
Predictive Assessment of Models for Dynamic Functional
Connectivity

Søren F. V. Nielsena,1, Mikkel N. Schmidta, Kristoffer H. Madsena,b, Morten Mørupa

aDTU Compute, Technical University of Denmark,
Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby, Denmark

bDanish Research Centre for Magnetic Resonance, Section 714,
Copenhagen University Hospital Hvidovre, Kettlegaard Allé 30, DK-2650 Hvidovre, Denmark

Abstract

In neuroimaging, it has become evident that models of dynamic functional connectiv-
ity (dFC), which characterize how intrinsic brain organization changes over time, can
provide a more detailed representation of brain function than traditional static analy-
ses. Many dFC models in the literature represent functional brain networks as a meta-
stable process with a discrete number of states; however, there is a lack of consensus
on how to perform model selection and learn the number of states, as well as a lack
of understanding of how different modeling assumptions influence the estimated state
dynamics. To address these issues, we consider a predictive likelihood approach to
model assessment, where models are evaluated based on their predictive performance
on held-out test data. Examining several prominent models of dFC (in their proba-
bilistic formulations) we demonstrate our framework on synthetic data, and apply it on
two real-world examples: a face recognition EEG experiment and resting-state fMRI.
Our results evidence that both EEG and fMRI are better characterized using dynamic
modeling approaches than by their static counterparts, but we also demonstrate that
one must be cautious when interpreting dFC because parameter settings and modeling
assumptions, such as window lengths and emission models, can have a large impact on
the estimated states and consequently on the interpretation of the brain dynamics.

Keywords: Dynamic functional connectivity, Hidden Markov models, Predictive
likelihood.

1. Introduction

The functional integration of the brain can be studied by analyzing the patterns
of synchronized activity across spatially separated brain regions. It has recently been
shown that the functional connectivity (FC) varies with time, and a number of studies
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have investigated this dynamic functional connectivity (dFC) both in magneto/electro-
encephalography (M/EEG) and functional magnetic resonance imaging (fMRI) (see
recent reviews by Hutchison et al. 2013; Calhoun et al. 2014; Calhoun & Adali 2016;
O’Neill et al. 2017).

dFC can be studied by computing a static measure of FC (such as Pearson cor-
relation) for successive windowed segments of activation time series. In accordance
with the idea of meta-stability in the brain, cluster analysis (e.g. using the k-means
algorithm) of the dFC time courses can then be used to identify a smaller set of FC
states that occur repeatedly across time (Allen et al., 2014). A challenge with this win-
dowed k-means (WKM) approach is that it is sensitive to the selection of the window
length (Shakil et al., 2016; Hindriks et al., 2016) which implicitly defines the time scale
of the dFC.

As an alternative to WKM, a window free approach based on a hidden Markov
model (HMM) has recently been proposed (Baker et al., 2014; Ryali et al., 2016; Vi-
daurre et al., 2017a; Nielsen et al., 2016; Vidaurre et al., 2017b). A HMM is a prob-
abilistic sequence model which assigns a state label to each time point in the activa-
tion time series. The transitions between states are governed by a Markov process,
and each state is characterized by a probability distribution over possible observations
(which we refer to as the emission model). The state sequence, transition probabilities,
and parameters of the emission model are estimated jointly when fitting the model.
Analyzing resting state MEG power envelopes, Baker et al. (2014) proposed using a
multivariate Gaussian emission model with state specific mean and covariance. A more
advanced state-specific vector auto-regressive (VAR) emission model was considered
by Vidaurre et al. (2016) to model raw MEG time series, in which each state also
captures frequency structure and interactions in terms of a multivariate set of autore-
gressive coefficients. In resting state fMRI, the HMM with Gaussian emission model
has been used in Ryali et al. (2016); Vidaurre et al. (2017b). The sliding window and
HMM-based approaches to modeling dFC are illustrated in Fig. 1.

Several studies have investigated the statistical support for the assumption of dy-
namic changes in FC. Using an auto-regressive model of pairwise connections between
brain nodes, Zalesky et al. (2014) found that relatively few connections were in fact
dynamic but that there was support for dFC in resting state fMRI. Using a sinusoidal
model, Leonardi & Van De Ville (2015) demonstrated how spurious fluctuations in FC
could arise due to model mismatch, and concluded that an appropriate window length
was around 100 s based on the slowest frequency component of the BOLD signal.
However, as Zalesky & Breakspear (2015) points out the sinusoidal model does not
capture the correct spectral properties of fMRI data, and the conclusion is that more
sophisticated generative models are needed. Laumann et al. (2016) conclude in their
paper on stability of the BOLD signal that some of the dynamics observed can be at-
tributed to head motion and subjects falling asleep in the scanner, but that some of the
neural signal still remains unexplained.

While dFC analysis has become a widely accepted approach to analyze functional
neuroimaging data, important open problems remain, including determining the num-
ber of brain states, and for sliding window methods to determine the window length.
While a HMM can estimate the appropriate time scale from data, it is unclear how to
best define the emission model. Since these modeling choices can significantly influ-
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Figure 1: Overview of the sliding window approach and hidden Markov model for extracting dFC. In this ex-
ample both models were fitted on ERP-data from one subject (see section 3.3) using independent component
analysis (ICA) time-courses of the neuronal signal from a number of brain regions. (a) In the sliding window
approach, we divided the input time courses into 9 non-overlapping windows, each with 50 time points, and
then computed the correlation matrix for each window. Next, we clustered the correlation matrices using
k-means clustering with 3 components. (b) The hidden Markov model was fitted directly to the time courses
using a multivariate Gaussian emission model and 3 states.

ence the interpretation of dFC, we posit there is a demand for a principled approach to
compare different models of dFC.

In this paper we present a predictive model validation method in which dFC mod-
els are assessed based on their ability to characterize previously unseen data from the
same experiment. To predict held-out data in a principled and quantifiable manner, we
take a fully probabilistic modeling approach. While HMMs are probabilistic by nature,
the WKM approach is not. We therefore consider WKM within a probabilistic setting
by reformulating it as a Wishart mixture model (WMM) (Hidot & Saint-Jean, 2010;
Korzen et al., 2014; Cherian et al., 2016; Nielsen et al., 2017). Within these proba-
bilistic model specifications we use predictive validation to estimate the appropriate
model complexity, including the appropriate number of brain states within each model
specification. We thereby quantify whether or not functional connectivity is dynamic:
”Does the data support more than one state?”, as well as the complexity of dFC: ”How
many states best account for the held-out data?” in a data-driven way. For dFC speci-
fied by HMMs, we use our predictive assessment method to systematically investigate
the influence of different emission models on the number of estimated states as well as
on their ability to characterize held-out functional data.

We hypothesize that dynamics in dFC-models are strongly influenced by model pa-
rameters such as window lengths, emission models, and model order, and that the more
complicated emission models will be able to explain the data at hand using fewer states
compared to the simpler emission models. We demonstrate this using our predictive
assessment framework on both synthetic dFC data with ground truth as well as real
publicly available EEG (Wakeman & Henson, 2015) and fMRI data (Poldrack et al.,
2015).
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2. Methods

In the following, we examine four different models: a probabilistic formulation of
the WKM as well as three hidden Markov models with different emission models. We
treat all models in a non-parametric Bayesian setting (Orbanz & Teh, 2011): Using
a prior distribution for the states based on a Dirichlet process (DP) allows us to es-
timate both the state parameters as well as the number of states simultaneously from
data. We formulate the WKM approach as a DP-mixture model (Rasmussen, 1999)
with Wishart distributed observations of windowed covariance matrices, and we con-
sider three Gaussian DP-HMMs (Beal et al., 2002) with state-specific covariance and
i) zero mean, ii) state-specific mean, and iii) state-specific vector auto-regressive mean.
These non-parametric Bayesian models are commonly referred to as “infinite”, as they
can be derived by taking a limit as the number of states goes to infinity in a corre-
sponding finite state model. Although these models support an unbounded number of
states, inference on a finite data set will invoke only a finite subset, thus providing a
statistically well founded mechanism for estimating the number of states. We further
contrast this approach to the more conventional finite, parametric modeling approach
as implemented by Vidaurre et al. (2016) (see also the appendix section B).

