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Blind Equalization using a Variational Autoencoder
with Second Order Volterra Channel Model

Søren Føns Nielsen, Darko Zibar and Mikkel N. Schmidt

Abstract—Existing communication hardware is being exerted
to its limits to accommodate for the ever increasing internet
usage globally. This leads to non-linear distortion in the com-
munication link that requires non-linear equalization techniques
to operate the link at a reasonable bit error rate. This paper
addresses the challenge of blind non-linear equalization using
a variational autoencoder (VAE) with a second-order Volterra
channel model. The VAE framework’s costfunction, the evidence
lower bound (ELBO), is derived for real-valued constellations
and can be evaluated analytically without resorting to sampling
techniques. We demonstrate the effectiveness of our approach
through simulations on a synthetic Wiener-Hammerstein channel
and a simulated intensity modulated direct detection (IM/DD)
optical link. The results show significant improvements in equal-
ization performance, compared to a VAE with linear channel
assumptions, highlighting the importance of appropriate channel
modeling in unsupervised VAE equalizer frameworks.

I. INTRODUCTION

IN recent years, internet usage has increased dramatically
in part due to the availability of video streaming and

social media. Furthermore, the recent surge in training large
machine learning models has led to the construction of large
scale datacenters to support fast turnaround [1]. This means
that existing communications hardware is being pushed to
its limits, which in many applications leads to non-linear
distortion. This could for instance be saturation effects from
radio frequency power amplifiers [2], the transfer function in
the light emitting diode in visible light communication [3]
or non-ideal modulators, chromatic dispersion and detection
in short-reach optical networks [4]. Future communication
solutions need to be able to handle non-linear distortion to
a larger degree than before.

The process of removing distortion and noise caused by the
communication channel at the receiver is commonly known
as equalization. One way to optimize the equalizer is using
a sequence of apriori known data symbols, a pilot sequence
(a supervised approach). For linear channel distortion and
intersymbol interference (ISI) a linear adaptive filter can be
used, which commonly is done either through a feed-forward
filter (FFE) [5] or with a combined feed-forward and feed-back
filter system, denoted a decision-feedback equalizer (DFE) [6].
However, many communication channels are subject to non-
linear distortion which require a non-linear equalizer to fully
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compensate. Popularly, this has been tackled with a Volterra
equalizer [7], due to its solid theoretical foundation and
stability guarantees. The Volterra series is used to describe
general non-linear systems [8] and uses a polynomial basis
of past inputs to predict the next output. Its theory was
developed by Norbert Wiener (however named after Vito
Volterra) and has since then been used to model a variety
of non-linear systems, such as the transfer function of the
power amplifier in wireless communication [9], the brain’s
hemodynamic response function in conjuction with functional
magnetic resonance imaging [10] and to approximate the rate
equations of a light emitting diode (LED) used in visible light
communication (VLC) [11], to mention a few.

Another class of non-linear equalizers are the neural net-
works which have also attracted some attention both during
their early adoption in the 1990s [12][13] and also more
recently [14][15]. Compared to the Volterra equalizers they
are more flexible as they learn a basis via. composable non-
linear functions (layers) directly from data, however, they can
also be more difficult to train.

The supervised approach of sending pilot symbols decreases
the throughput of the communication system and thus much
effort has also gone into investigating blind (unsupervised)
approaches. In this scheme, only knowledge of the constel-
lation can be utilized for optimizing the equalizer weights.
This was first studied for pulse amplitude modulation (PAM)
formats in [16]. For complex-valued modulation formats, the
most widely used algorithm in this category is the constant-
modulus algorithm (CMA) [17]. It utilizes a criterion, based
on the average modulus of the constellation, to optimize a
finite impulse response (FIR) filter. To accommodate for non-
constant modulus constellations, an extension to CMA was
proposed called the multi modulus algorithm (MMA) [18].

More recently, a new class of blind equalization algorithms
have been proposed based on a Bayesian formulation of
the problem; first in [19], [20] for the quadrature phase
shift keying (QPSK) modulation format with coded data and
later extended to quadrature amplitude modulation (QAM)
with probabilistic constellation shaping (PCS) in [21]. Both
works are based on formulating the equalization problem as a
variational autoencoder (VAE) [22], which tries to approximate
the maximum a posterior (MAP) symbol sequence with a
simpler distribution by maximizing the evidence lower bound
(ELBO). It was shown in [20], that the ELBO has an analytical
expression, which can be differentiated wrt. parameters of the
model, if an FIR filter is used to model the channel. An
approximation of the VAE equalizer was explored in [23],
named the vector quantized variational autoencoder (VQ-
VAE). Here the authors present an alternative costfunction
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to the ELBO, that admits arbitrary non-linear channel model
by using a low-complexity hard symbol demapper. However,
the VQ-VAE no longer learns the channel equalization and
demapping jointly, in contrast to the VAE from [19], [21], as
the hard-demapper is fixed.

