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Abstract:
In this dissertation, we propose a new al-

gorithm for estimating the most perceptu-

ally relevant parameters of a constant am-

plitude sinusoidal audio model. We pro-

pose to incorporate a psychoacoustic model

in the Unitary ESPRIT algorithm which

is a subspace based parameter estimation

method providing accurate parameter es-

timates at a low computational cost. We

thoroughly study the Unitary ESPRIT al-

gorithm and the MPEG-1 Psychoacoustic

Model 1. Then, we discuss and propose

methods to include psychoacoustic infor-

mation in the Unitary ESPRIT algorithm.

Finally, we study the characteristics of the

proposed algorithm for a wide range of dif-

ferent deterministic and real speech and

audio signals. The proposed algorithm is

found to be a robust, accurate, and effi-

cient method for estimating perceptually

relevant parameters for constant amplitude

sinusoidal audio modeling.
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Chapter 1

Introduction and foundations

“The beginning of knowledge is the discovery of

something we do not understand.
”

Frank Herbert (1920 – 1986)

In this chapter: We start by giving a general introduction to the work described in this dissertation,

briefly summarizing some of the previous work on which this builds. This leads us to defining a set

of goals we seek to achieve in this project. Finally, we give an outline of the structure of remainder

of this dissertation and introduce some common notation used throughout.

1.1 Introduction

In sinusoidal modeling of audio signals, the signal of interest is divided into segments and each

segment is modelled as a finite sum of sinusoids with different frequencies, amplitudes, and phases.

Some models include other parameters such as a temporal envelope given by an exponential

damping factor [1] [2] [3].

Sinusoidal models have found many applications in digital audio signal processing. Sinusoidal

modeling has proven to be efficient at modeling speech signals [4] of which some signal regions

are known to be periodic and quasi stationary. More recently it has been shown that sinusoidal

models also can be used in low bit-rate audio coding [5]. Because sinusoidal models provide a very

flexible signal representation they are well suited for performing speech transformations such as

time-scale and pitch-scale modifications [4]. For this reason, sinusoidal models have been used in

many types of music synthesis [6]. Also, sinusoidal models have been applied in the enhancement

of speech degraded by additive noise [7].

For use in low bit-rate audio coding, sinusoidal modeling can be used as one of the cen-

tral components in a hybrid coding scheme. An example of a hybrid audio model is the

sines+transients+noise (STN) model [5], [8], which consists of three components. First, the tonal

part of the signal is modelled by a sinusoidal model. The residual, i.e. the part of the signal not

modelled by the sinusoidal model, is then passed to a transient coder, which explicitly models the
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transients in the signal. Finally, the residual from the transient coder is modelled as a filtered

noise process.

Because of the masking properties of the human auditory system, some frequency components

will be less perceptually relevant because they are masked by other components in the signal.

Thus, when sinusoidal models are used in audio coding, the main challenge is, based on a given

signal segment, to estimate a limited set of parameters which best describe the signal segment in

a perceptual sense.

A well known class of parameter estimation techniques are the so-called subspace based

methods. For a thorough unified approach to subspace based signal analysis methods, confer e.g.

[9]. These methods can provide robust and accurate parameter estimates, however the perceptual

relevance of the estimates are not taken into account.

Only recent research has shown that subspace based parameter estimation techniques can

be combined with a perceptual distortion measure and thus can be used to extract the most

perceptually relevant signal parameters [1]. Jensen et al. [1] have showed how to combine a

subspace method known as HTLS1 first described by Van Huffel [10] with a recently developed

psychoacoustic model [11], resulting in a model denoted the perceptual exponential sinusoidal

model (P-ESM). Subjective comparison tests showed that signals modelled with the proposed

algorithm“were of considerable higher perceptual quality” [1] than those modelled with the HTLS

algorithm.

However, regarding the algorithm proposed by Jensen et al., two possible drawbacks are

identified:

1. The signal model employed is based on exponentially damped sinusoids. Although the ex-

ponential sinusoidal model has been shown to outperform the constant amplitude sinusoidal

model with regard to modeling transient segments of speech and audio [2], [3], [12], it requires

as much as four parameters for each sinusoid: amplitude, frequency, phase, and damping

factor. Thus, for stationary segments, where the damping factor is of little use, the constant

amplitude sinusoidal model provides a more compact signal representation.

2. The HTLS algorithm used by Jensen et al. is computationally quite complex. Although the

algorithm provides very accurate parameter estimates, subspace based parameter estimation

methods which provide even better estimation accuracy at an equal or lower computational

cost do exist [13].

This project aims at overcoming these two drawbacks by means of incorporating a psychoacoustic

model in the so-called Unitary ESPRIT algorithm [13]. Unitary ESPRIT is a subspace based

algorithm for estimating parameters of constant amplitude sinusoids. Since the basis functions in

Unitary ESPRIT are constant amplitude sinusoids, exponential damping factors are not included

in the model. Also, the Unitary ESPRIT algorithm provides a better estimation accuracy at a

computational cost equal to that of the HTLS algorithm used in [1].

1The HTLS algorithm is based on a Hankel data matrix and employs total least squares techniques. Hence the

name, HTLS.
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1.2 Project goals

The goal of this work is to design an algorithm which incorporates a psychoacoustic model in the

Unitary ESPRIT algorithm for use in a sinusoidal audio coder. To do this, we wish to

• Perform extensive studies of the Unitary ESPRIT algorithm.

• Study a well known psychoacoustic model, namely the MPEG-1 Psychoacoustic Model 1.

• Design an novel algorithm which incorporates a psychoacoustic model in the Unitary ESPRIT

algorithm.