2.1. The Infinite Wishart Mixture Model (IWMM)
The windowed k-means (WKM) approach has been used extensively in the dFC

literature (Allen et al., 2014; Rashid et al., 2016). Small “snapshots” of connectivity
are estimated using L sliding windows and the snapshots are represented as correlation
matrices, Ω`, for each window `. To find common connectivity patterns the upper
triangular part of each Ω` is stacked into a vector, ω`, and finally k-means clustering
is performed on the collection of vectors {ω1,ω2, ...,ωL} using K clusters and the
Euclidean distance measure. A common problem in the WKM is how to choose K,
and heuristics such as the elbow-criterion are often used.

To be able to perform predictive validation on previously unseen data, and to learn
the number of clusters as part of the model inference, we reformulate the WKM ap-
proach as a probabilistic generative model. Each windowed covariance matrix Ω` is
the mean-subtracted scatter matrix, C`, of the data within each window segment `,
defined as

C` =
∑
t

w`(t)xtx
T
t , (1)

where xt ∈ Rp is the data vector at time t and w`(t) is the window function associated
with the `th window. Under a multivariate Gaussian assumption and rectangular win-
dows, the scatter matrices follow a Wishart distribution, and a clustering of these can be
achieved using a Wishart mixture model (WMM) as proposed by Hidot & Saint-Jean
(2010). We argue that the WMM is the most natural and direct probabilistic formu-
lation of the WKM approach. We presently consider the DP-mixture version of the
WMM, the so-called infinite Wishart mixture model (IWMM), as proposed by Korzen
et al. (2014).

The IWMM assumes that each state has an associated covariance matrix Σk, drawn
from an inverse Wishart prior, and that each observed data window belongs to one
of the K states, where K lies between one and the number of observations. In the
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DP-mixture, the prior distribution over the state assignments is given by the so-called
Chinese restaurant process (CRP) (Aldous, 1985); a distribution that has support on
all state assignments corresponding to all possible partitions of the observations. This
yields the following generative model for the IWMM,

z ∼ CRP(α), (2)

Σk ∼ W−1(Σ0, ν0), (3)
C` ∼ W(Σz` , ν`), (4)

in which z is the state assignment of each window, Σ0 is the prior covariance with ν0
degrees of freedom and ν` is the degrees of freedom for the `th windowed covariance
matrix (in the case of a rectangular window this is equal to the window length). Due
to conjugacy between the Wishart and inverse Wishart distribution we can marginalize
out all the Σk’s and carry out the inference in terms of the state assignment parameters
only. In the IWMM we parameterize the prior Σ0 = ηI, in which η is a positive scaling
parameter that determines the strength of the prior.

One problem still persist for WKM and IWMM, namely how to choose the window-
length. We cannot compare models using predictive likelihood across different window-
lengths since the likelihood function itself depends on the window length. The most
flexible choice of window length is 1, in which we arrive at a likelihood function pro-
portional to a Gaussian mixture model (GMM), but here we lose much of the stability
and robustness achieved with longer window lengths. To model a slowly changing state
sequence, the most natural extension is thus to use a hidden Markov model (HMM),
which we discuss in the following.

2.2. The Infinite Hidden Markov Model

In neuroimaging, hidden Markov models have frequently been used for model-
ing dFC (Baker et al., 2014; Vidaurre et al., 2016; Ryali et al., 2016; Nielsen et al.,
2016; Vidaurre et al., 2017a,b). In a manner similar to a DP-mixture model, the non-
parametric version of the HMM, termed the infinite HMM (IHMM) (Beal et al., 2002),
learns the number of states as part of the inference. The generative model for the
IHMM can be written as,

bk ∼ Beta(1, γ), (5)

βk = bk

k−1∏
`=1

(1− b`), (6)

π(k)|β ∼ DP(α,β), (7)

zt|zt−1 ∼ Multinomial(π(zt−1)), (8)

θ(k) ∼ H, (9)

xt ∼ F (θ(zt)), (10)

in which γ and α are positive parameters, β is a vector of infinite length (in practice
one needs only to work with a finite representation), π is the transition matrix with
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Zero Mean Gaussian State-Specific Mean Vector Autoregressive
ZMG SSM VAR

Σ(k) ∼ W−1(Σ0, ν0) Σ(k) ∼ W−1(Σ0, ν0) Σ(k) ∼ W−1(Σ0, ν0)

µ(k) ∼ N (µ0, λ
−1Σ(k)) A(k) ∼MN (0,Σ(k), I)

xt ∼ N (0,Σ(zt)) xt ∼ N (µ(zt),Σ(zt)) xt ∼ N (A(zt)x̄t,Σ
(zt))

Table 1: Emission models used in the HMMs where Σ(k) is the state-specific p × p covariance matrix,
W−1 is the inverse Wishart distribution, Σ0 is the prior covariance, ν0 is the degrees of freedom (in all
experiments ν0 = p), µ0 is the prior mean of the signal, λ is a positive precision parameter of the mean,
MN (M,U, V ) is the matrix-normal distribution with mean M , row-variance U and column variance V ,
A(k) is a p× pr matrix containing the coefficients for the k’th state of an order r VAR process, and x̄t are
the r-lagged observations for time point t stacked in a vector.

rows π(k) and DP is the Dirichlet process (Ferguson, 1973) — a distribution over dis-
crete probability distributions, parameterized by a base measure β and a concentration
parameter α (for a thorough exposition of the DP, see e.g. Blei & Jordan 2006 and
Van Gael 2011 ). The state specific parameters, θ(k), are assumed to be drawn from a
here unspecified prior distribution H, and data is drawn from the unspecified distribu-
tion F dependent on which state that particular data point, xt, belongs to. A graphical
model for the IHMM can be seen in Figure S.1b in the appendix.

2.2.1. Emission Models
We investigate three emission models of increasing complexity that have previously

been used for modeling dFC: a zero-mean Gaussian (ZMG) (Nielsen et al., 2016),
a Gaussian with a state-specific mean (SSM) (Rezek & Roberts, 2005; Baker et al.,
2014), and Gaussian with an auto-regressive mean (VAR) (Fox et al., 2011; Vidaurre
et al., 2016). In all cases the covariance is state-specific and models that state’s func-
tional connectivity. There are other emission models in the Gaussian family such as the
state specific mean model with isotropic variance (Baldassano et al., 2017) and other
variants where the covariance is constrained. These will not be considered presently
because they do not model the full functional connectivity. The emission parameters
are distributed as described in Table 1.

For all the HMM emission models we have chosen conjugate distributions, to be
able to analytically marginalize Σ(k),µ(zt), and A(zt), such that inference is carried
out on the state sequence alone.

2.3. Predictive Likelihood

To assess and compare the different models, we examine their ability to generalize,
i.e., how well a model fitted on training data, X, can account for unseen test data,
X∗, from the same experiment or paradigm. This can be viewed as an alternative to
classical statistical inference and hypothesis testing (Bzdok & Yeo, 2017).

