical receptive-field maps for V1 simple cells [15]. The
off-regions and on-regions of the cells are illustrated by the black
and white colors.

the reconstruction error, for example the least squares error, and sp
is the sparse prior distribution of αd such as the Laplace distribution
sp(αd) ∝ e−|αd|.

We presently propose the following model, that does not rely
on subdividing the image into patches, and allows the features to
be invariant to a given set of pre-specified transformations, Tr . Let
I ∈ RX×Y be the full image (without subdividing), then

I ≈
D∑
d=1

R∑
r=1

αd,r ∗ Tr(Ψd). (4)

where ∗ denotes 2-dimensional convolution, αd,r ∈ RX+U×Y+V

and Ψd ∈ RU×V . The above model is related to shift invariant
sparse coding [19, 20, 21, 22] with the extension of invariance to
general transformations. The proposed model directly implements
shift invariance through 2-D matrix convolution, which can be effi-
ciently implemented in the Fourier domain. In the following, in ad-
dition to shift invariance, we consider invariance to rotation. Thus,
Tr denotes a rotation operator, such that Tr(Ψd) rotates the feature
image, Ψd, 2π(r − 1)/R radians clockwise. From this formulation
of shift and rotation invariant sparse coding, a strong resemblance
can be found between each component of the sparse code and the
retinotopic organization in the human brain subdivided into orienta-
tion selective columns (see Figure 2).

To incorporate both shift and rotation invariance with respect
to R different rotations, the sparse code, has a huge number of pa-
rameters, (X + U) · (Y + V ) · D · R, compared to previous shift
and rotation invariant image decompositions, in which the analyzed
images where subdivided into image patches prior to the analysis.
Thus, it is not feasible to solve for the sparse code using traditional
sparse coding algorithms based on computing the Hessian matrix.
In order to estimate the parameters of the model, we use an efficient
algorithm that relies only on gradient information.

The paper is structured as follows: In section 3, we derive an
efficient sparse coding algorithm based only on gradient information,
and compare this type of update to state-of-the-art algorithms for
sparse coding. Based on this, we derive an efficient algorithm for
the rotation and shift invariant sparse coding model. In section 4,
we compare the features found by the rotational and shift invariant
sparse coding model to the features obtained by the traditional sparse
coding method, when analyzing the set of natural images described
in [2].

3. METHOD

3.1. Solving efficiently for the sparse code

Consider again the sparse coding objective given in equation 3. The
objective has two terms: a penalty for reconstruction error, and a
penalty for non-sparseness. Using least squares as measure of re-
construction error and the Laplace prior as sparse distribution, corre-

Fig. 2. Illustration of the sparse coding array for a given compo-
nent, d, i.e. αd,r for r ∈ {1, 2, . . . , 10} of a total of R=10 rotations
corresponding to the feature image of a bar being represented in the
interval [0◦; 180◦[. The sparse code representation is similar to the
organization of V1 of the human visual cortex, where the organiza-
tion of the cells maintain the organization of the receptive field of
the eye, i.e. the x and y coordinates, while each receptive field in V1
is organized into orientation selective columns, corresponding here
to the indexing r over rotations.

sponding to an l1-norm penalty, the above problem becomes the well
known LASSO [23] or basis pursuit denoising (BPD) [24] problem
for a fixed value of Ψ

arg min
S
L(S), (5)

L(S) =
1

2
‖X−AS‖2F + λ|S|1, (6)

where Sd,k = αk,d, Xk,j(x,y) = I(k)(x, y), Aj(x,y),d = Ψd(x, y),
and j(x, y) is a re-indexing of (x, y) that corresponds to vectoriz-
ing the feature images. Although the above objective is a convex
optimization problem for fixed A, no closed form solution exists,
thus an iterative procedure must be employed in order to solve the
problem. Several methods have been proposed: In [2], an algorithm
based on conjugate gradient (Conj.Grad.) was used. In sparselab1,
the discontinuity of the derivative at zero is avoided, by turning the
problem into a non-negative quadratic programming problem (this
approach we presently denote BPD). In [19] the SignSearch algo-
rithm was introduced, which is an active set procedure that estimates
the sign of S, such that a closed form solution can be obtained as
(A>A)†(A>X − λsgn(S)). In [20], the l1-penalty is approxi-

mated by the quadratic penalty |S|1 =
∑
d,j |Sd,j | =

∑
d,j

S2
d,j

Qd,j
,

where Qd,j =
√
S2
d,j , and Q is kept fixed when computing the

gradient and Hessian with respect to S despite it’s dependence on
S. This procedure we will presently denote (BD-SC). [25, 26] in-
troduce the least angle regression and selection (LARS) algorithm,
that solves for S by computing the entire regularization path, i.e., the
solution for all values of λ, at the computational cost of an ordinary
least squares solution. All the above methods, except the conjugate
gradient based approach, rely on computing the Hessian, and they
are thus very memory intensive for large problems.