• Analyse the proposed new algorithm for a wide range of deterministic and natural signals.

1.3 Dissertation outline

The remainder of this dissertation is structured as follows:

Sinusoidal Modeling: We start by a brief discussion of different classes of audio coders to give

an overview of how the sinusoidal model relates to other methods. Then, we present the

sinusoidal signal model. We discuss a wide variety of parameter estimation techniques and

different segmentation and reconstruction methods.

Unitary ESPRIT: We extensively describe the Unitary ESPRIT algorithm — a subspace based

algorithm for estimating the frequencies in a sinusoidal model. We start by describing the

ESPRIT algorithm which is the basis for the Unitary ESPRIT algorithm. Then we move

on to describe the details of the Unitary ESPRIT algorithm which provides an increased

estimation accuracy while having equal or lower computational complexity compared to the

ESPRIT algorithm.

Psychoacoustic Model: We start by reviewing the psychoacoustic phenomena on which per-

ceptual masking models are based. Then we thoroughly study a well known psychoacoustic

model, namely the MPEG-1 Psychoacoustic Model 1.

Perceptual Unitary ESPRIT: We present a novel approach to estimating the most perceptu-

ally relevant parameters in a sinusoidal audio model: We propose a method which incorpo-

rates the perceptual model from the MPEG-1 standard in the Unitary ESPRIT algorithm.

We start by discussing how the perceptual distortion of a signal can be measured, based on

information from a psychoacoustic model. Then, we introduce methods for incorporating

perceptual knowledge in the estimation of signal frequencies by means of Unitary ESPRIT

as well as in the estimation of amplitudes and phases.

Tests: We perform a series of experiments with the proposed Perceptual Unitary ESPRIT

algorithm for a wide range of deterministic and real speech and audio signals. To examine the

effects of the psychoacoustic model, we compare the Perceptual Unitary ESPRIT algorithm

with the Unitary ESPRIT algorithm. Then, we relate the proposed algorithm to the P-ESM

algorithm introduced by Jensen et al. [1].

Conclusions and Discussion: We summarize the results obtained in this work and discuss

strengths and weaknesses of the proposed algorithm.
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1.4 Notation

Throughout this dissertation we will use the following notation:

ai,j = {A}i,j The i,jth element of the matrix A,

ai,: The ith row of A,

a:,j The jth column of A,

AH Hermitian (complex conjugate) transpose of A,

A∗ Complex conjugate of A,

A† The pseudoinverse of A,

tr(A) Trace of A, i.e. the sum of the diagonal elements of A,

diag(a1, . . . , am) An m×m matrix with a1, . . . , am on the main diagonal and zeros elsewhere,

R(A) The range (column space) of A,

N (A) The null space of A,

λi(A) The ith eigenvalue of A,

rank(A) Rank of A, i.e. the number of independent columns (or rows) of A,

Re(A) Real part of A,

Im(A) Imaginary part of A,

x(k) ∗ y(k) The convolution of x(k) and y(k),

|| · ||2 The `2 norm,

|| · ||F The Frobenius norm,

k Time index,

l Frequency bin index.



Chapter 2

Sinusoidal modeling

“Get your facts first, and then you can distort

them as much as you please.
”

Mark Twain (1835 – 1910)

In this chapter: We start by a brief discussion of different classes of audio coders to give an

overview of how the sinusoidal model relates to other methods. Then, we present the sinusoidal

signal model. We discuss a wide variety of parameter estimation techniques and different

segmentation and reconstruction methods.

2.1 Audio coding taxonomy

To give an understanding of how the sinusoidal audio model fits in the field of audio coding, we

here give a brief overview of the taxonomy of audio coders.

When transmitting digital audio over communication channels or storing audio on a digital

storage medium, it is often necessary or most cost efficient to compress the signal in order to

optimally utilize the capacity of the communication channel or the storage medium. For this

purpose, a number of audio compression schemes have been devised [14], [15].

Audio compression algorithms can generally be divided in two groups: lossless and lossy

algorithms.

Lossless audio coders exploit redundancies in the signal to give a bit-exact but more compact

description of the signal. However, the compression obtainable by lossless coding is limited.

Because of the stochastic nature of audio signals, they do no lend themselves well to lossless

compression.

Lossy audio coders achieve better compression by allowing some noise or pertubations of the

signal. As long as the noise and signal pertubations are kept below the audible limit, they

will not be detectable by the human auditory system, and thus the audio compression can

be virtually unnoticable.
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Lossy audio coders can be divided in two primary classes: waveform coders and parametric coders.

Waveform coders attempts to accurately describe the waveform of the signal. An example is

the time/frequency transform coder, in which a signal is divided into a number of frequency

bands which are quantized individually such that the quantization noise can be shaped in

a perceptually optimal manner. Waveform coders have shown good results for medium to

high bit-rate audio coding.

Parametric coders assume an underlying model of the signal which can be exploited. A typical

example is voice coders (vocoders) which are based on a parametric model of the human

speech production system. Parametric coders have shown good results for medium to low

bit-rate audio coding.

Audio coding using the sinusoidal model is an example of a lossy parametric method.

2.2 The sinusoidal signal model

In the sinusoidal signal model, a signal is represented by a series of consecutive possibly overlapping

segments, each modeled by a finite sum of sinusoids of different frequencies, amplitudes, and phases.

2.2.1 Assumptions

There are two primary underlying assumptions in the sinusoidal model:

1. Each signal segment can be adequatly represented by a finite sum of sinusoids.

2. The parameters of the signal change slowly, such that the model parameters for one signal

segment can be considered constant.

