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Abstract—Modern functional and diffusion magnetic reso-
nance imaging (fMRI and dMRI) provide data from which
macro-scale networks of functional and structural whole brain
connectivity can be estimated. Although networks derived from
these two modalities describe different properties of the human
brain, they emerge from the same underlying brain organization,
and functional communication is presumably mediated by struc-
tural connections. In this paper, we assess the structure-function
relationship by evaluating how well functional connectivity can
be predicted from structural graphs. Using high-resolution whole
brain networks generated with varying density, we contrast
the performance of several non-parametric link predictors that
measure structural communication flow. While functional connec-
tivity is not well predicted directly by structural connections, we
show that superior predictions can be achieved by taking indirect
structural pathways into account. In particular, we find that the
length of the shortest structural path between brain regions is
a good predictor of functional connectivity in sparse networks
(density less than one percent), and that this improvement
comes from integrating indirect pathways comprising up to three
steps. Our results support the existence of important indirect
relationships between structure and function, extending beyond
the immediate direct structural connections that are typically
investigated.

I. INTRODUCTION

During the last decade there has been a tremendous increase
in the obtainable quality of neuroimaging data. Through the
efforts of major neuroimaging projects, such as the Human
Connectome Project (HCP) [20], to collect and publish large
datasets of high resolution data it is now possible to obtain
macro-scale whole brain networks of both structural and
functional connectivity.

Structural connectivity (SC) in the brain can be estimated in
vivo by applying tractography to diffusion magnetic resonance
imaging (dMRI) data. Whilst dMRI estimates the directional
diffusivity of water molecules in and around neuronal tissue,
tractography estimates SC by integrating these resultant voxel-
wise proxies of neuronal fibre directions into streamlines
which map inter-voxel connections, and subsequently inter-
regional connectivity. The result is compactly represented as
an adjacency matrix, or graph, with each entry containing the
number of streamlines found connecting any two specified
regions. These end-point regions are usually chosen to be
anatomically-relevant sub-divisions of the cortical gray matter.

Functional connectivity (FC) can also be represented as a
connectivity matrix derived from functional magnetic reso-
nance imaging (fMRI) that estimates brain activity using the

proxy of blood oxygenation-level dependent (BOLD) signal
produced by fMRI sequences. Brain regions that exhibit strong
correlation in their BOLD response over the time course of the
experiment are considered to be functionally connected, and
therefore contain larger values in their respective entries in the
FC adjacency matrix.

Even though structural networks derived from dMRI are
different from functional networks derived from fMRI, it is
a common assumption that the individual processing units
of the brain are reflected in both modalities. The first study
of this kind, by Koch et al., directly compared FC and SC
within a limited spatial domain, specifically neighbouring gyri
within a single image slice [13]. Although it only found weak
agreement between the two modalities, subsequent studies
have shown that SC reflects FC, at least to some extent [9],
[17]. However, whilst some studies have suggested that FC is
correlated with the strength of direct anatomical connections
between cortical regions [12], functional connections have
also been observed between regions without direct connec-
tions [13], [21], [16], [12]. This suggests that functional
correlations may be mediated by structural connections that
are not normally accounted for in SC assessment. Whilst there
exists the possibility that some structural connections are un-
represented, it is most likely that such functional connections
are mediated by multi-step (indirect) structural connections.
Indeed, short SC paths (≤ 5 steps) have been shown to explain
most of the functional network, demonstrated by the average
prediction quality saturating for SC paths of length five [2].

To investigate the extent that such indirect pathways within
the SC graph can explain FC, we herein assess the ability
of well-established link prediction measures to predict FC
graphs from SC graphs. In particular, we assess prediction
as a function of the number of steps over which the SC graph
is integrated.

Nearly all studies that aim to assess the correspondence
between SC and FC do so at a macro-scale, sub-dividing the
cortex into large regions, usually pre-defined according to an
atlas [10], [6], [2], [7], or by sub-divisions thereof [10], [11]. In
2008, Skudlarski et al. increased the region count to 5000 [16].
Until now, no studies have employed a finer regional division
of the cortex. Herein we use a high resolution cortical surface
mesh, containing approximately 59,000 vertices in total, with
an approximate inter-vertex distance of 2 mm. Furthermore,
a few studies comparing SC and FC are restricted to specific



sub-networks, such as the default mode network (DMN) of
resting state fMRI, and subsequently only investigate the SC
between the activated FC regions [9], [19]. However, these
analyses have also been extended to comparison of whole-
brain cortical connectivity of fMRI and dMRI [16], [10], [12],
[7], and this is also the approach used herein.