Thus we are interested in evaluating the following integral,

p(X∗|X,M) =

∫
Θ∈M

p(X∗|Θ)p(Θ|X), (11)
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yielding the posterior predictive likelihood (from now on denoted the predictive likeli-
hood), in which Θ ∈ M is the collection of all model parameters andM is the model
space. The predictive likelihood quantifies the probability of observing the test data
under the model given the training data and the model space, and can be viewed as
the likelihood of the test data averaged over the posterior distribution of the parameters
fitted on the training data. To showcase that the predictive likelihood framework is also
applicable for other probabilistic models we also use the (finite) variational Bayesian
HMM (VB-HMM) from Vidaurre et al. (2016)2. A description of the model can be
seen in the appendix section B, along with details on how to calculate the predictive
likelihood for all models.

To use predictive evaluation, the data must be divided into independent training
and test sets. In dFC, where the data is modeled as sequential, this can be done by
splitting the time series into sub-sequences. Alternatively, it is possible to train the
model on whole time series from one or more subjects, and use data from independent,
held-out subjects for testing. In this paper we use the predictive likelihood to do model
selection and parameter tuning in a two level cross-validation framework. In the inner
part, we estimate the prior strength η for the IWMM and IHMMs considered, and
the number of states for VB-HMM for all emission models. In the outer part, we
quantify each of the emission model’s capability of explaining the held-out test data.
We emphasize that we cannot directly compare the predictive likelihood across IWMM,
VB-HMM and IHMM. The IWMM uses a different likelihood function than the two
HMM-models, i.e. the IWMM models covariance matrices as the observed quantity
whereas the HMMs model the time series directly. Furthermore, the VB-HMM uses a
VB-bound to approximate the integral in (11), whereas the IHMM uses samples from
the posterior (more details on this can be found in Appendices B, C and D). A general
schematic of the predictive likelihood framework can be seen in Figure 2.

Of present interest is to investigate under a given independent component analysis
(ICA) representation which model of dFC most adequately describes this representa-
tion. We therefore consider the ICA as a preprocessing step applied to all the data.
Alternatively, the ICA could have been applied separately on the training and test data.
Training the ICA independently on the training and test set would result in an issue of
matching components (Du et al., 2012), whereas defining the ICA only on the training
data and projecting the test data onto these learned components can result in issues of
variance inflation (Abrahamsen & Hansen, 2011). By considering the ICA as a pre-
processing step we remove any influence that changes in the ICA representation across
training and test data may have. We are thereby not affected by these potential con-
founds and are able to quantify within a given ICA representation which model of dFC
best characterizes the data.

For the remainder of this paper we will contrast the predictive likelihood of a model
of interest versus a baseline model using the Bayes factor (Kass & Raftery, 1995;

2MATLAB code was downloaded from the repository https://github.com/OHBA-analysis/
HMM-MAR in July 2016. The predictive likelihood code was written by the authors.
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Figure 2: A schematic overview of the predictive likelihood framework, that visualizes the nested cross-
validation framework. In this figure the models of dynamic functional connectivity (dFC) can be anything,
as long as the predictive likelihood on held-out data can be estimated. If the likelihood function is the same
across models we can use this framework to do model selection.

Nielsen et al., 2017), denoted BF . This can be calculated as,

BF =
p(X∗|X,M)

p(X∗|X,M0)
, (12)

in whichM is the model of interest andM0 is the baseline model. Typically the base-
line model will be the model with only one state, and thus the Bayes factor quantifies
how much better it is to use a particular dynamic model. The Bayes factor is often used
in the dynamic causal modeling (DCM) framework (Penny et al., 2004) to do model
selection, however, an important distinction between the DCM and our approach is
that the BF in DCM in calculated on the training data whereas the BF in this paper is
calculated on held-out test data.

2.4. Evaluating similarity of state sequences

To compare different models, we also examine how similar their estimated state
sequences are. Here, we use normalized mutual information (NMI) to quantify the
correspondence of two different sequences, possibly with differing number of states.
Let the state sequences be given by state assignments vectors z(a) and z(b). Then, the
NMI is given by

NMI(z(a), z(b)) =
2MI(z(a), z(b))

MI(z(a), z(a)) + MI(z(b), z(b))
, (13)

where MI is the mutual information.

3. Experiments and results

The proposed approach for predictive assessment of dFC models was validated on
synthetic data, and demonstrated on two real data sets based on electroencephalog-
raphy (EEG) and functional magnetic resonance imaging (fMRI) as described in the
following sections.
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3.1. The influence of window lengths

A challenge in the WKM approach as well as its probabilistic formulation, the
IWMM, is the specification of a suitable window length (Shakil et al., 2016; Zalesky
& Breakspear, 2015; Leonardi & Van De Ville, 2015; Hindriks et al., 2016). If the
window length is too short, the windowed data will be less statistically stable and the
approach might find spurious states. If, on the other hand, the window length is too
long, short-lived states might not be detectable. In contrast, the HMM approach does
not involve windowed analysis.

We applied WKM as well as the IWMM and IHMM to synthetic data with ground
truth in order to investigate the merits of windowed covariance modeling versus HMMs
that do not assume a priori time-windowing but learns the state dynamics and their
smoothness as part of the inference. In all analysis the AR-order was set to 1 in both
the IHMM and the VB-HMM (see more about this choice in the Discussion).

Synthetic data I. We generated two data sets (training and validation) from the same
5-dimensional 3-state ZMG model, i.e., the data were generated to have three different
states, defined by different covariance matrices, in a fixed state sequence. The covari-
ance matrices for each state were generated as UU> where U was an upper triangular
matrix with i.i.d. standard Gaussian entries. In each data set, the total length of the
generated time series was 500 samples (i.e., if this was fMRI we would have had 500
TRs), and the state sequence was chosen such that the states had different durations
with the shortest state occurrence lasting 50 samples.

Synthetic experiment I. For WKM we set the number of states to the true number of
states (K = 3). For IWMM and IHMM we tuned the prior covariance scale parameter
η by fitting the models on the training data and optimizing the parameter using predic-
tive likelihood on the validation data. We then concatenated the training and validation
data, and using the full data set with 1000 time points we fitted the WKM, IWMM,
and IHMM-ZMG models. For the WKM and the IWMM we used rectangular non-
overlapping windows, and compared window lengths of 5, 25, and 100 samples chosen
to represent a too short, an appropriate (i.e. one that does not mix together different
states), and a too long window.

Results on synthetic data I. The results can be seen in Figure 3 which shows the esti-
mated state sequences. The WKM and IWMM perform almost identically: When the
window length is appropriate (WL=25) both methods detect the correct state sequence.
When the the window length is too large (WL=100) both fail to capture the short-lived
state correctly, and when it is too small (WL=5) the WKM detects spurious states.
Both IWMM and the IHMM-ZMG correctly identify the number of states using the
cross-validated value of η. Furthermore, the IHMM captures the true state sequence
without a priori specifying and averaging across windows. Thus, all models can cor-
rectly identify the underlying dFC on data in compliance with their assumptions. It
should be noted that adequately tuned overlapping and tapered windows (Allen et al.,
2014) could potentially alleviate the issues encountered using too long window lengths,
however, this was not considered in this experiment.
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Figure 3: Estimated and true state sequences for synthetic data I experiment. Data were generated from a
three-state model, where each states had a differing covariance matrix. Results are shown for windowed k-
means (WKM) and infinite Wishart mixture model (IWMM) with window lengths of 5, 25, and 100 samples
as well as the infinite hidden Markov model with zero mean Gaussian emission model (IHMM-ZMG).

3.2. HMM emission models

In the hidden Markov model approach to estimating dFC, we claim that the choice
of emission model can have a large influence on the result. To substantiate this, we
compared the three examined emission models by performing a pair-wise comparison
investigating how well each model was able to estimate the true state sequence on syn-
thetic data generated according to each of the three model specifications. Furthermore,
we compared how well each model was able to characterize dFC by computing the
predictive likelihood on held-out validation data.

