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Abstract

Dynamic functional connectivity (dFC) has recently become a pop-
ular way of tracking the temporal evolution of the brains functional in-
tegration. However, there does not seem to be a consensus on how to
choose the complexity, i.e. number of brain states, and the time-scale of
the dynamics, i.e. the window length. In this work we use the Wishart
Mixture Model (WMM) as a probabilistic model for dFC based on vari-
ational inference. The framework admits arbitrary window lengths and
number of dynamic components and includes the static one-component
model as a special case. We exploit that the WMM framework provides
model selection by quantifying models generalization to new data. We
use this to quantify the number of states within a prespecified window
length. We further propose a heuristic procedure for choosing the win-
dow length based on contrasting for each window length the predictive
performance of dFC models to their static counterparts and choosing the
window length having largest difference as most favorable for characteriz-
ing dFC. On synthetic data we find that generalizability is influenced by
window length and signal-to-noise ratio. Too long windows cause dynamic
states to be mixed together whereas short windows are more unstable and
influenced by noise and we find that our heuristic correctly identifies an
adequate level of complexity. On single subject resting state fMRI data
we find that dynamic models generally outperform static models and us-
ing the proposed heuristic points to a window-length of around 30 seconds
provides largest difference between the predictive likelihood of static and
dynamic FC.
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1 INTRODUCTION

It is a well know fact that the brains way of integrating and segregating in-
formation changes over time and is perturbed by various cognitive tasks. In
functional magnetic resonance imaging (fMRI) the functional brain ”network”
is often described using functional connectivity (FC) models, i.e. the correlation
between segregated regions of interest, and these networks are known to change
during task. In recent years studies of resting-state FC have shown to also ex-
hibit dynamic properties indicating that FC during rest is non-stationary. Thus
tracking temporal changes in FC during resting-state has become a popular
research topic in recent years [1, 2, 3]. We see two main advantages of mod-
eling the temporal changes in FC; first there has been some evidence that the
dFC can be used to characterize different psychiatric disorders, such as PTSD
[4] and schizophrenia [5]. Secondly, we hope by modeling dynamic functional
connectivity (dFC) to gain a better understanding of the resting-state and the
spontaneous changes in coupling between regions not associated by task activa-
tion [6].

Most models of dFC use the sliding-window approach [6, 7], where the as-
sumption is that the FC is stable in subsegments of the data. Allen et. al. [6]
applied this to a large cohort of healthy subjects where the extracted region-by-
region covariance matrices from each window were clustered using the k-means
algorithm. The 7 states extracted showed a highly non-stationary behavior
where coupling in and to the default mode network notably varied over the
states. We are though still faced with a number of problems in estimating re-
liable dFC patterns [8, 9, 10]. On one hand we face the problem of timescales,
i.e. window length of dFC patterns is in most cases assumed to be known
or set to some value based on the acquisition parameters in the experiment.
Window-free methods exists, such as hidden Markov models in the context of
microstates for EEG/MEG [11] and for dFC in fMRI [12, 13]. However, these
models are more expressive and thus it becomes of importance to control the
”over-characterization” in the training. Finally, in both microstate analysis and
dFC models the complexity, i.e. the number of states to extract, is always a
problem [13]. In k-means we have no natural way to choose the number of
states, and thus heuristics such as the Gap-criterion is often used.

In this work we will use a Bayesian formulation of the Wishart mixture model
(WMM) [14, 15, 16]. The Wishart distribution is defined as the distribution of
the scatter matrix of zero-mean multivariate Gaussian data, and is thus a natural
likelihood function for windowed functional connectivity. Whereas [14] used
expectation-maximization (EM) and [16] Gibbs sampling we presently consider
variational inference and use the WMM as a probabilistic analogy to the sliding-
window k-means clustering approach. The probabilistic treatment will allow us
to tap into features of the Bayesian modeling framework such as prediction.
We will investigate a predictive likelihood framework to estimate the number of
states in dFC problems, both in a synthetic setting and in resting-state fMRI
data and propose a heuristic for choosing the window length.
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2 METHODS

We first briefly present some notation. Let xt ∈ R
p be a zero-mean distributed

signal at time point t. We consider data of L symmetric-positive semi-definite
matrices Cℓ of size p × p in which there are K clusters. In this paper we will
use Gram matrices, i.e. Cℓ =

∑

t∈Wℓ
xtx

T
t , in which Wℓ is the ℓ’th window set.