For generation of the SC graphs, there is currently no con-
sensus on how the connection ”strength” should be estimated.
Options here include average FA value along the connection
pathways [2], number of streamline counts between end-
points [11], [2], [7], and the physical connection length [11].
All can be viewed as heuristic proxies for connection strength,
and as such suffer from the lack of any validation with a gold-
standard. The alternative, employed herein, is to avoid any
attempt to generate such a proxy measure by thresholding the
graph, removing those connections deemed to be noise.

In summary, we herein test the hypothesis that there is an
underlying structure-function relationship that can be better
modelled by the incorporation of indirect, or multi-step, path-
ways through the structural graph. Specifically, we quantify
measures, from network science link prediction, of communi-
cation flow within the structural graph and use these to assess
how the number of traversals taken within the structural graph
affects its ability to predict the functional graph.

II. DATA AND METHODS

Structural and functional brain connectivity networks were
obtained for 25 subjects from the Human Connectome Project
(HCP) database (https://ida.loni.usc.edu/login.jsp) using the
approximately 59,000 vertices on the cortical surface. The high
quality DWI data, acquired by the HCP [20], permits advanced
tensor reconstruction models and subsequent tractography
methods. Structural brain connectivity graphs were derived
from diffusion magnetic resonance imaging (dMRI) data by
modeling the local diffusion using FSL’s BedpostX for multi-
shell data [4] and performing probabilistic tractography using
FSL’s Probtrackx2 [4], [3]. 1000 streamlines were initiated in
each WM voxel and a count added to the connectivity graph
if a streamline reached two vertices on the WM surface. The
functional graphs were estimated by averaging the Pearson
correlation matrices for the left-right and right-left encoding
of each of the two sessions of resting state fMRI. Both the
functional and structural graphs were binarized by threshold-
ing the raw streamline count graphs at densities of 0.5, 1, 2,
and 4 pct. and randomly removing an appropriate number of
ties to achieve the exact density.

To predict the fMRI graph from the dMRI graph of the
same subject, the list of well-established non-parametric link
prediction measures [14], [5], [15] presented in Table I were
computed for each dMRI graph and used to predict the fMRI
graph as evaluated by the area under curve (AUC) of the
receiver operator characteristic (ROC) curve, see also [5],
[15]. Preferential attachment describes communication as
being a product of how much the nodes connect in general
(i.e. their degree). Shortest path considers communication in
terms of step length, incorporating the idea that functional

Method (abbreviation) Score sij

Preferential Attachment (pre) didj

Shortest Path (sho) 1/ShortestPath(A, i, j)

Common Neighbor (com)
∑

t AitAjt

Jaccard (jac)
∑

t AitAjt/(J −
∑

t(1−Ait)(1−Ajt))

Adamic/Adar (ada)
∑

t AitAjt/ log(dt)

Resource Allocation (res)
∑

t AitAjt/dt

Hub Depressed (hbd)
∑

t AitAjt/max(di, dj)

Hub Promoted (hbp)
∑

t AitAjt/min(di, dj)

Salton (sal)
∑

t AitAjt/
√

didj

TABLE I: Examined link-prediction measures.
ShortestPath(A, i, j) gives the shortest path in graph A
between nodes i and j. We consider binary graphs, where
Aij = 1 when a link exist between i and j, such that
di =

∑
j Aij is the degree of node i.

communication is related to the integration of multiple steps
in the structural graph, such that regions connected by short
paths are more likely to be functionally connected. The
remaining methods are based on common neighbors using
different weighting schemes. Common neighbor quantifies
shared structural connections, thus assuming that regions that
share structural connections to other regions are more likely
to be functionally connected. The Jaccard score weights
the number of shared structural connections by the number
of possible connections, whereas Adamic/Adar and Resource
Allocation put emphasis on neighbors that only have a few
structural connections, weighting importance as a function of
the neighbors’ degree. Finally, Hub Depressed, Hub Promoted
and Salton use the degree of the two considered nodes to
weight the importance of common neighbors.