Synthetic data II. We generated synthetic data from each of the three emission mod-
els (ZMG, SSM, and VAR) with five dimensions and three states (we used the same
state sequence as in the previous synthetic experiment shown in Figure 3). Training,
validation, and test data sets were generated with identical parameter settings for each
data model. For all models, the covariance matrix for each state was defined as in
the previous synthetic experiment. For the SSM model, the state-specific means (5-
dimensional vectors) were generated randomly with i.i.d. standard Gaussian entries.
The state-specific VAR coefficients were generated, by first generating a p-dimensional
signal from a sinusoid with random frequency (common for all dimensions) and ran-
dom phase (different for each dimension). We then fitted a VAR-model of order 1 to
that (using the least squares estimator) and finally generated new data from the fitted
model with i.i.d. standard Gaussian noise.

Synthetic data experiment II. For IWMM and IHMM, the prior strength η was selected
by cross-validation using the training and validation set, and the models were then
fitted on the concatenated training and validation data. The predictive likelihood was
computed for each of the fitted models using the test data. For comparison we also
fitted the WKM model, both with the correct number of clusters (K = 3) and with too
many clusters (K = 6). Both the WKM’s and IWMM were run with an appropriate
window length of 25. To investigate the influence of the inference procedure, we also
fitted the models using the VB-HMM implementation by Vidaurre et al. (2016).
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Results on synthetic data II. The estimated state sequences for each of the fitted models
are shown in Figure 4. When the number of states was specified correctly (K = 3) the
WKM found the true state sequence for all three data sets; however, when the number
of states was mis-specified (K = 6) the WKM failed in all cases and appeared to
subdivide each state. The IWMM was able to learn the true state sequence for the
ZMG and SSM-emission data, but failed in the case of the VAR-emission data. The
three IHMM models found the true state sequence in the cases when the data were
generated from one of the two simple emission models (ZMG and SSM), except the
IHMM-VAR which falsely detected two single-time-point clusters for the SSM-data.
When the data were generated from the VAR model, only the VAR model and the
WKM with the correct number of clusters found the correct state sequence. In this
setting, the IHMM-ZMG and IHMM-SSM both failed in estimating the true number of
underlying states and detected multiple spurious states. This indicates that these more
simple models needed more states (and parameters) to account for the more complex
VAR data. Results for VB-HMM were similar to the IHMM and can be found in the
appendix section E.

The predictive likelihood of each model is reported in Figure 5, which shows the
predictive Bayes Factor of each emission model vs. a baseline model given by a one
state (non-dynamic) zero mean Gaussian defined by the empirical covariance matrix
of the concatenated training and validation set. As expected when the HMM emission
model matched the emission model of the generated data, the best Bayes factor was
achieved. When the data were simple (from ZMG) the three emission-models per-
formed approximately equal (with the ZMG performing best), indicating that the more
complex models could adapt to the simple data but not vice versa. We also conducted
an experiment to investigate the influence of noise and fMRI signal properties on the
predictive results. This can be seen in the appendix section G.

3.3. EEG task paradigm analysis
To verify that the proposed predictive evaluation framework produces sensible re-

sults, we demonstrate it on an electroencephalography (EEG) task-paradigm with very
high signal-to-noise ratio using event related potentials (ERP), similar to the analysis
carried out in Murray et al. (2008); Ott et al. (2011) under the name of topographical
ERP mapping.

EEG data. We analyzed a publicly available face recognition task data set (Wakeman
& Henson, 2015)3 that consists of 16 subjects. The paradigm has three conditions:
Either i) a famous face is presented, ii) an unfamiliar face is presented, or iii) a scram-
bled face (with the phase of the 2D-Fourier coefficients permuted) is presented. Our
analysis was not focused on contrasting the conditions, and each condition was thus
analyzed individually to investigate the robustness of the estimated dynamics.

The standard preprocessing, as described by Wakeman & Henson (2015) (which in-
cluded low-pass filtering to 32 Hz), using the SPM8 MATLAB toolbox4 was applied to

3The data were downloaded from ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.
henson/wakemandg_hensonrn/ including preprocessing scripts for SPM.

4 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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the data and additionally we interpolated the automatically detected bad channels using
the distance function in FieldTrip 5. We then calculated individual event-related poten-
tials (ERP) for each subject and condition and ran independent component analysis
(ICA) on the concatenated data (all subjects and conditions) using the Infomax algo-
rithm (Bell & Sejnowski, 1995) with five components. The number of components was
chosen based on the eigenvalue spectrum of random uncorrelated data (Horn, 1965).
An example of an ICA time course is displayed in lower right corner of Figure 7.

EEG experiment. Eleven subjects were taken out for training, leaving five subjects
for testing. In the training set five-fold cross-validation was applied to estimate the
prior strength in the IHMM and the number of states for VB-HMM for each condition
and each emission model using predictive log-likelihood on the validation set as a
measure of fit. Each subject’s ICA time courses from event related potentials (ERP)
were concatenated in time, and to account for discontinuities in the data we set up the
models to restart the state sequence at each new subject. After cross-validation, we re-
trained the models on the whole training data and calculated the predictive likelihood
on the test data.

To assess the robustness of the approach, we computed the normalized mutual in-
formation (NMI) of the estimated state sequences over five restarts of each model in
the following manner: Restart (1 vs. 2), (2 vs. 3), (3 vs. 4), (4 vs. 5), and (5 vs. 1). To
examine the similarity between the estimated state sequences across the three models,
we computed the NMI between the models: Restart (1 vs. 1), (2 vs. 2) etc. for each
pair of models (ZMG vs. SSM), (ZMG vs. VAR), and (SSM vs. VAR). As a baseline,
each case was also compared to a null-model, in which one of the state sequences in
each pair was replaced with a new state sequence sampled using the fitted transition
matrix thus resulting in similar state transition dynamics as the original sequence but
uninformed by the data.

EEG results. NMI scores comparing the estimated state sequences are given in Fig-
ure 6a. Results for the three data sets (familiar, unfamiliar, and scrambled) were gen-
erally in close agreement with each other. For all models, NMI scores between restarts
were higher than the baseline; thus, the estimated state sequences were relatively con-
sistent over restarts, although all NMI scores were well below one, indicating some
disagreement. NMI scores between ZMG and SSM were similar to NMI scores be-
tween restarts of the two models, indicating that the ZMG and SSM models estimated
similar state sequences. NMI scores between VAR and the other two models were
lower than NMI between restarts, indicating that the estimated state sequences for the
VAR model were different from those estimated by the ZMG and SSM models. This
was confirmed for the VB-HMM when running the ZMG and SSM models with the
same number of states as the VAR model was run with, i.e., the state sequence obtained
from the VAR model differs from the ZMG and SSM state sequences even if the ZMG
and SSM have the same number of states as the VAR model. We also looked into the
number of states estimated by each emission model; the VAR model estimated fewer

5http://www.fieldtriptoolbox.org/
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states as hypothesized in the introduction with more smooth trajectories compared to
the two other emission models (see the appendix section J).

To investigate which emission model best characterized the held out subjects, the
Bayes factor towards a baseline model (empirical covariance matrix of the training
data) was calculated and can be seen in Figure 6b. All models gave better performance
than the baseline. The VAR emission model consistently gave best predictive perfor-
mance across all conditions and for both inference methods.