In this work, we extend the VAE framework from [20],
[21] to incorporate a non-linear second order Volterra channel
model for real-valued constellations. Our main contribution
is the derivation of the Volterra VAE (V2VAE), including an
analytical expression for the ELBO. This allows for joint es-
timation of the channel equalizer and soft symbol demapping,
which is a faithful estimation of the MAP symbol decoder
given a Volterra channel. We contrast our proposed model, to
a baseline model from [23] that uses a simplified memory
polynomial as the channel model in the VAE framework,
denoted MP-VAE. We investigate our model’s merits in two
simulated data studies. We first show the advantage of using
the non-linear channel assumptions in a Wiener-Hammerstein
system. Finally, we analyze the performance of our proposed
model in a simulated intensity modulated direction detection
(IM/DD) optical channel, which can be found in datacenter
interconnects.

The rest of the paper is structured as follows. In section II,
we first introduce the equalization problem as a VAE with
linear channel assumptions[20], [21]. Then we propose our
innovation with a second order Volterra channel model and
derive the ELBO in section II-B. In section III, we present
the results of our two numerical simulation studies; first in
section III-A the results from the Wiener-Hammerstein system
and secondly in section III-B the results on IM/DD. Finally,
in section IV, we summarize the paper, discuss the results and
present an outlook for future research.

II. METHODS

We begin the methods section by introducing the equal-
ization problem and the notation used throughout the paper.
Suppose that we have a sequence of information symbols x =
{x0, x1, ..., xN}, where each xi comes from a constellation
DM = {A1, ..., AM}. In general, the constellation can be both
real-valued or complex-valued, however, we will only look at
real-valued constellations. The symbols are passed through a
channel with (unknown) input-output relationship, ψ(·), such
that we at the receiver observe a signal y = ψ(x). To remove
any ISI and distortion that the channel has introduced, an
equalizer, fϕ(·), with parameters ϕ can be applied to recover
the symbols x from y without explicit knowledge of ψ. We
define the output of the equalizer to be x̂ = fϕ(y). In the
case that ψ(·) is linear and time-invariant, the equalizer can
be implemented as a finite impulse response (FIR) filter, i.e.

fϕ(y) = h ∗ y

in which h represent the FIR filter coefficients and ∗ is the
convolution operator.

When h(·) is non-linear, non-linear equalizers need to be
employed, such as Volterra series or neural networks. The
Volterra series, which is of particular interest in this paper, is
non-linear in the input due to a polynomial basis constructed

from y. For a second order Volterra model, the one step
prediction x̂n can be written as,

x̂n =

N1∑
i=0

yn−ihi +
N2∑
i=0

N2∑
j=0

yn−iyn−jHij (1)

in which h ∈ RN1 is the first order Volterra kernel (an FIR
filter), H ∈ RN2×N2 is the second order Volterra kernel
(matrix) and N1 and N2 are the respective lag lengths for
the first and second order.

Most commonly pilot symbols are sent as part of the symbol
sequence, such that ϕ can be updated supervised using a
cost function, L(·), towards the pilots and a gradient descent
method. This yields the following optimization problem,

argmin
ϕ

L(x̂,x)

In this formulation, if we choose L to be the squared error and
calculate the gradient per sample, we arrive at the well-known
least-mean square (LMS) optimization routine.

In the case where we do not have access to pilots, the
equalization problem becomes unsupervised, often referred to
as blind equalization. The cost function is now only defined
over the output of the equalizer and is chosen to utilize an
aprori known property of the constellation. For instance in
CMA [17], L is constructed such that the equalizer output
is encouraged to have the same constant modulus as the
constellation.

A. Blind Equalization as a Variational Autoencoder

Casting the problem of blind channel equalization as a
variational autoencoder (VAE)[20], [21] can be shown in the
following way (see also Figure 1 for a visual representation).
We observe a signal at the receiver, y, from which we want to
estimate the symbol sequence, x. Given a likelihood function,
pθ(y|x), in which θ is the collection of all channel parameters,
then the posterior can be written using Bayes rule,

P (x|y) = pθ(y|x)P (x)
p(y)

=
pθ(y|x)P (x)∫
pθ(y|x)P (x)dx

(2)

in which P (x) is the symbol prior modeled as a categorical
distribution, which is either uniform or adapted using proba-
bilistic constellation shaping (PCS) [24]. For all simulations
in this paper, a uniform prior has been used.