2.1 Bayesian Wishart Mixture Model

The Bayesian Wishart Mixture Model (WMM) for K states can be written in
terms of the generative model,

π ∼ Dir(α) zℓ ∼ Cat(π) η ∼ G−1(a0, b0)

Σ
(k)−1

∼ W(ηIp, ν0) Cℓ ∼ W(Σ(zℓ), νℓ), (1)

in which π is a vector of length K containing the proportions of the states, α is
the prior vector of length K for the Dirichlet distribution, zℓ is the categorical
(hard)assignment of window ℓ, η is the prior on the ”scale” of the cluster centres,

Σ
(k)−1

is the k’th cluster centres inverted Gram matrix, ν0 is the degrees of
freedom for each cluster centre and νℓ is the degrees of freedom for the ℓ’th

window. The prior on the cluster centres, Σ
(k)−1

, and the parameter η is
mostly chosen for convenience in the inference procedure and makes all updates
closed form. The η parameter works as a regularizer on the cluster centres. This
becomes very important in high dimensions and a low number of data points,
as is the case in most fMRI scenarios. As for the degrees of freedom for each
window, νℓ, we propose summing the window-function, i.e. yielding νℓ equal to
the window length for the box-car window.

2.2 Variational Bayes

As with many Bayesian models evaluating the posterior, p(θ|X), is intractable
due to the model evidence term, p(X), obtained from Bayes rule. We therefore
turn to the variational Bayesian (VB) framework to approximate the poste-
rior. In VB the goal is to find a distribution, Q(θ), which is ”close” in the
Kullback-Leibler (KL) divergence to the posterior and has a simpler form such
that inference becomes tractable. We choose to use the well-known mean-field
approximation in which the distribution of each parameter is assumed to fac-
torize. Minimizing the KL-divergence between the intractable posterior and the
Q-distribution is equivalent to maximizing the evidence lower-bound (ELBO),
which can be formulated as,

L(C, θ) = 〈log p(C|Σ−1, z,π)〉+ 〈log p(Σ−1)〉+ 〈log p(η)〉

+ 〈log p(z|π)〉+ 〈log p(π)〉 − 〈logQ(Σ−1)〉

− 〈logQ(η)〉 − 〈logQ(z)〉 − 〈logQ(π)〉, (2)

in which L is the ELBO, C is the collection of all the windowed scatter matrices,

Σ
−1 is the collection of all Σ(k)−1

, z is a vector of length L containing all zℓ,
〈·〉 denotes expectation wrt. the Q-distribution, and θ is the collection of all
parameters in the model. Now we maximize the ELBO using coordinate ascend
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variational inference (CAVI), which results in calculating the sufficient statistics
of each factor (all of which are closed-form) while keeping the others fixed in a
cyclic fashion. The Q-distributions along with the update rules have the form,

Q(Σ−1) =
∏

k

W(Σ(k)−1
|Ω(k), vk) (3)

Ω
(k) =

(

Σ
−1
0 +

∑

ℓ

〈zℓk〉Cℓ

)−1

, vk = ν0 +
∑

ℓ

〈zℓk〉νℓ

Q(η) = G−1(η|ã, b̃) (4)

ã = a0 +
ν0pK

2
, b̃ = b0 +

1

2

∑

k

tr(〈Σ(k)−1
〉)

Q(z) =
∏

ℓ

Cat(zℓ|rℓ) (5)

r̃ℓk =
νℓ − p− 1

2
ln |Cℓ| −

νℓ

2
ln(2)− ln Γp(

νℓ

2
)

−
νℓ

2
〈ln |Σ(k)|〉 −

1

2
tr(〈Σ(k)−1

〉Cℓ) + 〈lnπk〉

rℓk =
exp (r̃ℓk)

∑

k′ exp (r̃ℓk′)

Q(π) = Dir(π|a), ak =
∑

ℓ

〈zℓk〉+ αk (6)

In all experiments the following parameters were fixed: α = [1, 1, ..., 1] and
ν0 = p. Note that if Cℓ does not have full rank some terms in (5) cannot be
computed. These terms are however constant over k and can thus be ignored.