For the best performing model, the IHMM-VAR, we take the best sample in terms
of joint log-likelihood from the training inference, and visualize the solution in Fig-
ure 7. To plot the topography of each state, we gathered all the time points assigned
to a particular state and calculated the first principal direction, and plotted those values
using EEGLAB. We did this to not be influenced by changes in polarity and because
it resembles the microstate-analysis done in Khanna et al. (2015). We notice that there
seems to be a baseline state (state 1), that some of the training subjects visit before
stimulus and around 0.4 seconds after stimulus. In the period after stimulus (from 0.1
- 0.4 seconds) the dominant states’ topography show high activity in the posterior ar-
eas consistent with the visual task. There seems to be a ”consensus” of fewer states
in the baseline (pre-stimulus and after 0.4 seconds after stimulus) and a larger number
of different states being used right after stimulus. This indicates that we need more
states to explain the difference in visual processing of faces across subjects compared
to the baseline state. Furthermore, some states seem to have very similar topographical
characteristics (i.e. states 3-5) but are different in their functional connectivity.

3.4. fMRI resting state analysis

Finally, we will demonstrate our approach to predictive assessment of dFC models
on a resting state fMRI data set. Subject variability can be a significant issue in dFC
(Nielsen et al., 2016) and in neuroimaging in general (Finn et al., 2015) and care must
be taken when interpreting dynamics at a group level, so we analyzed resting state
fMRI data from a single subject. We contrast the extracted brain states from the HMM
framework to those from sliding window k-means.

fMRI data. We used the resting state fMRI data from Poldrack et al. (2015)6 which
contains 89 recorded resting state fMRI sessions of a single subject. We applied the
following pre-processing steps using SPM127: We coregistered all sessions to the first
image of the first functional session (session 014), and then jointly corrected all ses-
sions for motion artifacts using a rigid-body transformation towards the mean volume.
An anatomical image (T1W) from session 012 was used to segment grey matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) using the standard tissue probabil-
ity map from SPM. We applied a discrete cosine transform based bandpass filter with
cut-off at [0.009, 0.08] Hz to all sessions (as suggested in the methods section of (Pol-
drack et al., 2015)), along with nuisance regression of the motion parameters and mean
signal within CSF and WM masks eroded by a 4mm isotropic spherical kernel. We

6https://openfmri.org/dataset/ds000031/
7http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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(a) Normalized mutual information (NMI) between estimated state sequences (circles) for each
data set and each pair of models. Within each model, the NMI measures the consistency of the
estimated state sequences across five reruns of the inference algorithm. Between each pair of
models, the NMI measures the similarity between the estimated state sequences. NMI computed
against a random state sequence from the fitted model is shown as a baseline (crosses). Results
are shown for inference using MCMC (left) and variational Bayes (right). For the variational
Bayes (VB) models, the VAR was also compared to the ZMG and SSM model run with the same
number of states as the VAR indicated by plusses in the third row of the VB-plot.
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Figure 6: Comparison of model performance on the EEG-data. We plot the IHMM and VB-HMM perfor-
mance in terms of model consistency and predictive likelihood on held-out data.
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Figure 7: Visualization of the best IHMM model, in this case the IHMM-VAR, according to the predictive
framework for the ”Famous” condition. (a) For each state we computed the first principal component of all
the data points in the training set that belonged to that state and plotted that as a topographical map. Note that
the states were ordered according to their fractional occupancy (largest state first). Below each map we plot
the empirical correlation matrix of all data points assigned to the given state. (b) We plot for each timepoint
the state-assignment for each subject as an image (each row represents a subject). Each color represents a
state. (c) An example of one subjects data in ICA-space (each color represents a independent component).

subsequently applied wavelet despiking (Patel et al., 2014) with standard parameters,
and finally we resliced all sessions (due to a change in the number of slices after ses-
sion 027) to the first session and smoothed using an isotropic 5mm full width at half
maximum Gaussian kernel. After preprocessing we ran a group ICA (Calhoun et al.,
2001) implemented in the GIFT toolbox8, using the ERBM algorithm with 30 compo-
nents and otherwise default settings. We used 30 components, which can seem ’low’
compared to other dFC analysees (Allen et al., 2014). However, this was done both
for computational reasons, i.e. the HMM scales cubicly in the number components (cf.
appendix B) and also for statistical reasons since we need enough degrees of freedom
to reliably estimate the covariance matrix of each state. We discarded 9 components
based on visual inspection of the component spatial maps overlap with the brainstem
and movement related effects, and thus ran the final HMM-analysis on the 21 remain-
ing components. The retained components’ spatial maps can be seen in the appendix
section K.

fMRI experiment. The data were only analyzed using the VB-HMM inference proce-
dure due to the higher computational complexity of the IHMM. We split the 89 ses-
sions randomly into two parts: 45 sessions for training and 44 sessions for testing. In
the training set we performed five fold cross-validation to determine the number of
states for all three emission models using the proposed predictive log-likelihood as a
measure of fit. The final models were retrained five times on the training data, the best
restart chosen by the minimum free-energy, and finally compared with predictive log-
likelihood on the test sessions. To compare the estimated state sequences and assess the

8http://mialab.mrn.org/software/gift/index.html
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Figure 8: Comparison of model performance on the fMRI-data. We plot the VB-HMM performance in terms
of model consistency and predictive likelihood on held-out data. For the model consistency in 8a we compare
the HMMs to windowed k-means (WKM).

robustness of the approach, we conducted a NMI analysis as in the EEG experiment.

fMRI results. NMI scores comparing the estimated state sequences are shown in Fig-
ure 8a. The NMI between state sequences estimated by the ZMG and SSM models
were similar to NMI scores for restarts of the two models, indicating that the estimated
state sequences were in agreement. NMI scores between VAR and the other two HMMs
were lower, indicating that the VAR model found a different state sequence. We looked
into the number of states estimated by the three emission models (see appendix sec-
tion I) and found that the VAR identified six states, whereas the ZMG and SSM used
7 and 8 states respectively. From Figure 8a it seems that the WKM found more robust
results over restarts and was in very low agreement with the HMMs.

The predictive performance on the test set for each of the models is given in Fig-
ure 8b, which shows log Bayes factors against a baseline given by the ZMG one state
model. As in the EEG analysis the VAR model outperformed the other models in terms
of predictive likelihood.

Finally, we visualize the states from best performing model (i.e. the VB-HMM
VAR), by computing the mean activity of all the timepoints assigned to the same state.
This is shown in Figure 9 together with the FC-matrix pr. state, a bar plot of the
fractional occupancy and mean lifetime (cf. appendix H) of each state. The states’
spatial activity seems to resemble the default mode network (state 3 in particular) and
the sensory motor network (state 2 and 4). We note that the states seem to have a mean
lifetime in the range of 10-20 TR’s (10-25 sec) and that the transition matrix has a very
diagonal structure indicating a lot of self-transitions, i.e. it is more likely to stay in the
same state than jump to another state. Looking at the FC matrices all states seem to
have a very diagonal structure with low variability over states.
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Figure 9: Final VB-HMM VAR solution initialized with 7 states (one was emptied during training). The
mean activity of each HMM-state is plotted, i.e. the mean of all time-points assigned to the same state. Fur-
thermore, the empirical p × p correlation matrix for each state is also plotted (after Fisher transformation),
where p is the number of ICs used (see appendix K). The states were sorted according to their fractional
occupancy. Cut-coordinates were determined using Nilearn by finding the largest positive connected com-
ponent after thresholding at the 95th percentile of the absolute values in the map. The fractional occupancy,
mean lifetime and the transition probabilities between states is furthermore in the rightmost column.