The posterior exactly represents what is the desired output
of an equalizer, i.e. what is the most likely symbol sequence
given the received signal. In most practical applications,
evaluating the integral in the denominator of (2), the model
evidence, is practically infeasible as it involves integrating
over all possible symbol sequences. Thus, we must resort
to approximate methods, where the VAE comes into play. In
the variational approximation, we seek a simpler distribution,
Qϕ(x|y) with free parameters ϕ, that is ”close” to the true
posterior, p(x|y), in some sense. A common choice is the
Kullback-Leibler (KL) divergence, which can be written as,

KL (Qϕ(x|y) ∥ P (x|y)) =
∫
Qϕ(x|y) log

Qϕ(x|y)
P (x|y) dx.

(3)
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Channel model

Equalizer

Fig. 1: Variational Autoencoder (VAE) framework for blind
channel equalization. In the above x is the (unknown) symbol
sequence drawn from the prior P (x) and y is observed
sequence at the receiver. The VAE then attempts to find an
approximate posterior, P (x|y) ≈ Qϕ(x|y), by learning the
channel parameters, θ, and equalizer, ϕ, jointly.

Expanding (3), inserting the posterior from (2) and rear-
ranging the terms, can yield the following relation

log p(y) ≥
∫

log [pθ(y|x)]Qϕ(x|y)dx

−KL (Qϕ(x|y) ∥ P (x)) , (4)

which is known as the evidence lower bound (ELBO).
Maximizing the ELBO leads to a minimization of the KL-
divergence in (3).

Choosing a Gaussian likelihood with isotropic noise and
furthermore assuming a finite impulse repsonse (FIR) filter to
model the channel, we arrive at the real-valued version of the
VAE derived in [20], [21], which we will show now. We denote
the time-lagged vector xn = (xn, xn−1, ..., xn−L), containing
all the L time-points needed to produce the channel output,
yn. The log-likelihood function in that case can be written as,

log pθ(y|x) = −
N

2
log(2πσ2)− 1

2σ2

N∑
n=1

(yn − xTnh)
2, (5)

in which h is the FIR filter modeling the channel response
and σ2 is the noise variance, both of which are learnable
parameters in the VAE framework, i.e. θ = {h, σ2}.

We now need to specify the approximate posterior, the
Q-distribution. Following a very common practice in the
variational Bayesian literature, namely that the Q-distribution
factorizes, we can write it as,

Qϕ(x|y) =
∏
n

Qϕ(xn|y) (6)

in which ϕ is the collection of all parameters of the Q-
distribution and the distribution Qϕ(xn|y) is the discrete
probability distribution over the constellation for the n’th
symbol in the sequence. Given an equalizer output, x̂n, we
define the individual probabilities per symbol as,

Qϕ(xn = Am|y) =
ef̃m,n∑
m′ ef̃m′,n

(7)

f̃m,n =
−(x̂n −Am)2

σ2
(8)

The interpretation of the above is that the output of the equal-
izer is evaluated under a (non-normalized) Gaussian density
function with the constellation points as the mean and noise
variance from the likelihood term. The density values are then

normalized with softmax to yield a probability distribution.
For equiprobable constellation points this is equivalent to the
soft demapping from [21]. For all simulations in this paper,
we have used a second order Volterra equalizer to model x̂,
as given in (1).

The first term in the ELBO (4), the expectation of the
log-likelihood with respect to the Q-distribution, now be-
comes [20], [21],

EQ [log pθ(y|x)] = −
N

2
log(2πσ2)

− 1

2σ2
EQ

[
N∑
n=1

(yn − xTnh)
2

]
︸ ︷︷ ︸

C

(9)

in which EQ[·] is the expectation operator wrt. to the Q-
distribution, i.e. EQ [f(x)] =

∫
f(x)Q(x|y)dx. The expec-

tation involves integrating over all possible symbol sequences
x, which even for short sequence lengths is intractable and
thus the above needs to be simplified.

Analyzing a single element of the sum inside C in (9),
denoted cn, one can show that this is equivalent to,

cn =y2n − 2ynEQ[xn]⊤h+ EQ[(x⊤
nh)

2]

=y2n − 2ynEQ[xn]⊤h+ (EQ[xn]⊤h)2

+ (EQ[x2
n]− EQ[xn]2])⊤h2 (10)

in which the expectations EQ[xn] and EQ[x2
n], due to the

structure of the Q-distribution (6), are calculated independently
per time-point. A single element, xi, has expectations,

EQ [xi] =

M∑
m=1

fϕ(xi = Am|y)Am (11)

EQ
[
x2i

]
=

M∑
m=1

fϕ(xi = Am|y)A2
m. (12)

The entire ELBO is differentiable wrt. θ and ϕ, and if
we multiply the ELBO with -1, can thus be optimized us-
ing stochastic gradient descent, regardless of the equalizer
parametrization (as long as the equalizer is differentiable). To
estimate the noise variance, σ2, we use the plug-in trick from
[20], [21], which is achieved by analytically differentiating
the ELBO wrt. to σ2, equating to zero and solving for σ2.
This yields the solution σ2 = C/N , which is applied in
each iteration before the gradient update of the remaining
parameters. Inserting the expression for σ2 into the negative
ELBO yields the loss function,