The first assumption is valid for such signals as voiced regions of speech and musical instrument

sounds such as trumpets and violins. The frequency spectrum of these types of signals consist of

distinct harmonically related frequency components. The second assumption can be considered

valid, when the signal segments are chosen such that the segment rate is high compared to the

dynamics of the analyzed signal.

2.2.2 Signal segment model

The sinusoidal model for each signal segment consists of a deterministic part, a sum of sinusoids,

plus a stochastic part, a noise term, which is included to account for any part of a real life

signal which is not adequatly modeled by the sum of sinusoids. Often, the noise term is assumed

stationary with zero mean.

Consider a signal, x(k), consisting of D sinusoids with constant amplitudes and phases in

additive zero-mean stationary real Gaussian noise, n(k), with known covariance. If the amplitude,
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normalized frequency, and phase of the ith sinusoid are given by Si, Ωi, and φi respectively, the

signal can be written as

x(k) =

D
∑

i=1

Si cos(Ωik + φi) + n(k). (2.1)

Equivalently, using the Euler relation

S cos(Ωk + φ) =
S

2

(

ejΩk+jφ + e−jΩk−jφ
)

. (2.2)

we may express the signal as a sum of d = 2D complex sinusoids (cisoids). Let si denote the

complex amplitude of the ith cisoid and ωi its normalized frequency. Then, the signal can be

written as

x(k) =

d
∑

i=1

siz
k
i + n(k), (2.3)

where the signal poles zi = ejωi lie on the unit circle. Since x(k) is a real signal, the signal poles,

zi, occur in complex conjugate pairs or on the real axis. If the signal poles do not lie on the unit

circle, this signal model corresponds to a sum of exponentially damped cisoids.

For use in the derivation of the Unitary ESPRIT algorithm, we need to express the signal

model in matrix–vector notation. Equivalent to the signal model above, we may write

x(k) = As(k) + n(k), (2.4)

where x(k), n(k) ∈ R
m are given by

x(k) = [x(k), . . . , x(k + m− 1)]T ,

n(k) = [n(k), . . . , n(k + m− 1)]T ,

and the complex amplitudes of the d cisoids are given by s(k) ∈ Cd

s(k) = [s1e
jkω1 , . . . , sde

jkωd ]T = Φks0,

where

Φ = diag(ejω1 , . . . , ejωd),

s0 = [s1, . . . , sd]
T .

A is a matrix where each column, a:,i, corresponds to each of the d complex sinusoids

A =

















1 1 · · · 1

ejω1 ejω2 · · · ejωd

ej2ω1 ej2ω2 · · · ej2ωd

...
...

...

ej(m−1)ω1 ej(m−1)ω2 · · · ej(m−1)ωd

















∈ C
m×d. (2.5)

Definition 2.1. If the matrix V ∈ C
p×q can be written in the following form it is said to be

Vandermonde [16, p. 183]

V =













1 1 · · · 1

v0 v1 · · · vq−1

...
...

...

vp−1
0 vp−1

1 · · · vp−1
q−1













.

2
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We note that A is Vandermonde and the columns of A are cisoids with unit amplitude and

zero phase. The columns of A can be seen as the basic components of which the signal vector,

x(k), is a linear combination. In the sequel we will assume that the d frequencies are distinct

ωi 6= ωj for all i 6= j,

and within the Nyquist bound

−π < ωi < π,

and that m > d so that A is a tall matrix. Since all the frequencies are different, all the columns

of A are independent and thus A is full rank (cf. e.g. [17, p. 409]) i.e. rank(A) = d.

2.2.3 Signal matrix

For use in subspace based signal analysis, we need to express the signal model in terms of a signal

matrix. When analyzing a signal block of length N = m+M−1 we may construct a signal matrix

of size m×M

X(k) = [x(k), . . . , x(k + M − 1)] ∈ R
m×M .

This signal matrix is Hankel structured, i.e. it has constant anti-diagonals

X(k) =













x(k) x(k + 1) · · · x(k + M − 1)

x(k + 1) x(k + 2) · · · x(k + M)
...

...
...

x(k + m− 1) x(k + m) · · · x(k + N − 1)













. (2.6)

Expressing the signal model from (2.4) in terms of the signal matrix yields

X(k) = AS(k) + N(k), (2.7)

where the complex amplitude matrix and the noise matrix are given by

S(k) = [s(k), . . . , s(k + M − 1)] ∈ C
d×M ,

and

N(k) = [n(k), . . . , n(k + M − 1)] ∈ R
m×M ,

respectively. These matrices are also Hankel structured.

2.3 Segmentation

For a signal with slowly varying parameters, the assumption of stationarity only holds for short

time segments. Therefore, before the signal is analyzed, it is segmented into frames

xi(k) = uN (k − ip)x(k), (2.8)

where i denotes the frame index, p is the frame stride i.e. the number of samples between

consecutive frames, and uN (k) is the rectangular window function defined as

uN (k) =

{

1 k = 0, 1, . . . , N − 1

0 otherwise.
(2.9)
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The length of the signal segments must be chosen such that the parameters of the signal can

be considered constant in the segment. In order to better model signals with varying parameter–

dynamics, a dynamic time segmentation scheme can be utilized to adapt the length of the analysis

window to the signal. This can provide a more compact signal representation; however, this comes

at the expense of an increased computational cost, since a large number of different length windows

must be analyzed [18].

2.4 Parameter estimation

Estimation of parameters for the sinusoidal model can be done using a variety of different methods.

In the following, we provide an abridged overview of the most important methods.