III. RESULTS

Fig. 1 shows the performance of all the considered non-
parametric link predictors for the four thresholds of graph
density. Preferential attachment is consistently found to be the
worst performing predictor. All measures based on common
neighbor produce similar results for all considered network
densities. This is to be expected as these measures are defined
by different normalizations of the same property. Shortest
path (SP) clearly outperforms the other predictors at the 0.5%
threshold. However, as the threshold increases, the SP exhibits
a more rapid decrease than the other methods and performs
poorer than the common neighbor derived measures at the 2%
and 4% thresholds. We attribute this to almost all regions of
the networks of 2% and 4% density being connected when
considering paths of length up to three, as shown in Fig. 3.

At the 0.5% threshold the number of connections in the
graph is relatively sparse. Here the SP outperforms the other
metrics. Unlike the other metrics, it is able to consider more
than two steps, which suggests that there is information
beyond common neighbors constituting paths of step-length
two. Using the ROC curve from the shortest path prediction
it is possible to calculate the SP AUC limiting the length of
considered paths. This is illustrated in the left panel in Fig. 2.
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Fig. 1: AUC scores predicting functional connectivity graphs from structural connecitivity graphs for each of the 25 considered
subjects and four link-densities of the graphs. The abbreviations for the link predictors are given in Table I.
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Fig. 2: In the left panel we illustrate the method of computing the truncated shortest path from the shortest path ROC curve.
In the right panel we show the truncated shortest path at different path lengths and threshold densities. The shortest path
prediction is dominated by links of length two and three, with highest predictive score at three. Note that the AUC score for
k = 1 is given by the prediction of the functional graph by the raw structural graph.
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Fig. 3: The ROC curves from the truncated shortest path for
the different graph densities.

Even though the SP is able to consider all steplengths (up
to full connectivity), Fig. 2 shows that for the 0.5% and 1%
thresholds the performance saturates after three steps, and after
2 steps at higher thresholds, see also Fig. 3. This shows that
functional connectivity is not the result of direct structural
communication between regions (i.e., k=1) but characterized
by the integration of a limited number of steps in the SC graph.

IV. DISCUSSION

We investigated different non-parametric link predictor per-
formance in predicting functional connectivity from struc-
tural connectivity using high-resolution networks based on
data from the HCP project. We found that preferential at-
tachment and direct structural connections (k=1) performed
significantly worse for all graph thresholds indicating that
functional connectivity is not well accounted for as a product
of communication between structural regions of high degree or
by direct communication (i.e, the structural adjancency matrix
itself). The best performance was achieved with intermediate
connections and by taking into consideration the number of
common neighbors and the length of the shortest structural
communication path. At low densities the integration of up to



three steps improved on the prediction of functional connec-
tions. However, we found that incorporating additional steps
did not further improve the characterization of FC.

Our results support previous findings that the strength of
functional connections decreases with the length of the shortest
path [8]. The work by [16] employed weighted graphs (number
of streamlines) which may lead to different contrasts within
the graphs. Nevertheless they show, in agreement with the
results reported herein, that correlation between SC and FC
increased for path lengths up to three before decreasing again.
In contrast Becker et al. [2] found that the average prediction
quality saturates for SC paths of length five. They also
used unthresholded weighted graphs (average FA value and
streamline counts) and compared correlation between SC and
FC. However, they also employed a lower resolution graph,
via the AAL parcellation [18], though excluding cerebellum
and vermis, resulting in 90 regions. Furthermore, their study
included the sub-cortical voxels for both SC and FC, whose
anatomical functions often include so-called relay stations
which could explain the larger number of steps. Thus, future
studies should investigate the effect of sub-cortical regions.

Adachi et al. [1] show that FC is influenced by the network-
level cortical architecture and not solely by short anatomical
connections (anatomical connections were estimated using
tracers). This indicates more complicated communication pat-
terns than serial connected nodes, as investigated in this study
using shortest path link prediction. Also, in [8], different prop-
erties of the nodes besides the shortest path are investigated.
These properties include node degree and path transitivity.
They find that node degree along a path (search information)
and path transitivity along a path (local detours) better predict
FC than using path length alone. This indicates that the global
network architecture (and not only the shortest path) influence
how well FC can be predicted by SC. Future work should
thus consider more advanced predictors that take multiple
properties of the SC graph into account.
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