L(θ, ϕ,y) = KL (Qϕ(x|y) ∥ P (x)) +N logC (13)

The KL-divergence term in (13) can be calculated as,

KL (Qϕ(x|y) ∥ P (x)) =
N∑
n=1

M∑
m=1

Qϕ(xn = Am|y) log
Qϕ(xn = Am|y)
P (xn = Am)

(14)

which in the case of a uniform prior over symbols simplifies
to the negative entropy of the Q-distribution. The VAE is
fitted using a stochastic gradient descent algorithm utilizing
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Algorithm 1 Fitting a Variational Autoencoder (VAE) with
Stochastic Gradient Descent

1: Input: Data at receiver y, learning rate η, batch size B
2: Output: Trained equalizer and channel parameters ϕ

and θ
3: Initialize equalizer parameters ϕ and channel parame-

ters θ, compute total number of batches, Nbatch
4: for b = 1 to Nbatch do
5: Compute equalizer signal x̂(b), for batch y(b)

6: Compute ELBO L with (13), including term C
7: Compute noise variance σ2 = C/B
8: Compute gradients ∇ϕL and ∇θL
9: Update parameters:

ϕ← ϕ+ η∆b(∇ϕL), θ ← θ + η∆b(∇θL)
where ∆b is the Adam [25] update

10: end for

the Adam optimizer [25]. An overview of the update scheme
can be seen in Algorithm 1.

It should be noted that the VAE framework can be used with
an arbitrary non-linear channel model. However, in that case,
we can no longer calculate the gradient of the loss function
analytically and must resort to approximate methods. It was
shown in [20], that this can be done utilizing the Gumbel-
Softmax approximation [26]. This approach involves sampling
the gradients, which we would expect yields more noise in
optimization and has not been explored in this paper.

Commonly, equalization is performed in an oversampled
domain with multiple samples per symbol (sps) leading to y
and EQ[x] not having equal length. In this case the expectation
vectors are upsampled by inserting zeros between the symbols
to match the length of y as suggested in [21].

B. Variational Autoencoder with Second Order Volterra Chan-
nel Model

We now turn to the case, where the channel model is
assumed to have a second order Volterra series structure,
and we derive an analytical expression for the expected log-
likelihood. Given the time-lagged vector xn, then the second
order Volterra model can be written as

ŷn = x⊤
nh+ x⊤

nHxn, (15)

in which h and H are the first and second order Volterra
kernels, respectively. The matrix H is symmetric, i.e. Hij =
Hji. We have for simplicity assumed here that both the first
and second order Volterra terms use the same input vector xn.

As in (5) for the FIR channel model, we are interested
in deriving the analytical expression for the expected log-
likelihood of the VAE, more specifically the subterm C. We
note that it is necessary to obtain closed-form solutions of the
expectations to make the calculation of the ELBO practically
feasible. Otherwise, we would have to either— integrate over
all possible symbol sequences, which even for short sequence
lengths is computationally impractical or resort to sampling,
which has high variance and would slow down convergence
speed.

Replacing the first order model with a second order one, we
arrive at

C = EQ

[
N∑
n=1

(
yn −

(
x⊤
nh+ x⊤

nHxn
))2]

(16)

Analyzing a single element of the sum in (16), we arrive at

cn =EQ
[
(yn − ŷn)2

]
=EQ

[(
yn − (x⊤

nh+ x⊤
nHxn)

)2]
=y2n − 2ynEQ[xn]⊤h+ EQ[(x⊤

nh)
2]

− 2ynEQ[x⊤
nHxn] + 2EQ[x⊤

nhx
⊤
nHxn]

+ EQ[(x⊤
nHxn)

2] (17)

The terms EQ[xn]⊤h and EQ[(x⊤
nh)

2] are identical to
terms found in (10). In the following we will, look at each
of the last three terms and derive how they can be calculated
analytically, given the moments of xn assumed to follow our Q
distribution. The derivation of the three terms follows the same
structure, namely to write out the expectations as summations,
identify the matching indices such that the expectation can
be simplified (E[xixi] = E[x2i ]) and appropriately subtracting
terms that arise from doing full summations. For a more
detailed derivation, including all terms from (17), we refer
the reader to the supplementary material.