For comparison, we ran the sliding window k-means approach (WKM) on the fMRI
data with the same number of states as the VB-HMM-VAR estimated in the final run
(i.e. 6 states). We used a tapered window with a window length of 22 TRs (corre-
sponding to around 25s) sliding the window one TR at a time. We used the default
MATLAB k++ initialization procedure (Arthur & Vassilvitskii, 2007) with Euclidean
distance measure, and restarted the k-means procedure 100 times. However, we did not
use `1-regularization as suggested in original WKM article (Allen et al., 2014), due to
the well-posedness of the correlation matrices induced by the fairly low dimensionality
of the problem.

For the WKM, the six states’ mean activity, FC matrix and state characteristics
are plotted in Figure 10. The DMN activity seems to be separated over all the states.
Looking at the mean lifetime of the states we see a very uniform distribution around
20 TRs, i.e. all states seems to have the same mean lifetime, which is probably mainly
due to the window length. The FC notably varies more over states compared to the
VB-HMM-VAR solution in Figure 9.

4. Discussion

We have proposed a data-driven predictive framework for comparing and measur-
ing generalization of dynamic functional connectivity (dFC) models. Using this frame-
work we investigated a windowed covariance approach based on the infinite Wishart
mixture model (IWMM) as well as the (window free) infinite HMMs (IHMM) specified
by three different emission models (Nielsen et al., 2016; Baker et al., 2014; Vidaurre
et al., 2016). We find that the extracted dynamics are heavily influenced by model-
ing assumptions. In synthetic data, where ground truth state sequences were available,
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Figure 10: Final WKM solution initialized with 6 states. The mean activity of each WKM-state, i.e. the mean
of all time-points assigned to the same state, is plotted. Furthermore, the empirical p× p correlation matrix
for each state is also plotted (after Fisher transformation), where p is the number of ICs used (see appendix
K). The states were sorted according to their fractional occupancy prior to visualisation. Cut-coordinates
were determined using Nilearn by finding the largest positive connected component after thresholding at the
95th percentile of the absolute values in the map. The fractional occupancy, mean lifetime and the transition
probabilities between states is furthermore in the rightmost column.

it was clear that a misspecification of the model leads to an incorrect state sequence.
Thus, we need to properly quantify how well certain model assumptions comply with
the data observed. Here, the predictive assessment framework is able to quantify the
number of states and appropriate emission model. We found the WKM to be robust
towards model mismatch, however, we here in general have no a priori knowledge of
either window length or the number of states that need to be specified. We found that
the IWMM admits quantification of number of states within a WKM type of frame-
work, but the choice of window length remains unresolved and influences results as
illustrated in the synthetic study.

Hidden Markov models (HMMs) seem like a promising framework to circumvent
the need to specify window lengths, learning state transitions and their smoothness
as part of the inference. We considered both MCMC and variational Bayesian infer-
ence and consistently found that the choice of emission model heavily influences the
identified functional dynamics and their interpretation as different emission models
drive different dynamics. Our predictive framework admits quantification of the type
of emission model that is most adequate for the system under consideration and our re-
sults points towards the vector autoregressive (VAR) model being a more flexible and
better overall choice. It should be noted that in analysis of real data (EEG and fMRI)
the data sets were lowpass and bandpass filtered respectively as part of the prepro-
cessing, which may harm the estimated dynamics by driving the VAR-states towards
characterizing properties of the preprocessing. In slowly fluctuating signals a large
portion of the signal at time t can be explained by the signal at time t − 1 which is
exactly what the VAR(1)-model is doing in contrast to the other emission models (see
also appendix section G). Preprocessing influences the estimated dynamics as shown
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in Hindriks et al. (2016). In this work we chose the default preprocessing pipelines
as suggested by Wakeman & Henson (2015) and Poldrack et al. (2015), however we
expect different preprocessing choices can favor different emission models. However,
investigating these choices are out of scope of the current study. In our analyses of
the EEG data (as well as in our synthetic study) there was a clear indication that the
simpler HMMs (ZMG and SSM) overestimated the number of states, whereas in the
analyses of the fMRI data all emission models were more in agreement. We attribute
this difference to the differences in signal-to-noise ratios and temporal resolutions, but
note that this requires further investigation.

On the fMRI data we compared the HMM-VAR with the WKM visualizing the
brain states extracted by the two frameworks (with the same number of states). It is
clear that they find different brain state representations both in mean activity, FC and
temporal characteristics. As such, the WKM finds more distinct states in terms of
FC than the HMM-VAR. We attribute this to their different modelling assumptions, i.e.
VB-HMM VAR is a model that generates data at the level of single time points whereas
the WKM is driven by characterizing differences in the off-diagonal elements of the
windowed covariance matrices. When looking at the lifetimes of the extracted states,
all WKM states had approximately the same length dictated by the window length
used, whereas the HMM-VAR due to its window-free approach estimated states with
varying lifetime. This exemplifies that dynamics are driven by the underlying model
assumptions. One could be tempted to interpret what the extracted states’ represent in
terms of brain function, however, the NMI results in Figure 8a points toward issues with
local minima in particular for the HMMs. We speculate that current dFC approaches
are too flexible hampering the reliability (Choe et al., 2017), thus there seems to be a
need for better inference procedures and constrained models promoting both reliability
and generalization.

We compared two inference methods for the HMMs, namely Markov chain Monte
Carlo (MCMC) in the form of the infinite hidden Markov model (IHMM) and varia-
tional Bayes hidden Markov model (VB-HMM). From a theoretical point of view the
IHMM has the most desirable properties, i.e., we do not need to specify the number of
states and we should obtain better estimates of the posterior distribution. However, in
practice the IHMM and VB-HMM yield similar results, and if we factor in the compu-
tational complexity of the IHMM, the VB-HMM seems like the better choice in most
practical applications.

Our results supports the conclusion that functional connectivity is best modeled
using multiple states (Hutchison et al., 2013; Calhoun et al., 2014; Calhoun & Adali,
2016; Vidaurre et al., 2017b). In particular, our predictive assessment consistently
finds support for functional neuroimaging data, i.e., fMRI and EEG data, are better
accounted for by dynamic models (i.e., models having more than one state) which was
consistently observed across models and data sets. As hypothesized we find that the
more advanced HMM-VAR extracted fewer states than the simpler ZMG and SSM
emission models. Thus, in theory a very complicated emission model (that we have
not investigated here) could potentially capture everything as “one state”.

There has recently been a lot of focus on null-models and stationarity in dFC (Za-
lesky & Breakspear, 2015; Laumann et al., 2016; Miller et al., 2017). For choosing
an appropriate window-length in WKM the work of Zalesky & Breakspear (2015) pro-
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vides some statistical analysis as to why the rule of thumb of 100 second windows
from (Leonardi & Van De Ville, 2015) makes sense. Zalesky & Breakspear (2015) fur-
thermore points out that the framework can detect changes in FC on shorter timescales
(around 40 seconds); changes that can disappear if longer windows are used. Their
conclusion also being that we need better generative null-models for dFC. While we
do not claim that we have found the true null-model for dFC, we have demonstrated a
framework that admits a comparison between models based on predictive likelihood.
We compared the WKM with HMM-framework on fMRI data in qualitative way; how-
ever, since the WKM is not a model of data we cannot in an objective way compare
the performance of the two models. Bzdok & Yeo (2017) argues that neuroscience is
moving more and more towards out-of-sample generalization as an alternative to clas-
sical statistical inference and hypothesis testing, and we will argue that models of dFC
will be more objectively comparable if they are generative and are able to extrapolate
to held-out data. Importantly, the HMM is a generative model that contains the static
model as a special case and by doing model order selection we test in a data-driven
way whether or not the FC should be modeled static (K = 1) or dynamic (K > 1).

A very important point is that the proposed framework will only answer what model
best explains the data at hand. To truly validate that the extracted dynamics correspond
to neurophysiological mechanisms, we need more elaborate validation such as concur-
rent EEG-fMRI data or even invasive studies.