The parameter estimation in the sinusoidal model can be based on either parametric or non-

parametric methods. In non-parametric parameter estimation methods, the signal is analyzed

without regard to the underlying signal model using e.g. the discrete Fourier transform. In

parametric parameter estimation methods, such as the class of subspace based methods, the

assumption that the signal is generated by an underlying model is exploited.

2.4.1 Fourier transform based methods

The mathematical tool used by most non-parametric parameter estimators is the discrete Fourier

transform (DFT) which transforms a windowed signal segment into the frequency domain using

[19]

X(ω) =
N−1
∑

k=0

w(k)x(k)e−jωk . (2.10)

Because the signal segment has a limited length, the frequency spectrum will have a limited

resolution corresponding to the reciprocal of the segment length. Often, the signal segment is

zero-padded prior to taking the DFT which increases the frequency resolution but does not add

new information. It corresponds to interpolating the frequency spectrum. Frequencies which are

harmonically related to the sampling frequency will correspond to a discrete delta function in the

frequency spectrum, whereas the spectrum for other frequencies will have the shape of the sinc

function. When the signal is multiplied by some window function, it correponds to convolving

the spectrum with the DFT of the window function. Thus, when truncated and windowed, the

sinusoids in the signal adopt the spectral shape of the window, offset by their frequency. The

spectral shape of the window function consist of a mainlobe and sidelobes that spread out over

the spectrum. The width of the mainlobe and the maximum level of the neighboring sidelobes are

determined by the shape of the window. These factors influence on each other so that a narrow

mainlobe, corresponding to high frequency resolution, results in relativly large sidelobes, i.e. more

spectral energy is leaked into other frequency bands. This combined with the relationship between

frequency and time resolution, makes the DFT a simple and efficient tool, which albeit requires a

compromize between time and frequency resolution.
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Figure 2.1: The analysis-by-synthesis approach to sinusoidal modeling. The signal x(n) is analysed

and the parameters of the dominant sinusoid is found {Si, Ωi, φi}. These parameters are then used to

synthesize a signal approximation x̃(n) which is subtracted from the original signal to give a residual r(n).

The analysis is then performed on the residual iteratively each time estimating one new sinusoid.

Peak picking is a method where the sinusoids in the signal are estimated by finding peaks in

the spectrum. This can be done using a varity of heuristic methods, such as checking for

negative zero-crossings in the derivative of the spectrum [4], or fitting sinusoid-shaped curves

to the peaks [6]. Some of the drawbacks of these methods is that they depend on a high

frequency resolution to properly discriminate between sinusoids at closely spaced frequencies.

Sidelobes can also present a problem as they can be wrongly identified as sinusoids. When a

suitable number of sinusoids has been identified, their amplitudes and phases can be found

directly from the DFT.

Matching pursuit is a method which uses a analysis-by-synthesis scheme to identify the pa-

rameters of the signal [18] (see figure 2.1). This is done by iteratively analysing the signal

x(n), identifying the most powerful sinusoid and estimating its parameters, {Si, Ωi, φi}. The

parameters are then used to synthesize a estimated version of the signal x̃(n). The recon-

structed signal is then subtracted from the original signal, creating a residual signal r(n),

which then is analysed to find the next most powerful sinusoid.

The model order (the number of sinusoids identified) can either be fixed or dynamic. When

using dynamic model order, the residual, i.e. the modeling error, can be reduced to a

arbitrary desired level in each signal segment.

2.4.2 Subspace based methods

The class of subspaces based parameter estimation methods can be divided into three differ-

ent groups: subspace fitting methods, single-shift invariant methods, and orthogonal vector

methods[9]. These methods all rely on the notion of signal and noise subspaces (see appendix C).

Unified descriptions of subspace based signal analysis are given in e.g. [20] and [9].

Subspace fitting methods seek to find the signal model which matches the signal in the best

possible way [9]. Thus, they seeks to minimize the following expression over all matrices S

and all Vandermonde matrices A, both of rank d [20]

Â, Ŝ = arg min
A, S

||X −AS||2F (2.11)
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This is a nonlinear optimization problem and requires in general a multidimensional gradient

search. However computationally expensive, the subspace fitting techniques can achieve

excellent parameter estimates.

Examples of algorithms belonging to the class of subspace fitting methods include the

“deterministic maximum likelihood method” [9], “method of direction estimation” (MODE)

[9], [21], [22], and multiple invariance ESPRIT [23], [24].

Single shift-invariant methods are based on constructing two signal matrices which are shifted

in time by one sample. The shift-invariance relation between these two matrices is then

used to estimate the parameters of the signal, “hence ignoring any further (shift-invariant)

structure that A or S might possess” [9].

Examples of algorithms belonging to the class of single shift-invariant methods include

ESPRIT [25], [26], [27], [28],[29], HTLS [10], and the“toeplitz approximation method”(TAM)

[30], [31]. The Unitary ESPRIT algorithm also belongs to this group of parameter estimation

methods, and we will treat this in detail in the following chapters.

Orhtogonal vector methods are closely related to single shift-invariant methods, but are de-

scribed in terms of finding vectors which are orthogonal to a vector from the noise sub-

space [9]. This is possible, because the noise subspace is orthogonal to the signal subspace

(see e.g. Appendix C).

Examples of algorithms belonging to the class of orthogonal vector methods is Kumaresan-

Tufts minumum norm method [32], Pisarenkos harmonic decomposition [9] and “multiple

signal classification” (MUSIC) [33], [17].

Estimation of amplitudes and phases

The above mentioned subspace based methods all estimate the frequencies contained in the signal

segment. When this has been done, the amplitude and phase of each sinusoid can be estimated

using a least squares technique. A Vandermonde matrix A can be constructed according to (2.5).