In the following, we will use a simplified notation where
we suppress the subscript Q in the expectation, the index n is
removed and indices i, j, k and ℓ are implicitly summed over,
e.g. EQ[x⊤

nh] = E[xihi]. Using this notation we arrive at,

EQ[x⊤
nHxn] = E[xiHijxj ]

=E[xi]E[xj ]Hij + E[x2i ]Hii − E[xi]2Hii (18)

The cross-term between first and second order kernel be-
comes,

EQ[x⊤
nhx

⊤
nHxn] = E[xixjxkhiHjk]

=E[xi]E[xj ]E[xk]hiHjk

+
(
E[x2i ]E[xj ]− E[xi]2E[xj ]

)
(2hiHij + hjHii)

+
(
E[x3i ]− 3E[x2i ]E[xi] + 2E[xi]3]

)
hiHii (19)

The squared second order kernel term becomes,

EQ[(x⊤
nHxn)

2] = E[xixjxkxℓHijHkℓ]

=E[xi]E[xj ]E[xk]E[xℓ]HijHkℓ

+ (E[x2i ]E[xj ]E[xk]− E[xi]2E[xj ]E[xk]) ·
(2HiiHjk + 4HijHik)

+ (E[x2i ]E[x2j ]− E[x2i ]E[xj ]2 − E[xi]2E[x2j ] + E[xi]2E[xj ]2) ·
(2HijHij +HiiHjj)

+ (E[x3i ]E[xj ]− 3E[x2i ]E[xi]E[xj ] + 2E[xi]3E[xj ]) ·
(4HiiHij)

+
(
E[x4i ] + 12E[x2i ]E[xi]2 − 3E[x2i ]2

− 4E[x3i ]E[xi]− 6E[xi]4)H2
ii (20)

The higher order moments (E[x3] and E[x4]) can be cal-
culated similarly to (11) and (12). The resulting loss function
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has the same structure as the VAE from the previous section,
cf. (13), with the newly derived term C (16) inserted.

We implemented the model and loss function using Py-
Torch1 to allow for easy-to-use automatic differentiation and
optimization routines. Our implementation follows the struc-
ture from [21]2 and the same general update rules as in
Algorithm 1.

III. NUMERICAL RESULTS

We present numerical results from two different simula-
tion models, a Wiener-Hammerstein channel and an intensity
modulated direct detection (IM/DD) optical communication
system. In the results, we compare five equalization schemes,
VAE Variational autoencoder from [20], [21] with a

second order Volterra equalizer.
V2VAE Variational autoencoder with second order

Volterra channel model (this work) and a second
order Volterra equalizer.

MP-VAE Variational autoencoder with a memory polyno-
mial channel model, first implemented as a base-
line model in [23]. We use a second order Volterra
equalizer.

Volterra Standard second order Volterra series equalizer
with pilots (non-blind).

FFE Standard linear feed-forward equalizer with pilots
(non-blind).

CNN A supervised convolutional neural network (non-
blind).

We stress that both the VAE and the V2VAE are capable
of doing (blind) non-linear equalization, but it is in their
channel assumptions that they differ. In all simulations, we
used the Adam optimizer [25] and screened the learning rate
between 5 values spaced in the range (5 · 10−5, 5 · 10−3).
Furthermore, the batch size was exhaustively sweeped together
with the learning rate for the values [500, 1000, 2000]. In the
following, the reported symbol error rate (SER) values are for
the best performing combination of learning rate and batch
size. We used a step-wise learning rate scheduling, where,
given a number of iterations, Niter, the learning rate was
reduced every Niter/10 iteration, such that the final learning
rate was 100 times lower than the initial value. We use 2 ·106
symbols for training and 106 symbols for SER calculation
after convergence. The supervised methods, that use pilots,
are trained using the mean square error (MSE) cost function
averaged over a batch of symbols. For a batch size of 1 this
would be equivalent to the least mean square (LMS) algorithm.
In all simulations, we used N

(1)
taps = 25 taps in the FIR part

of the equalizer (all methods except CNN), N (2)
taps = 15 taps

in the second order equalizer kernel (VAE, MP-VAE, V2VAE
and Volterra) and a channel memory Nchannel = 25 (VAE,
MP-VAE and V2VAE). The V2VAE uses the same number
of lags in both first and second order to model the channel,
meaning that the symmetric second order kernel has on the
order of O(N2

channel) free parameters. A VAE with a simplified

1Our code is available from: https://github.com/sfvnielsen/volterra-vae
2We would like to give kudos to the authors from [21] for putting their

code on Github.

memory polynomial (MP) as channel model was used as a
baseline model in [23], which has an analytical ELBO. To be
comparable to the V2VAE, we implemented a second order
version of the MP-VAE, yielding 2Nchannel parameters in the
channel model. For more details and a derivation of the ELBO
see the appendix. This formulation of the memory polynomial
can be interpreted as a second order Volterra model, where
the second order kernel only has non-zero elements in the
diagonal.