Our predictive assessment framework generalizes to arbitrary dynamic model spec-
ifications as long as a predictive likelihood can be calculated. For instance, the AR-
order was fixed to one in this paper but could easily be learned using the framework
presented (cf. appendix F). In this paper we also show two ways of using the predictive
assessment framework promoting two different kinds of generalization, i.e. between-
subject generalization and within-subject generalization. We are not claiming in any
way that one should use one over the other, only that we have the power with this
framework to investigate both types of generalization. The quantitative analysis of
this paper points to dFC being heavily influenced by modeling assumptions and the
proposed assessment provides a principled tool for future refinement and tailoring of
models of dFC to better account for functional neuroimaging data.
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Appendices

A. Implementation details for IHMM

Both the IWMM and IHMMs were implemented using collapsed Gibbs sampling
with split-merge proposals (Jain & Neal, 2004). α in the IWMM was inferred using
random walk MCMC. The IHMMs were implemented on top of the the MATLAB
implementation made by Van Gael (2010), in which α and γ were sampled by placing
vague Gamma priors on them. As pointed out in the literature (Van Gael et al., 2008)
the Gibbs sampler has some mixing issues, so to overcome this we implemented a split-
merge sampling procedure as described in (Jain & Neal, 2004) adapted to the IHMM
framework. We use the same convention as in Van Gaels MATLAB-implementation
namely that the first time point is assumed to have transitioned from state 1, i.e. z0 = 1.
Our MATLAB implementation is publicly available for download9.

In all experiments, for both IHMM and VB-HMM, we fixed the AR-order in the
VAR model to 1. In the IWMM and IHMM we parameterize the prior Σ0 = ηI. We
found through experimentation that in most cases it is undesirable to infer the prior
strength η, since it can yield a huge number of states. The prior strength acts a regular-
ization on the number of states and should therefore be tuned in order for the model to
best characterize test data. We therefore learned this parameter using cross-validation
considering values in the range η ∈ [10log σ−5, 10log σ+5], where σ is the scale of
the data (sampled equidistantly in the log-domain). Note that the most computation-
ally demanding operation in the inference is the calculation of the determinant of a
matrix representing the sufficient statistic for each state. This can in the case of the
ZMG and SSM emission-models be handled efficiently using Cholesky-factorizations,
which makes the algorithm scale as follows; for a particular iteration with K states
on a p dimensional dataset of length T the computational cost is O(TKp2). For the
VAR-emission the Cholesky-trick cannot be applied and thus the computational cost
scales as O

(
TK(pr)3

)
, where r is the lag of the VAR-model.

B. Variational Bayes Hidden Markov Model

In this paper we use the (finite) variational Bayesian HMM (VB-HMM) implemen-
tation from Vidaurre et al. (2016), where the generative model (without specifying the

9https://brainconnectivity.compute.dtu.dk/
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Figure S.1: Graphical model for the two Bayesian hidden Markov models used in this paper. All blue circles
are estimated in the inference procedure, green circles are observed and gray squares are parameters we
fix. We observe the p-dimensional time series xt, which are dependent on each other through the 1st order
Markovian hidden variable zt. The transition probability between states is modeled in the transition matrix
pi. Each state has some associated state-specific parameters θ(k), with an unspecified prior distribution, H.

emission distribution) can be written as,

π0 ∼ Dir(κ) (S.1)

π(k) ∼ Dir(λ(k)), (S.2)

zt|zt−1 ∼ Multinomial(π(zt−1)), (S.3)

θ(k) ∼ H (S.4)

xt ∼ F (θ(zt)), (S.5)

in which π0 is the initial state distribution vector (size K), Dir() is the Dirichlet distri-
bution, κ is the prior vector for the initial distribution, π(k) is a row of the transition
matrix, λ(k) is the associated prior to that row, zt is the integer valued state taking pos-
sible values from 1..K at time point t, θ(k) are all state relevant parameters drawn from
the unknown prior H(·) for state k, and xt is the observation at time t with emission
distribution F (·). The graphical model for a probabilistic HMM with unspecified emis-
sion distribution (more on this in section 2.2.1) can be seen in Figure S.1a. Inference
in the model is done using the standard variational Bayes (VB) update rules (Rezek &
Roberts, 2005), where each part of the graphical model is updated in turn. For a K-
state model run on a p-dimensional dataset with T time-points computationally the al-
gorithm scales as follows; the ZMG and SSM emission-models scale as O(TKp2) and
the VAR emission-model as O

(
TK(pr)3)

)
both due to a matrix inversion. However,

a lot these calculations are highly parallelizeable making the VB-HMM much faster in
practice compared to the IHMM. The graphical model can be seen in Figure S.1a.

B.1. Predictive Likelihood in VB-HMM
Let θobs denote all emission-parameters. For the VB-HMM we make use of the

variational posterior QX(θobs), QX(π0), and QX(π) which has been fitted to the
training data, and furthermore bound this approximation (using Jensens inequality)
by performing an expectation step on the state sequence of the test data, fixing all
other parameters in the model, except the QX∗(z∗) distribution. This yields the log
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predictive likelihood,

ln p(X∗|X) ≈ ln

∫ ∫ ∫ ∫
[p(X∗z∗|π0,π,θobs)QX(π0)QX(π)

QX(θobs)] dπ0dπdθobsdz
∗

≥ 〈ln p(X∗, z∗|π0,π,θobs)〉QX(π0)QX(π)QX(θobs)QX∗ (z∗)

− 〈lnQX∗(z∗)〉QX∗ (z∗), (S.6)

in which z∗ is the state sequence of the test set. This is equivalent to estimating the free-
energy (Vidaurre et al. (2016)) on the test set, i.e., without updating Q(π), Q(π0), and
Q(θobs) and not including terms in the free-energy that have not changed compared to
the free-energy of the training set.

C. Predictive Likelihood in IWMM
In the case of the IWMM, we have conjugacy between the training-posterior p(Θ|X)

and the likelihood function p(X∗|Θ) if we condition on the state sequence of the train-
ing data, z. Using samples of z during the MCMC sampling procedure, z(t), we can
approximate the predictive lilkeihood as,

p(X∗|X) ≈ 1

T

T∑
t=1

K+1∑
k=1

N
(t)
k

N + α(t)

∫
p(X∗|Σ(k))p(Σ(k)|X, z(t), η(t))dΣ(k), (S.7)

where N (t)
K+1 = α(t), N (t)

k is the number of time-points in z(t) assigned to cluster
k, and N is the total number of time-points. Due the aforementioned conjugacy we
integrate out Σ(k) analytically from the predictive likelihood in the integral above.

D. Predictive Likelihood in the IHMM
In the IHMM we obtain samples of the transition matrix π and θobs during the

MCMC sampling procedure, enabling us to integrate out those parameters using stan-
dard MCMC integration. This yields the log predictive likelihood estimate using T
samples,

ln p(X∗|X) ≈ ln
1

T

T∑
t=1

∑
z′

p(X∗, z′|π(t),θ
(t)
obs). (S.8)

Here we analytically sum over all possible state sequences z′, assuming that the found
number of states is correct. This can be done efficiently using dynamic programming
(Viterbi, 1967).