Then, the complex amplitudes found by the solution to the following minimization problem will

yield the best estimates in the least squares sense.

ŝ = argmin
s
||W (x−As) ||22, (2.12)

where W = diag
(

w(k)
)

is a diagonal matrix of the window w(k) defining the analyzed signal

segment. This minimization problem has the following closed form solution [17]

ŝ = (WA)†Wx (2.13)

where (WA)† is the pseudoinverse of (WA).

2.5 Signal reconstruction

There exists a number of ways to reconstruct a signal which has been modeled by a sinusoidal

model, all of which consists of either some form of interpolation of the parameters between the

individual signal segments or a composition of reconstructed signal segments.
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Figure 2.2: In this figure, five frames from the sinusoidal coder are depicted. From frame l− 2 the three

frequencies, marked by “x”, are interpolated to match the three frequencies in frame l − 1 this is shown

with a solid line as in (a). Before frame l, one of the frequency tracks does not match with a continuing

frequency and therefore it ”dies” (b). In the same frame, a frequency is also ”born” because there were no

previous match (c).

Line tracking is a method which can be seen as having a bank of oscillators which are controlled

by the signal parameters. To avoid discontinuities at the segment borders, the parameters

are interpolated between frames for each oscillator. This involves the tracking of parameters

between frames as shown on figure 2.2 — hence the name — line tracking [4]. The amplitudes

are interpolated linearly from frame to frame and when a line is ”born”or ”dies”the amplitude

is ramped up from or down to zero. The frequencies and phases between two frames have

more degrees of freedom and therefore these parameters are interpolated by a cubic function.

A heuristic method is used to determine which frequency lines to connect between frames [4].

One of the advantages of line tracking is that the parameters can be updated at a low rate,

assuming that the signal satisfies the signal model well. However, the matching of the

individual frequency lines can be difficult and erroneous tracking will often result in audible

artifacts [4].

Overlap and add (OLA) is a method which recreates the signal on a block by block basis. The

signal is segmented such that consecutive segments have a certain overlap. Then, a whole

signal segment is recreated with fixed parameters and the segment is multiplied with a

synthesis window. The windowed segments are then added together to one continuous signal

[18]. It is a requirement that the multiplication by the synthesis windows does not affect the

signal, and thus the overlapping windows must add up to unity

∑

i

w(k − ip) = 1, (2.14)

where p denotes the frame stride. The synthesis window, w(n), is often chosen to be

triangular or Hann window, which for a segment overlap of 50% agree with (2.14) (see

figure 2.3). One of the advantages of OLA is its simplicity; however, the parameters must

be updated more often than when using e.g. line tracking.
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Figure 2.3: The overlap and add method: Each reconstructed frame is multiplied by e.g. a triangular

window of width N and added to the previous part of the signal. For each stride, p, a new frame is

reconstructed.

2.6 Summary

In this chapter we have set up the framework for the sinusoidal modeling of audio signals. We have

described how an audio signal is segmented, how the signal parameters can be estimated, and how

the signal can be reconstructed from those parameters. A signal vector and signal matrix model

was introduced which will be used as a foundation for the Unitary ESPRIT parameter estimation

methods presented in the sequel.
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Chapter 3

Unitary ESPRIT

“A common mistake that people make when trying

to design something completely foolproof is to

underestimate the ingenuity of complete fools.
”

Douglas Adams (1952 – 2001)

In this chapter: We extensively describe the Unitary ESPRIT algorithm — a subspace based

algorithm for estimating the frequencies in a sinusoidal model. We start by describing the ESPRIT

algorithm which is the basis for the Unitary ESPRIT algorithm. Then we move on to describe the

details of the Unitary ESPRIT algorithm which provides an increased estimation accuracy while

having equal or lower computational complexity compared to the ESPRIT algorithm.

3.1 ESPRIT

Estimation of signal parameters via rotational invariance techniques (ESPRIT) is a subspace

based method for estimating parameters in a sinusoidal model. ESPRIT was developed by Roy

and Paulray for estimating the direction of arrival (DOA) of a narrow band planar wavefront

impinging on an array of sensors (cf. [25], [28], [26], [29]). However, that problem is similar to

that of estimating parameters of complex sinusoids (cisoids) in noise [27].

In the following, the ESPRIT algorithm is described. The approach to the algorithm taken

here to some extent follows that of Roy et al. [25]. Another common approach, known as the

covariance method, is briefly outlined in appendix A. Although this dissertation is solely concerned

with time series analysis, we will retain some of the DOA terminology since it is common for most

of the litterature on ESPRIT and since the parallels between array signal processing and time

series analysis can provide valueable insight.
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Figure 3.1: Examples of possible choices of subarrays in ESPRIT for a uniformly sampled time series.

The dots indicate the individual time samples and the lines show which samples are assigned to each

subarray. The combined number of samples is denoted m and the number of samples in each subarray is

denoted n. (a) Maximum overlap (b) Interleaved (c) Mixed.

3.1.1 Signal model

The signal model used in the ESPRIT algorithm consists of a sum of cisoids plus noise, as described

in section 2.2. The signal model for signal vector of length m is given by (2.4) repeated here

x(k) = As(k) + n(k). (2.4)

Written in terms of a signal matrix, the signal model is given by (2.7) repeated here

X(k) = AS(k) + N(k). (2.7)

3.1.2 Subarrays

In ESPRIT, the parameters of the signal model are estimated based on measurements of a signal.