1http://sparselab.stanford.edu/



Algorithm 1 Gradient Based Sparse Coding (GB-SC)
1: repeat
2: Update S according to reconstruction penalty,
3: Snew = S− µ(A>(AS−X)
4: Update Snew according to the sparsity penalty, such that ele-

ments crossing zero are set to zero,

5: Snewd,j =

{
0 if |Snewd,j | < µλ
Snewd,j −µλsgn(Snewd,j ) otherwise

6: if L(Snew) < L(S) then
7: µ = 1.2µ
8: S = Snew

9: else
10: µ = µ/2
11: end if
12: until convergence

Unfortunately, simple gradient based methods normally fail in
finding the optimal solution, since they tend to get stuck in very small
step sizes, due to oscillations around zero. To see this, consider the
gradient of the objective in Equation (5) given by

G = A>(AS−X) + λsgn(S). (7)

A gradient based update would be given by

Snew = S− µ
(
A>(AS−X) + λsgn(S)

)
; (8)

however, if |λsgn(Sold)|d,j >> |A>(ASold−X)|d,j , the regular-
ization will dominate the update, and rather than be forced to zero,
Sd,j will cross zero, and in subsequent updates, oscillate around
zero, until the step size, µ, becomes infinitesimal small, even though
the regularization is minimized when elements in S becomes zero.
(see Figure 3). At first glance, this might appear to be a minor con-
cern; however, when many elements of S are close to zero, the joint
effect of all these oscillations will completely dominate the update.

To avoid the oscillations, we propose to split the gradient based
update into the following simple two step procedure: update the so-
lution, first, based on the gradient of the reconstruction error term,
and second, based on the regularization term, as described in Algo-
rithm 1. This simple algorithm avoids the oscillatory behavior en-
countered in regular gradient descent. Notice that S is only updated,
if the update decreases the objective. Furthermore, when the step-
size, µ, becomes very small, elements do not change sign, and the
proposed update is equivalent to regular gradient descent, and hence,
the proposed algorithm has the same fixed points as the regular gra-
dient descent procedure. Notice also, that although the procedure
in Algorithm 1 is given for least squares minimization with sparsity
penalty based on the Laplace prior, (i.e., the L1 norm,) the approach
of splitting the gradient into an update for the reconstruction error
and an update for the sparsity penalty generalizes directly to other
types of reconstruction metrics and sparsity penalty measures (i.e.,
log sp(αk,d)). A simple but useful convergence criterion is to stop
iterating when the relative change in the objective is below some
small value, ε.

3.2. Transformation Invariant Sparse Coding Algorithm

We now return to the Transformation Invariant Sparse Coding
(TISC) model

I ≈ R =

D∑
d=1

R∑
r=1

αd,r ∗ Tr(Ψd). (9)

Fig. 3. Illustration of how the proposed gradient based sparse cod-
ing alleviates poor convergence due to oscillations around zero. Top
panel: the progression through 50 iterations of the GB-SC algorithm
as well as regular gradient descent on a problem with 100 variables.
The dotted black line is the initial solution, the solid black line is the
solution obtained after 50 iterations, and the red lines are interme-
diate results. For the GB-SC, the final solution is the global mini-
mum of the problem. The regular gradient descent algorithm does
not converge fast to the optimum, but oscillates around zero. Middle
panel: Inspection of the progression of one variable (marked by blue
boxes in the top panel). No oscillations are found for the GB-SC
based method, whereas the regular gradient descent method oscil-
lates around zero causing the algorithm to suffer from slow conver-
gence. Bottom panel: The progression of the coefficients through
17 iterations for a problem with 50 variables. Even for this relatively
small problem, regular gradient descent is stuck in suboptimal solu-
tion due to oscillations around zero, whereas the GB-SC efficiently
finds the optimal solutions.