2.3 Predictive Likelihood and Bayes Factors

It is a well-known fact that VB is prone to underestimating the posterior vari-
ance [17], and therefore we do not usually rely only on the ELBO to do model
selection. Thus, we need a more conservative measure that promotes generaliz-
able models. We thus turn to predictive likelihood on previously unseen data,
C

∗, which is dependent on the choice of the number of states K, i.e.

p(C∗|C)K =

∫

p(C∗|θ)Kp(θ|C)Kdθ (7)

Since we do not have access to the true posterior, we use the approximation
Q(θ)K ≈ p(θ|C)K , and due to the structure of the likelihood and the Q-
distribution the approximation can be calculated analytically. In the following
we will run the inference for a different number of states and calculate the
predictive log Bayes factor, BFk, towards the static model (with K = 1),

BFk = log p(C∗|C)k − log p(C∗|C)1 (8)

2.4 Generating Synthetic Data

To investigate the models capabilities and to validate our implementation we
ran a number of synthetic experiments. In the following sections we will refer to
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data as being ”synthetic” meaning that data generated by the following process.
First, we generate K random upper triangular matrices Rk of dimension p× p

by drawing each non-zero element of Rk from a standard normal distribution
N (0, 1). In all of our experiments the number of states K was set equal to
three. Now we fix a ”true” window length, wα, and for each subsegment of the
synthetic data first draw a random state (i.e. a number from 1..K) and then
wα observations from N (0p,R

T
kRk). This yields a data matrix, Xsignal, of size

p×T . Finally, we generate white noise, Xnoise ∼ N (0p, Ip), and create a linear
combination of the data and noise to control the signal-to-noise (SNR) ratio,
i.e. X = γXsignal + (1 − γ)Xnoise. We do this process independently for the
training and test data.

2.5 Resting State Data

We analyze the single subject dataset from [18] containing resting-state fMRI
sessions collected over a period of 18 months. Using SPM 121 revision 6685,
we applied the following preprocessing steps to sessions 014-104 . All resting-
state sessions were coregistred to the first image of session 014. We jointly
corrected all sessions for motion artefacts using a rigid-body transformation
towards the mean volume. An anatomical image from session 012 (T1 weighted)
was coregistred to the functional space and a tissue probability map for grey
matter (GM), white matter (WM) and cerebrospinal fluid (CSF) extracted using
the standard map from SPM12. Next we applied bandpass filtering [0.009-0.08]
Hz, nuisance regression (motion parameters, eroded CSF and WM masks) and
wavelet despiking [19]. The images were then resliced (due to a change in the
number of slices after session 027) to the first session and smoothed using a
FWHM 5mm Gaussian kernel. After preprocessing we ran a group ICA using
the GIFT software2 version 4.0a using 85 components, the ERBM algorithm
and otherwise default settings.

3 RESULTS

3.1 Synthetic Data

To investigate the influence of window length and SNR on the predictive frame-
work, we conduct a synthetic study with the following fixed parameters: wα =
10, p = 10, T = 10000 and fixed η−1 = 1e− 4 in the model. We restarted each
model inference 10 times and varied the number of states K = 1..10. Further-
more, we repeated the data generation process 10 times, and the mean BFk

over data sets (including standard deviation as error bars) can be seen in figure
1. In the noise-less case (top-left, γ = 1), we note that when the window-length
is sufficiently small (w ≤ 10) the model estimates the true number of states
K = 3. However, we see an overestimation when the window-length becomes
larger than wα. This can be explained by the data being very inhomogeneous,
and longer window lengths will be penalized more due to the mixing of different
states within a window. Thus the models with longer window lengths need more
states to explain the data. This effect gradually disappears as we decrease the

1http://www.fil.ion.ucl.ac.uk/spm/
2http://mialab.mrn.org/software/gift/index.html
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Figure 1: Synthetic experiments for the influence of window length. We gen-
erated 10 synthetic data sets with states that had a ”true” window length of
wα = 10 for different SNR levels γ = [1, 0.75, 0.5, 0.25]. Then we ran our pre-
dictive likelihood framework for different window lengths, and we plot the mean
and standard deviation of the BFk over data sets.