The measurements are divided into two identical and possibly overlapping so-called subarrays1

displaced by a fixed number of samples. Examples of how these subarrays can be chosen is shown

in figure 3.1. Such two identical displaced subarrays are said to be translationally invariant when

the signal is stationary. This induces a rotational invariance2 of the underlying subspaces of the

signals sampled at the two subarrays. Roy states: “The basic idea behind ESPRIT is to exploit the

rotational invariance of the underlying signal subspaces induced by the translational invariance of

the sensor array.” [26] In the following, we show how this is used to estimate the signal parameters.

1This terminology originates from DOA estimation. In the context of DOA, a sensor array is employed which

comprises a number of physical sensors such as microphones or radio antennas. In the context of time series

analysis, the sensor array corresponds to the individual time samples. When the time series is uniformly sampled,

it corresponds to a uniform linear array (ULA).
2When stating that two vector spaces are rotationally invariant we indicate that the basis vectors spanning the

subspaces are rotated with respect to each other in the complex plane.
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Let the number of samples assigned to each subarray be denoted n and the combined number

of samples in the two subarrays be denoted m. Now we introduce a selection matrix

J =

[

J1

J2

]

∈ R
2n×m,

where J1 and J2 are matrices which assign the desired array elements to each subarray. We denote

the signal vectors at the two subarrays x1(k), x2(k) ∈ Rn. Considering the vector, Jx(k) ∈ R2n,

which stacks these two vectors, we may write

Jx(k) =

[

J1

J2

]

x(k) =

[

x1(k)

x2(k)

]

. (3.1)

As an example of such a selection matrix, consider the maximum overlap subarrays shown in

figure 3.1.a. For this selection of subarrays we have

J1 = [In|0n] , J2 = [0n|In] ,

where In is the n × n identity matrix and 0n = [0, . . . , 0]T ∈ Rn is a vector of zeros.

Choosing the subarrays to have maximum overlap will enable us to exploit all of the single

shift translational invariance and this choice of subarrays will consequently provide the greatest

estimation accuracy. However, choosing other subarrays will result in signal matrices for each

subarray of less dimensions. Therefore, the choice of subarray configurations is a tradeoff between

computational complexity and estimation accuracy.

Dividing the samples in the signal matrix into the two subarrays similar to (3.1) we may write

JX(k) =

[

J1

J2

]

X(k) =

[

X1(k)

X2(k)

]

, (3.2)

or written in terms of the signal model

JX(k) =

[

J1A

J2A

]

S(k) +

[

N1(k)

N2(k)

]

. (3.3)

3.1.3 Subspace invariance

Recall that the two subarrays are identical and displaced by a fixed number of samples. For

simplicity of notation, in the sequel we assume the subarrays are displaced by one sample which

can easily be extended to the general case. We may thus write

J1AΦ = J2A, (3.4)

where Φ = diag(ejω1 , . . . , ejωd) is a diagonal matrix of the signal poles. We now make the following

definition

Ã = J1A. (3.5)

If we insert (3.4) and (3.5) in (3.3) we get

JX(k) =

[

Ã

ÃΦ

]

S(k) +

[

N1(k)

N2(k)

]

. (3.6)
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By making the following definitions

Ā =

[

Ã

ÃΦ

]

∈ C
2n×d, (3.7)

(3.8)

N̄(k) =

[

N1(k)

N2(k)

]

∈ R
2n×M , (3.9)

we may write (3.6) compactly as

JX(k) = ĀS(k) + N̄(k). (3.10)

This is the signal model for the two stacked subarray signal matrices. This model consists of two

parts: the signal, ĀS(k), and the noise, N̄(k). The vector space spanned by the signal matrix,

JX(k), is also said to consist of two parts: the signal subspace and the noise subspace. (For

an introduction to the notion of signal and noise subspaces, see appendix C). Since the signal

consists of linear combinations of the columns of Ā, the signal subspace is spanned by the columns

of Ā, i.e. the signal subspace is given by the range of Ā: R(Ā). Because Ā has rank d, the

signal subspace is d-dimensional. The noise subspace is the orthogonal complement of the signal

subspace, i.e. it corresponds to the null space of ĀH : N (ĀH )

Now, we introduce a matrix Ē ∈ C2n×d which spans the signal subspace of JX(k), i.e.

R{E} = R{Ā}. Since Ē and Ā have the same column space, there exists a unique non-singular

matrix, T ∈ Cd×d, such that [17]

Ē = ĀT . (3.11)

Because of the structure consisting of the two subarrays, Ē can be decomposed into two matrices,

E1 and E2, which span the signal subspaces of the two subarrays. Using (3.7) in (3.11) we may

write

Ē =

[

E1

E2

]

=

[

ÃT

ÃΦT

]

. (3.12)

From this we see that R{E1} = R{E2} = R{Ã}. Based on the same argument as above, there

exists a unique non-singular matrix Ψ ∈ C
d×d such that

E1Ψ = E2. (3.13)

Inserting (3.12) in (3.13) yields

ÃTΨ = ÃΦT ⇒ Φ = TΨT−1. (3.14)

Since Φ is defined to be diagonal, this is recognized as the eigenvalue decomposition (EVD) of Ψ .

The signal poles are the diagonal elements of Φ and they can therefore be computed by this EVD

zi = λi (Ψ ) , (3.15)

where λi (Ψ ) denotes the ith eigenvalue of Ψ . Note however, that since in general Ψ can be an

arbitrary matrix, there is no constraints imposed on its eigenvalues. Consequently, the eigenvalues

may lie anywhere in the complex plane. However, if the signal is consistent with the signal model,

the signal poles will lie on or very close to the unit circle. For analyses on the estimation accuracy

of the ESPRIT algorithm, see e.g. [34].
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3.1.4 Subspace estimation

In practical situations, matrices spanning the signal subspaces of the two subarrays are not

available and must be estimated from the signal matrix. The singular value decomposition (SVD)

provides a robust and numerically stable means for estimating the signal subspaces [9]. For an

introduction of the SVD and its properties, see appendix B.