E. Synthetic Study of VB-HMM
We demonstrate on synthetic data with three states from each of the emission mod-

els how the VB-HMM models perform. For each model we test on a hold-out valida-
tion set what number of states in the model yields the best predictive likelihood. In
Figure S.2, we show the estimated state sequences for each emission model and data
set for the “cross”-validated number of states on the concatenated training and valida-
tion set. As with the IHMM we note that the simpler models (ZMG and SSM) struggle
on data from the more complex emission model (VAR), whereas the VAR-model can
adapt to the simple data.
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Figure S.2: Estimated state sequences for synthetic data generated from hidden Markov models. Top: Zero
mean Gaussian (ZMG) emission. Middle: State-specific mean (SSM) emissions. Bottom: Vector autore-
gressive (VAR) emission. Results are shown for data generated according to the hidden Markov models with
ZMG, SSM, and VAR emission models fitted using variational Bayes. The true state sequence is shown in
Figure 3.

F. Selection of the VAR-order using predictive likelihood

The order of the autoregressive mean, r, that we use in the IHMM-VAR and VB-
HMM-VAR is an important parameter, and how to choose this is still unclear. Our
predictive likelihood framework also offers the option to estimate the optimal r to use.
We tested this in a synthetic experiment where we used the VAR-data from section
3.2, with three states with state-specific VAR-coefficients, each of order one (r = 1).
Then we fitted the IHMM-VAR and the VB-HMM-VAR using different VAR-orders
from r = 1..5 on the training data. We furthermore ran the VB-inference for different
number of states K = 1, 2, 3. The predictive results on the test data can be seen in
Figure S.3. For the IHMM-VAR model we see that the predictive log Bayes factor
decreases as we increase r, correctly identifying the order to be r = 1. In the case of
the VB-HMM-VAR, we see that if we use the wrong number of states (i.e. K = 1, 2),
the predictive framework favors using higher model orders, whereas when we use the
correct number of states K = 3 the framework correctly points toward model order
r = 1. This brings up the discussion of how model order and number of states together
affect our interpretation of dynamics. However, in most cases we find it appropriate to
use an order of one (cf. discussion section 4 for more details on this).

G. HMM: Synthetic study with fMRI signal properties

We investigated the influence of noise in the data together with more realistic fMRI
signal properties. The synthetic data were generated by first sampling p = 5 random
independent components (IC) from the resting-state fMRI data (see section 3.4) out of
the 21 ICs that were deemed neural. Then we estimated the covariance matrix from
the first 25 time points using only p ICs of three randomly sampled sessions from the
training data, and used these as three ground truth functional connectivity (FC) states.
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Figure S.3: Log Bayes factor on test set vs the VAR-order one model for different orders. In case of the VB-
HMM-VAR all Bayes factors are towards the correct model (i.e. K = 3 and r = 1). We generated a training
and test data from a three state model, where each state had a VAR-emission of order 1. We then trained
the IHMM-VAR and VB-HMM-VAR using different orders and number of states (for VB), and calculated
predictive likelihood on the test set.

We estimated the power-spectrum from a single session and generated three data sets
(training, validation and test) by first generating random data preserving the estimated
power-spectrum and then introducing systematic coupling using the three estimated
FC states. Finally, we added a level of white noise to obtain data with a specific SNR.
We did this for SNR = [−6, 6] dB and repeated the data generation process 10 times.
Figure S.4 shows the mean predictive log likelihood of each of the VB-HMMs on
the test set, and the normalized mutual information towards the true state sequence;
in both cases after optimizing the number of states using the validation set. We see
that the three models perform very similarly in terms of predictive performance on the
held-out data, with the VAR slightly ahead in the high SNR regime. We attribute this
to the smoothness of the data induced by preprocessing of the fMRI data. In terms of
finding the true state sequence the VAR and ZMG follow each other closely but the
ZMG breaks off and outperforms the two other models at around SNR = 0. This can
be explained by VAR being able to characterize the power-spectrum better in the high
SNR regime; and as the SNR decreases, the power-spectrum is destroyed by the white
noise making it easier for the ZMG to find the underlying state sequence.

H. HMM: Summary Statistics
We use two summary statistics in the paper to quantify the characteristics of the

extracted states, namely fractional occupancy and mean lifetime as defined in (Baker
et al., 2014).

Fractional Occupancy
The fractional occupancy, fk, of each state is the empirical estimate of the proba-

bility of being in this state at any point in time. It is defined for a given state sequence
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Figure S.4: Results from synthetic analysis with fMRI signal properties. The above results are averages over
10 data sets.

z of length T as,

fk =

∑
t δ(zt = k)

T
, (S.9)

where δ(zt = k) is the delta function that takes on the value 1 if zt is equal to k and is
zero otherwise.

Mean Lifetime
The mean lifetime, mlk, is an empirical estimate of how long we expect a certain

state to persist. It is defined as,

mlk =

∑
t δ(zt = k)∑

t δ(zt = k) · δ(zt−1 6= k)
, (S.10)

in which δ(zt 6= k) is the delta function that takes on value 1 if zt is not equal to k and
zero otherwise.

I. HMM: Robustness of the inference procedures

To investigate how the different states are populated over restarts and emission
model in the HMM-framework we show the empirical state-sequence distribution for
the two real-world data sets.

I.1. EEG: Face Scrambling Famous Condition
The fractional occupancy of each state (ordered by magnitude) is shown as a stacked

bar plot in Figure S.5. The ZMG and SSM employed more states to explain the data
compared to the VAR emission model. Comparing results between the IHMM (using
MCMC inference) and the VB-HMM (using variational inference), the two inference
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Figure S.5: Fractional occupancy of each state for each model over 5 restarts, when trained on the first
condition famous from the EEG data. The states are shown as a stacked bar plot ordered by their fractional
occupancy and alternately colored black and white.
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Figure S.6: Fractional occupancy (fMRI resting state data) of each state for each model over 5 restarts (on
the training data). The states are shown as a stacked bar plot ordered by their fractional occupancy and
alternately colored black and white.

methods identified the same pattern, namely that the VAR found fewer states than the
two simpler emission models. Both inference procedures found fairly consistent state
occupancy distributions over multiple restarts. Looking at the different parameterisa-
tions, the estimated dFC dynamics were heavily influenced by the choice of emission
model.

I.2. fMRI: Single subject resting-state
The fractional occupancy of each state for each emission model and restart can be

seen in the stacked bar plot in Figure S.6. The VAR model consistently found six states,
whereas the ZMG and SSM found 7 and 8 states respectively. The occupancy of each
states was fairly robust over restarts in all emission models.
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Figure S.7: Estimated state sequences (EEG data) for the first subject and first condition are shown for all the
emission models of the IHMM. Furthermore, we show data sampled using the posterior parameters obtained
from the last sample of the first MCMC chain.

J. HMM on EEG-data: Sampling the posterior distribution

We illustrate what the three different IHMM-emission models have learned on the
first condition (famous) from the EEG-data Wakeman & Henson (2015). Figure S.7
shows the estimated state sequence for the first subject in the first condition for each
of the models, and illustrates data sampled from the fitted posterior distributions. All
models divided the ERP into a number of states: The ZMG and SSM models found
more states than the VAR model, and the data sampled from the posterior of the ZMG
and SSM models did not reflect the smoothness of the true ERP response (see Fig-
ure 7(c) ). The VAR model found a state sequence that was in better correspondence
with the ERP response compared to the other models, including a baseline state that
appears before and after the ERP.

K. Resting state fMRI data: group ICA components

In this section we plot the spatial maps of the group independent components esti-
mated as described in the results section 3.4. They can be seen in Figure S.8 in three
views chosen using the plot stat map function from Nilearn10. The threshold was
chosen to be the 95th-percentile of the absolute values in the image.

10http://nilearn.github.io/
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Figure S.8: Spatial maps of the retained 21 ICA components from the resting state fMRI data analysed in this
paper. Cut-coordinates were determined using Nilearn by finding the largest positive connected component
after thresholding at the 95th percentile of the absolute values in the map.30
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