To give an estimate of the achievable SER in a non-linear
channel, we furthermore fit a supervised convolutional neural
network (CNN). The CNN used consists of Nfilters = 20 con-
volutional kernels of lengths L = 55 with a stride of sps. The
output of each filter is stacked, passed to a batch normalization
layer [27] and mapped through a fully-connected feed-forward
neural network with Nlayers = 5 with rectified linear unit
(ReLU) activations [28]. After the last layer a linear layer
is applied with a single output dimension to form the symbol
decision, x̂. The CNN is trained with the same cost-function
(MSE) as the other supervised methods.

A. Wiener-Hammerstein Channel

The Wiener-Hammerstein system is a well-studied general
function [29], used to model non-linear dynamic systems such
as loudspeakers in acoustic echo-cancellation systems [30],
power amplifiers in radio communication [31] and transmitters
in optical communication [32], to mention a few. The Wiener-
Hammerstein system is comprised of two finite impulse re-
sponse (FIR) filters, with a memory-less non-linearity, g(·),
in-between. We choose g to be a second order polynomial
and the system transfer function, ψwh(x), can be written as,

ψwh(x) = h2 ∗ (g (h1 ∗ x)) , (21)

g(x) = (1− α)x+ αx2.

For this choice of non-linearity, the Wiener-Hammerstein
system is a subclass of the second order Volterra system.
The Wiener-Hammerstein system is inserted into a simple
additive white Gaussian noise (AWGN) communication chan-
nel. We generate a random sequence of symbols drawn from
the constellation A = {−3,−1, 1, 3}, also known as pulse-
amplitude modulation with order 4 (PAM-4). The symbols
are then up-sampled by an oversampling factor of 4 after
which they are pulse-shaped with a root-raised cosine (RRC)
filter with rolloff ρ = 0.1. The signal is then passed to the
Wiener-Hammerstein system from (21). The FIR filters have
coefficients, h1 = [1.0, 0.3, 0.1] and h2 = [1.0,−0.2, 0.02]
(designed to each be minimum-phase and have two zeros) and
the non-linearity α is varied during the simulations. Both h1
and h2 are upsampled (zero-insertion and interpolation) with
the same oversampling factor as the symbols before they are
applied in the channel. After the Wiener-Hammerstein system,
AWGN is added to yield a pre-specified signal-to-noise ratio
(SNR) of Es[ψwh(x)

2]
σ2 , where Es is the empirical average

energy-per-symbol and σ2 is the noise variance. Matched
filtering (RRC) is applied, the sequence is decimated to 2
samples per symbol and the resulting signal is synchronized
with the symbol sequence. The different equalizers are then
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Fig. 2: Symbol error-rate (SER) results for Wiener-Hammerstein channel with varying degree of non-linearity, α in panel 2a
and varying SNR in panel 2b. Each simulation was restarted 5 times, thus the curves represent the average over runs.

fitted to the resulting sequence. After convergence, a new test
set is generated with the same steps as above and the symbol
error rate (SER) is calculated. For the two supervised methods
(FFE and Volterra), we map the output of the equalizer to
the nearest constellation point in the standard Euclidean sense
and count the errors. For the two variational auto-encoders
(VAE and V2VAE), we use the estimated symbol probabilities
from the Q-distribution, pick the most likely symbol under the
model and then count the errors.

The results of varying the SNR and the non-linearity coeffi-
cient α can be seen in Figure 2. In the linear regime (α = 0),
we see that all methods generally achieve similar SER, i.e. the
non-linear methods can adapt their non-linear components to
the problem at hand, with an exception in the high SNR case
where blind methods incur a small penalty. As we increase the
quadratic term (α > 0), we see that, unsurprisingly, the SER of
the linear FFE starts to increase more than than the supervised
Volterra method. The unsupervised V2VAE closely follows the

performance of its supervised counterpart, whereas the VAE
with mismatched channel assumptions, follows more the trend
of the linear FFE. The MP-VAE, which has a slighty more
advanced channel model than the standard VAE, performs
almost on par with the V2VAE except in the strong non-
linear regime (α = 0.1), where the more advanced channel
model of V2VAE has an advantage. The supervised CNN,
with by far the most parameters and modeling capacity is
(unsuprisingly) best across the board. However, in most cases
the Volterra methods (V2VAE, MP-VAE and Volterra) rival
the performance of the over-parameterized CNN.

To investigate the unsupervised methods (VAE, MP-VAE
and V2VAE) convergence properties and ability to track
changes in the system, we devised a simple change-point test.
We use the Wiener-Hammerstein system described above with
α = 0.05, but change the first FIR filter, h1, to a new set of
coefficients, h∗1 = [1.0, 0.5, 0.1525], after 2.5 · 106 symbols
and continue to alternate between h1 and h∗1 every 2.5 · 106
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symbols. During this simulation we disable the learning rate
scheduling and run with a fixed learning rate. We report the
loss function value as a function of processed batches and
the average SER on a held-out validation set (106 symbols)
grouped by h1 and h∗1 can be seen in Figure 3.