If the SVD of JX(k) is given by

JX(k) = UJXΣJXV H
JX , (3.16)

the first d columns of UJX constitute an estimate of the signal subspace. We may write

ˆ̄EJX =

[

ÊJX1

ÊJX2

]

= [uJX :,1, . . . , uJX :,d], (3.17)

where uX :,i is the ith column of UX . This requires taking the SVD of the 2n×M stacked signal

matrix.

Another approach is based on taking the SVD of the signal matrix X(k) before partitioning it

into the two subarrays. If the SVD of X(k) is given by

X(k) = UXΣXV H
X , (3.18)

and we define the first d columns of the left singular vectors as

ÊX = [uX :,1, . . . , uX :,d], (3.19)

then the signal subspace is spanned by

ˆ̄EX =

[

ÊX1

ÊX2

]

= JÊX . (3.20)

The computation of ˆ̄EX requires taking the SVD of an m×M matrix, which involves significantly

fewer computations than the aforementioned method. This is prudent if the subarrays have a

large overlap, such that m << 2n. Since this is often the case, this latter formulation is usually

preferred.

3.1.5 Least squares and total least squares

When the analyzed signal fits the signal model perfectly, the signal subspaces of the two subarrays

are equal. For real life signals, however, noise, non-stationarity, or insufficient model order can

cause model mismatch and thus the subarray subspace estimates do not exactly span the same

subspace. In other words, for real life signals most likely R(Ê1) 6= R(Ê1). Thus, (3.13) is not

directly solvable and must be solved approximately

Ê1Ψ ≈ Ê2. (3.21)

A least squares estimate can be obtained by the following expression

Ψ̂LS1
= Ê

†
1Ê2. (3.22)
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where Ê
†
1 = (ÊH

1 Ê1)
−1ÊH

1 is the pseudoinverse of Ê1. This solution corresponds to projecting the

space spanned by Ê2 onto the column space of Ê1. This can be considered as introducing the least

possible pertubation of the space spanned by Ê2 that renders the equation solvable. Similarly, a

least squares solution can be found by projecting the space spanned by Ê1 onto the column space

of Ê2,

Ψ̂−1
LS2

= Ê
†
2Ê1. (3.23)

However, since the inaccuracy can reasonably be attributed to both subspace estimates, a total

least squares (TLS) estimate of Ψ will be more appropriate [25] — although, if the signal block

is large, the difference is only marginal [9]. The TLS solution corresponds to projecting both Ê1

and Ê2 onto a subspace that “lies between” Ê1 and Ê2. Finding the TLS solution to an equation

of the form of (3.21) is known as the multi dimensional TLS problem. It can be formulated as

follows [23]: Given Ê1, Ê2, find Ψ̂TLS as well as ∆Ê1 and ∆Ê2 of minimum Frobenius norm3 such

that
(

Ê1 + ∆Ê1

)

Ψ̂TLS = Ê2 + ∆Ê2. (3.24)

We start by bringing (3.24) onto the following form [35]

[Ê1 + ∆Ê1 Ê2 + ∆Ê2]

[

Ψ̂TLS

−I

]

= 0. (3.25)

We proceed by selecting ∆Ê1 and ∆Ê2 of minimum Frobenius norm that reduce the rank of

[Ê1 + ∆Ê1 Ê2 + ∆Ê2] to d such that a solution exists [35]. In other words, we must determine

the best rank d approximant of [Ê1 Ê2] in the Frobenius norm. This is found by making the d

smallest singular values of [Ê1 Ê2] zero [35]. Let the SVD of [Ê1 Ê2] be given by

[Ê1 Ê2] = UEΣEV H
E .

The SVD can be partitioned as [16]

UE =
[

UE1 UE2 UE3

]

n

d d n− 2d
(3.26)

ΣE =







ΣE1 0






d

0 ΣE2 d

0 0 n− 2d

d d

(3.27)

VE =

[

VE11 VE12

]

d

VE21 VE22 d

d d

. (3.28)

The best rank d approximant of [Ê1 Ê2] is given by [35]

[Ê1 + ∆Ê1 Ê2 + ∆Ê2] = UE1ΣE1

[

VE11

VE21

]H

. (3.29)

3The Frobenius norm of a matrix is defined as the square root of the sum of the absolute square value

of all matrix elements or alternatively as the trace of the matrix multiplied by its hermitian transposed:

||A||2
F

=
P

m,n |am,n|2 = tr(AA
H) [17]
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Inserting (3.29) in (3.25) we have

UE1ΣE1

[

VE11

VE21

]H[
Ψ̂TLS

−I

]

= 0. (3.30)

Since UE1ΣE1 is rank d, the solution to this equation is the null space of
[

VE11

VE21

]H
which is equal

to the orthogonal complement of the range of
[

VE11

VE21

]

[36]. This vector space is spanned by the

right singular vectors corresponding to the d smallest singular values [35]. Consequently we have

[

Ψ̂TLS

−I

]

∈ N
(

[

VE11

VE21

]H
)

= R
([

VE11

VE21

])⊥

= R
([

VE12

VE22

])

. (3.31)

From this we may find a solution for Ψ̂TLS

[

Ψ̂TLS

−I

]

=

[

VE12

VE22

]

, (3.32)

which yields

Ψ̂TLS = −VE12VE
−1
22 . (3.33)

For further discussion of the multidimensional TLS problem such as the existence and uniqueness

of the solution, see e.g. [35, sec. 3.2] and [16, sec. 12.3].