As we would like the model to extract features that are similar across
various different images, we extend the model to N images of arbi-



256× 100 256× 256 256× 1000 256× 2500

BD-SC 0.3641± 0.3044 11.6250± 4.4922 — —
SignSearch 0.0750± 0.0359 0.1984± 0.1342 0.3734± 0.1759 1.6969± 0.6441
Conjugate gradient 0.4172± 0.0651 1.1219± 0.2560 9.0297± 1.8055 45.6297± 12.0142
LARS 0.0453± 0.0226 0.1313± 0.0787 0.4313± 0.1477 1.9813± 0.6342
BPD 0.5703± 0.0696 0.9313± 0.0748 2.8719± 0.1389 15.5047± 0.7882
GB-SC 0.0125± 0.0066 0.3172± 0.2121 2.0688± 1.0760 22.8828± 12.2846

Table 1. Comparison of the CPU time for various sparse coding algorithms on different problem sizes.

trary size

I(n) ≈ R(n) =

D∑
d=1

R∑
r=1

α
(n)
d,r ∗ Tr(Ψd). (10)

Hence, the nth image is modeled by a sparse code, α(n)
d,r , convolved

with the pre-specified transformations of set of feature images,
Tr(Ψd), that is shared by all the N images, and summed over all
rotations and features.

Using the least squares error for the reconstruction penalty (cor-
responding to a Gaussian noise model) and imposing a Laplace prior
to promote sparsity we obtain the following objective

N∑
n=1

1

2
‖I(n) −R(n)‖2F + λ

∑
d,r

|α(n)
d,r |1. (11)

Presently, we consider rotation invariant features, thus, r indexes a
set of predefined rotation operators. For an illustration of this, see
Figure 2 and 4.

The derivative of the objective function (11) with respect to α
(n)
d,r

and Ψd is

∇α(n)
d,r =

(
I(n) −R(n)

)
∗
(
Tπ(Tr(Ψd))

)
+λsgn

(
α

(n)
d,r

)
, (12)

∇Ψd =

N∑
n=1

R∑
r=1

T−1
r

(
I(n) −R(n)

)
∗ T−1

r

(
Tπ
(
α

(n)
d,r

))
, (13)

where T−1
r denotes the inverse rotation operator, and Tπ denotes

rotation of 180 degrees. We implemented the rotation operator Tr
using linear interpolation between the image pixels. In image re-
gions, where T−1

r and Tr are not valid, we zero padded the data.
Ψd was updated such that ‖Ψd‖F = 1 as proposed for sparse cod-
ing in [2, 20] based on the normalization invariant projected gradient
approach proposed in [4].

4. RESULTS

In Table 1, the performance of the BD-SC, SignSearch, conjugate
gradient, LARS, and BPD algorithms with the proposed GB-SC
method are compared for a range of different problem sizes. The
problem solved is arg mins

1
2
‖x−As|2F + λ|s|1, for λ = 0.05.

J × D denotes the size of A, (J image pixels and D basis vec-
tors.) The mean and standard deviation is given for 10 randomly
generated problems, each given by setting A to D randomly chosen
columns from the natural images data set [2] and x to a randomly
selected image patch, not already used in the dictionary, A. No-
tice, SC-BD, SignSearch and LARS all find the global optimum.
The remaining algorithms were stopped, when their deviation from
the true optimum was less than 10−4. For D ≤ J , the proposed

GB-SC is the fastest of all the algorithms, but for over-complete
problems, i.e., D � J , the GB-SC algorithm is not in general
as effective as the other algorithms, which use Hessian informa-
tion; however, it is still faster than the conjugate gradient based
method. Hence, the proposed algorithm is not only simple, but
also efficient, and even outperforms state of the art algorithms for
D ≤ J . SC-BD for 256× 1000 and 256× 2500 was not included,
as it was more than 100 times slower than the conjugate gradient
algorithm. The conjugate gradient algorithm was obtained from
www.l1-magic.org, whereas the BPD and LARS was obtained
from www.sparselab.stanford.edu. The SignSearch algo-
rithm was kindly provided by H. Lee [19].

Figure 4 shows the result of a rotation and shift invariant sparse
coding of a synthetically generated dataset. The data consists of
a number of bar and C-shapes, randomly rotated between 20 uni-
formly distributed orientations over the interval [0; 360◦]. From the
figure it can be seen that when the regularization strength λ is week,
most of the information is coded in the sparse code, while for the
“correct” degree of sparsity, the information of the bar and C-shape
is coded in the features. When the regularization is too strong, only
the most prominent regions are coded, which results in features that
are highly localized.

Figure 5 shows the result of a regular sparse coding analysis of
the natural scenes image data given in [2]. The data was prepro-
cessed as described in [2]. Figure 6 and 7 show the corresponding
results based on shift-invariance and rotation-and-shift-invariance.
In the shift invariant model, we used 10 features, and in the rotation
and shift invariant model, we used 2 features and 10 rotational rep-
resentations covering the interval [0; 180◦[. The data set consists of
10 natural images of size 512 × 512 from [2]. Thus, the resulting
size of the sparse code was 512×512×10×10×2 = 52, 428, 800
variables.