In general, the V2VAE converges to a lower loss function
value compared to the VAE in this non-linear channel, where
the VAEs channel model assumptions are violated. The MP-
VAE converges to a loss function value between the VAE
and V2VAE. As expected, the lower loss function value also
translates to better SER performance, seen in the right panel
of Figure 3. However, we also note that the V2VAE converges
slightly slower to a stable loss-function level than the VAE.
We attribute this to the more complex channel model that the
V2VAE has to fit.

B. Intensity Modulated Direct Detection System

In this section, we study a simulated optical communica-
tion system based on unamplified intensity modulated direct
detection (IM/DD), commonly found in datacenter intercon-
nects [33], inspired by the system model in [34]. We again
use the PAM-4 modulation format with constellation A =
{−3,−1, 1, 3}. We use the same transmitter processing as in
section III-A (up-sampling by 4 and pulse-shaping with RRC
and rolloff ρ = 0.1) with a baud rate Rs = 100 GBaud.
The signal is then passed to a digital-to-analog converter
(DAC), comprising of a voltage normalization step to the range
[− 1

2 ,
1
2 ], multiplication with a peak-to-peak voltage, Vpp and

application of a 5th order Bessel low-pass filter. The 3-db
cutoff frequency of the low-pass filter was set to 55 GHz. The
voltage signal, V (t), is then used as input to a Mach-Zehnder
modulator (MZM), which yields the optical signal,

E(t) =
√
Pin cos

(
1

2Vπ
(V (t) + Vb)

)
, (22)

in which Pin = −3.0 dBm is the power of the laser at the
input of the modulator and Vπ = 2V and Vb = −0.5V are
parameters of the MZM. A plot of the modulator characteristic
and eyediagrams in the noiseless case can be seen in Figure 4.
A standard single mode fiber model [35] is used to model
chromatic dispersion and fiber loss. The fiber has a dispersion
slope S0 = 0.092 ps/(nm2 km), zero-dispersion wavelength
λ0 = 1310 nm, attenuation αsmf = 0.2 dB/km. We use a
laser wavelength of λ = 1270 nm, which yields a dispersion
parameter of D = S0

4

(
λ− λ4

0

λ3

)
≈ −15.43 ps/(nm · km). At

the receiver, the signal is converted to voltage domain using
a square-law detector with thermal and shot noise modeled as
AWGN. The noise variances are parameterized as,

σ2
t =

4 · k · T · Fs
B · Z (23)

σ2
s =

2ec
(
R · E[|y|2] + Id

)
Fs

B
, (24)

in which k is the Boltzmann constant, T = 293K is the
temperature of the photodiode, Fs is the sampling frequency,
B = 55 GHz is the assumed bandwidth of the photodiode,
Z = 50Ω is the impedance load, ec is the electron charge,

R = 1 [A/W] is the responsivity of the photodiode, E[|y|2] is
the empirical average power received and Id = 1·10−8 A is the
dark current. The signal is converted to digital domain again
using an analog-to-digital converter (ADC) with the same
bandwidth limitation and filters as the DAC. The matched
filter (RRC) is applied in the digital domain, and finally
the signal is down-sampled to 2 samples-per-symbol and the
symbol sequence is synchronized to the received signal. The
equalizers are then fitted to the training sequence and the SER
is calculated in the same way as for the Wiener-Hammerstein
system on a new test set. We note that the laser power is
assumed to be fixed and we do not use an amplifier in this
system. Thus the only way to increase the effective “SNR“
is by increasing Vpp. However, at some point, defined by the
modulator characteristic, the modulator will enter a regime
where non-linear distortion will start to hamper the SER.

The SER results for varying Vpp and the fiber length can
be seen in Figure 5. In the back-to-back (B2B) condition
(fiber length of 0 km), the main sources of distortion is the
ISI introduced by the bandwidth limitation in the DAC and
ADC and the non-linearity in the modulator as the Vpp is
increased. In the low voltage regime (Vpp < 0.8V), there
is generally little to no difference in performance across the
methods, as the modulator is operating in the linear range. As
Vpp increases the non-linear methods start to gain an advantage
over the supervised linear FFE. The supervised Volterra and
CNN methods are generally performing best, closely followed
by the unsupervised V2VAE and MP-VAE. When Vpp reaches
the highly non-linear regime, we see the biggest advantage
of having a non-linear channel assumption showcased by the
V2VAE performing significantly better than the standard VAE,
even though they have the same equalizer parametrization.
Similarly, the MP-VAE achieves a lower SER than the VAE
due to its more advanced channel model. Comparing the
V2VAE and the MP-VAE there seems to be an advantage
of using the full second order kernel in the channel model
(V2VAE), most noticeably in the highly non-linear regime
(Vpp > 1.0V). Looking at longer fiber lengths (1 and 2 km),
the chromatic dispersion becomes the main source of distortion
and the advantage of using non-linear methods lessens. As
for the Wiener-Hammerstein channel, the CNN provides an
empirical estimate for the achievable SER in this system. In
the B2B condition, the gap to the CNN is almost closed by
the V2VAE and Volterra methods. However, the gap in the
non-linear region of the modulator (Vpp > 1.0V) increases as
we increase the fiber length.