SNR. One thing to note for all SNR levels is that the window lengths that are
shorter than or equal to wα seem to have a larger increase in Bayes factor from
the static K = 1 state model to the best predictive performance saturating at
the K = 3 state model when compared to the longer window lengths. However,
when we reach a certain noise level (in this case γ = 0.25) the shortest window
length, WL = 1 has a flatter curve. Thus we find ourselves in a trade-off be-
tween window length and SNR; we want to make the window length low enough
in order to not mix states together, but on the other hand not too low such that
the estimation becomes unstable.

3.2 Single Subject Resting-State fMRI

To test the predictive framework on real data, we analysed a single subject
resting-state fMRI data from [18]. Due to computational complexity, we ran
the inference on 10 random subsets of data, each containing 5 sessions, and
then calculated the predictive likelihood on the remaining sessions. It should be
noted that some of the training sessions were in multiple training subsets. Each
inference was restarted 10 times. Furthermore, we fixed η−1 during inference
but varied its value in the range [10−5, 105] (sampled at ten points equidistantly
in the log-domain). We choose the η−1-value that yields the best predictive
likelihood. The mean BFk (over subsets) as a function of the number of states
in the model is shown in figure 2. We see that the lowest window length has an
almost flat curve, meaning that all number of states is equally likely, indicating
that the window length is too short. The window length having the highest
contrast between static and dynamic modeling, thus having the greatest increase
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Figure 2: Experiment on resting-state fMRI data from a single subject. We
randomly sampled 5 resting-state sessions, trained the VB-WMM model with
a different number of states K = 1..15 and calculated the predictive likelihood
on the remaining sessions. We repeated this process 10 times with new random
training subsets. In the figure the mean BFk (over training splits) on the held
out sessions is plotted along with one standard deviation as errorbars. The
entire analysis was done for different window lengths (WL) in TRs, WL =
[1, 5, 10, 25, 50, 100].

in log Bayes factor before hitting a plateau is WL = 25 (i.e., around 30 seconds).

4 DISCUSSION & CONCLUSION

We have proposed the Wishart mixture model (WMM) as a probabilistic exten-
sion of windowed k-means, to model dynamic functional connectivity in fMRI.
As a way to quantify the number of states best accounting for dFC we use the
predictive likelihood. We further proposed a heuristic based on contrasting the
predictive likelihood of dFC to the predictive likelihood of the corresponding
static model containing only one state in order to quantify a suitable window
length for characterizing dFC. On synthetic data we found that this heuristic
correctly indicated the correct level of complexity. On real single subject resting
state data we found support for dynamic modeling for all considered window
lengths except (WL = 1 where the static model (K = 1) was not outperformed
by dynamic models (K > 1)) and using the heuristic of highest contrast in
predictive likelihood between static and dynamic modeling we found WL = 30
most suitable for characterizing dFC.

We would like to emphasize that the proposed procedure for quantifying
window-length is a heuristic that we find useful to quantify trade-offs between
SNR and issues mixing dynamic states but that predictive performance using
different window lengths cannot be directly compared as they are based on test
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data having different properties. It should also be noted that as we increase
the window length, we have fewer and fewer data points for training the WMM,
which could influence the results. One could look into using overlapping windows
to mitigate the effect of mixing states together, which is an avenue to pursue
in future work. Also, in this work we have used Gram matrices to ”stay true”
to the likelihood function we are using in the WMM. However, there might
be differences in using covariance matrices or even correlation matrices, which
should be investigated further. In the real data there could be a pitfall caused
by noisy ICA components, i.e. we have not done any post-selection. However,
if states were driven by noise components they are not likely to generalize well
to new sessions, and the predictive likelihood should in theory take care of this.
However, to really confirm this would require an in-depth analysis. Thus, the
proposed heuristic needs to be further validated. In the long run, we would
like to replicate the results on larger portions of the resting state data, which
would require a faster implementation. This should be possible using massively
parallel architectures such as graphical processing units, as there are steps in
the algorithm that are parallelizeable.
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