5. DISCUSSION

The transformation invariant sparse coding (TISC) model presently
derived, codes images in a representation that resembles the orga-
nization of the visual processing in the visual area 1 in the human
brain. Both the TISC model, as well as the visual processing system
of the brain, code images such that the retinotopic mapping is pre-
served, while features are coded in orientation selective columns, as
demonstrated in Figure 2.

In Table 1 it was seen, that the proposed gradient based sparse
coding (GB-SC) algorithm, despite relying solely on gradient in-
formation, was comparable in performance to state of the art algo-
rithms. It is even faster than the other algorithms when J > D.
Thus, the proposed GB-SC forms a simple yet efficient algorithm
for sparse coding. As the TISC model was solved by alternatingly
solving for the features Ψd and the sparse code α(n)

d,r a benefit of the
proposed gradient based approach is that rather than solving exactly



Fig. 4. A rotation and shift invariant sparse coding analysis of a syn-
thetically generated dataset. Top panel: The feature images consist
of a bar and a C shape, at random locations and orientations forming
the synthetic image data X. Middle panel: Estimated features and
data using the rotation and shift invariant sparse coding algorithm.
Bottom panel: Inspection of the results obtained for different val-
ues of the regularization parameter λ, given are the two estimated
features as well as the reconstructed data. Note that the gray back-
ground of the estimated features are due to a different color axis used
to show small regions of the estimated feature images with negative
values.

for Ψd for fixed α
(n)
d,r and vice-versa at each iteration at a high com-

putational cost Ψd and α
(n)
d,r were instead refined at a relatively low

computational cost such that changes were propagated during each
gradient step between Ψd and α

(n)
d,r .

Fig. 5. Feature images, Ψ, of size 16×16 obtained by analyzing the
natural image data subdivided patches of size 16× 16, according to
the model given in Equation (1). The result is Gabor-like features, as
reported in [2]; however, we note that the features appear redundant
with respect to shift and rotation (many of the features are, more
or less, shifted and/or rotated versions of other features). Hence, a
representation that does not depend on the specific choice of subdi-
vision of the images, while taking into account the shift and rotation
redundancies, is desirable.

Fig. 6. Shift invariant feature images, Ψ, of size 16 × 16 obtained
when analyzing the natural image data using shift invariant sparse
coding. Similar to sparse coding, Gabor-like features are obtained;
however, the features are not redundant with respect to shift, since
the model can use each feature at any position. The features appear,
however, are redundant with respect to rotation.

In the analysis of the synthetically generated dataset of a bar and
C-shape in random shifted and rotated positions, the TISC algorithm
was able to correctly identify the correct features (see Figure 4.) The
degree of sparsity, controlled by the parameter λ, was important for
the success of the algorithm in extracting the components. A too
low degree of sparsity made the model code most of the information
in the code matrix, α, while the features were more or less given
by random patterns. For a suitable degree of sparsity, the two fea-
tures were correctly identified, and the sparse code consisted only of
peaks corresponding to the location and orientation of the features
in the data. Imposing to much sparsity on the other hand resulted in
coding of only regions containing most prominent activity, such that
the feature images over-fitted to these specific regions. This property
was also found when analyzing the natural scene images.

In the classical application of sparse coding to natural images,
using the data described in [2], we illustrated how the traditional
sparse coding, where the images are subdivided into image patches,
yielded features, that were highly redundant in terms of shift and ro-
tation. By imposing rotation and shift invariance, this redundance
is directly included in the model. In our analysis, where we used



Fig. 7. Rotation and shift invariant feature images Ψ of size 20×20
obtained when analyzing the natural image data using the rotation
and shift invariant sparse coding algorithm. Notice, due to the rota-
tion invariance, only the central areas of the features are non-zero.
The first feature obtained seem to mimic on-center off-surround be-
havior, while the second feature resembles an edge detector, corre-
sponding to the simple cell behavior given in Figure 1. To the right,
the 10 rotated representations of the features are shown.

only two features, one feature corresponded to low frequency on-
center off-surround behavior, while the other corresponded to an
edge, hence resembled the typical simple cell characteristic illus-
trated in Figure 1. Thus, the proposed TISC model extracts features,
that more closely resemble simple cell behavior compared to tradi-
tional sparse coding, and the rotation and shift invariance is able to
greatly reduce the redundancy of the extracted features. While we
presently considered rotation invariance we note that the proposed
TISC readily generalize to other types of invariances such as invari-
ance to scale.
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