We also ran the simulations with a electro-absorption mod-
ulator (EAM) [36], the result of which can be seen in the
supplementary material.

IV. DISCUSSION AND CONCLUSION

We investigated the impact of channel modeling assump-
tions in a VAE equalizer framework. We extended the channel
model (decoder) to be non-linear with a specific structure,
namely a second order Volterra series and derived the ana-
lytical ELBO for optimizing the equalizer. In both simulation
studies, Wiener-Hammerstein and IM/DD, we found support
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Fig. 3: Tracking in Wiener-Hammerstein channel (α = 0.05 and SNR = 16 dB). We changed the coefficients of the first FIR
filter in the system every 5 · 106 symbols, alternating between two sets of coefficients, h1 and h1∗. The test was restarted 5
times with a new seed. We show the loss function (left panel), for all restarts, as a function of batch update (batch size of 500
symbols) and the average SER (right panel) per system with errorbars indicating confidence interval estimated over seeds. The
SER was calculated on an independent validation set of size 106 symbols.
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Fig. 4: Mach-Zehnder modulator (MZM) and a accompanying eyediagram after the receiver filter for Vpp = 1.2V, Vπ = 2V
and Vb = −0.5V. No noise was added in the photodiode, such that the eyediagram only shows the impact of the non-linearity.

that appropriate channel modeling leads to better equalization
performance in the unsupervised VAE framework. Looking
at the models ability to track changes in the system, we
demonstrated that V2VAE can achieve a lower cost function
value compared to the VAE, but does so at a slower pace,
requiring more symbols for convergence. As discussed and
proposed in [21], given enough computational resources, one
could improve the convergence time by having overlapping
batches and thus effectively doing more gradient updates per
symbols (denoted the flex-scheme in [21]). Another aspect of
this is the memory efficiency, where the standard algorithms
like FFE updated with LMS, can be updated once per symbol
and only needs to store the delayline to do the gradient update.

In VAE models, batched updating is preferred to reduce the
variance in the stochastic gradient calculation. However, this
adds a higher memory requirement in practical systems, which
in turn will drive batch sizes to be as small as possible.
In this paper, the minimum batch size that still yields good
convergence behaviour was not explored, but could be an
interesting avenue of future research.

We note that the improvement in modeling capabilities by
the V2VAE does not come for free. The calculation of the
cost function and the associated gradients are more expensive
to compute, compared to the linear VAE and the MP-VAE
from [23]. For the VAE and the MP-VAE, the calculation of
the cost function for one time-point scales with O(Nchannel), as
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Fig. 5: Results for IM/DD channel with varying fiber length and varying DAC peak-to-peak voltage, Vpp [V]. Each simulation
was restarted 5 times with different random seeds and the resulting curves represent an average over runs.

all the terms can be written as convolutions and dot products.
However, the V2VAE scales with O(N2

channel), when taking
into account the optimal order of summation, due to the
squared second order kernel term in (20). We hypothesize
that a more efficient approximate algorithm for the V2VAE
could be derived, by decimating the calculation of the more
expensive terms in the ELBO and low-pass filtering. This
would reduce how often the O(N2

channel) terms needed to be
calculated, however, the quality of that approximation is yet
to be studied.

The authors in [20] used the VAE in a low-density parity-
check (LDPC) coded data transmission scenario, where the
estimated symbol probabilities were used in conjunction with
a belief propagation algorithm to decode the most probable bit
sequence. The V2VAE also admits to this extension, and could
potentially lead to better decoding performance in non-linear
channels due to the more flexible channel modeling.

A natural extension, would be to derive the model for
complex-valued constellations, as done originally in both [20]
and [21]. This would allow the V2VAE to be applied to
coherent optical transmission and model cross-talk between
different modes in the fiber as in [21]. However, that derivation
has been deemed out of scope for this paper.

We used a second order Volterra model as the channel
model, both due to the Volterra models popluarity for non-
linear system identification and non-linear equalization. How-
ever, future work could explore other structures for non-linear
channel modeling while keeping the ELBO analytical, that
might computationally scale better in the channel memory.
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