3.1.6 Summary of the ESPRIT algorithm

The TLS based ESPRIT algorithm can be summarized in the following steps, where the dominating

computations for each step is included in the rightmost column

1. Obtain an estimate of the signal subspaces for the two

subarrays, ˆ̄E =
[

Ê1

Ê2

]

.

Real (m×M) SVD

2. Solve the overdetermined system of equations Ê1Ψ̂ ≈ Ê2

by means of total least squares.

Real (m× 2d) SVD

3. Compute the signal poles by the eigenvalue decomposition

ẑi = λi(Ψ̂ )

Real (d× d) EVD

3.2 Unitary ESPRIT

The idea behind Unitary ESPRIT is to perform a forward-backward averaging of the signal

matrix so that the signal poles are constrained to the unit circle. Also, the forward-backward

averaging results in an improved estimation accuracy [13]. In addition to this, for complex signals,

the algorithm has a lower computational complexity than standard ESPRIT because the special

structure of the signal matrix employed can be exploited [13]. For real signals, the computational

complexity of ESPRIT and Unitary ESPRIT is the same, as we will show in the following.
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3.2.1 Forward-backward signal matrix

First, let us introduce the matrix Πp which is a p× p matrix with ones on the main antidiagonal

and zeros elsewhere

Πp =









1
...

1









∈ R
p×p. (3.34)

When a matrix of appropriate size is right multiplied by Πp it corresponds to reversing the order

of its columns. Left multiplication by Πp corresponds to reversing the order of the rows.

Consider a signal matrix consisting of the Hankel structured signal matrix used in the ESPRIT

algorithm augmented by the same signal matrix conjugated and with the order of the rows reversed.

Z(k) = [X(k) ΠmX∗(k)] . (3.35)

We denote this the forward-backward (FB) signal matrix. An intuitive justification for using

this signal matrix in the ESPRIT algorithm is that the translational invariance between the two

subarrays will be forced to apply equally both from the first subarray to the second and vice versa.

Consequently, as we will show later, the estimates of the signal poles will be constrained to the

unit circle4 [13].

3.2.2 Constraints on selection matrices

In the Unitary ESPRIT algorithm, an added constraint on how to choose the selection matrices for

the two subarrays is imposed. The two selection matrices must be centro symmetric with respect

to each other [13].

Definition 3.1. The matrices F , G ∈ Cp×q are said to be centro symmetric with respect to each

other if the following is true for each of their components

fi,j = gp+1−i,q+1−j (1 ≤ i ≤ p, 1 ≤ j ≤ q).

Equally we may write

ΠpFΠq = G.

2

Thus, for the two selection matrices, J1 and J2 we may write

ΠnJ1Πm = J2, (3.36)

or equivalently

ΠnJ1 = J2Πm, ΠnJ2 = J1Πm. (3.37)

4Haardt et al. [13] has shown that the Unitary ESPRIT algorithm produces consistent estimates of the signal

poles so that asymptotically all the estimated signal poles will be on the unit circle. “If, however, the number of

snapshots N is too small or if there is only noise present, the eigenvalues of ΨTLS might fail to satisfy |φk| = 1 ∀k

...” [13] In that case, however, the eigenvalues will by symmetric with respect to the unit circle [13].
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Because of the special structure of the matrix A from (2.5), given that the signal complies with

the sinusoidal model, there must exist a unitary diagonal matrix, Λ, such that [13]

ΠmA∗ = AΛ. (3.38)

To see that this is true, consider the following: Defining Λ = diag(λ1, . . . λd), another way of

stating (3.38) is that for each column of A, a:,i, there exists a unique scalar of unit magnitude,

λi, such that

Πma∗:,i = a:,iλi. (3.39)

Recall from (2.5) that each column of A can be written as

a:,i = [1 ejwωi ej2ωi · · · ej(m−1)ωi ]T .

From this it can be seen that (3.39) holds with λi = ej(m−1)ωi .

As a consequence of (3.38), the following relation holds

Π2nĀ∗ = ĀΛ. (3.40)

This can be shown by inserting (3.37) and (3.38) in (3.41) and using the definition Ā =
[

J1

J2

]

A

Π2nĀ∗ =

[

ΠnJ2A
∗

ΠnJ1A∗

]

=

[

J1ΠmA∗

J2ΠmA∗

]

=

[

J1AΛ

J2AΛ

]

= ĀΛ.

The properties derived in this section are used in the derivation of some of the properties of

the Unitary ESPRIT algorithm in the following.

3.2.3 FB signal matrix in the ESPRIT algorithm

Now, let us return to the FB signal matrix. If we split the signal matrix into the two subarrays

and insert the signal model from equation 3.6 we get

JZ(k) =
[

ĀS(k) Π2mĀ∗S∗(k)
]

+
[

N̄ Π2mN̄∗
]

. (3.41)

Now, using the centrosymmetry of the sensor array from (3.41) we may write

JZ(k) = Ā [S(k) ΛS∗(k)] +
[

N̄ Π2mN̄∗
]

. (3.42)

From this, it is apparant that the signal subspace of JZ(k) is spanned by Ā. Thus, the standard

ESPRIT algorithm applies using this signal matrix with the only difference that the translational

invariance of the subarrays are used both forwards and backwards which increases the estimation

accuracy and restricts the signal poles to the unit circle [13].
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3.2.4 Signal poles constrained to the unit circle

We now proceed to discuss how the signal poles are constrained to the unit circle in the Unitary

ESPRIT algorithm. If we insert (3.7) in (3.41) we have

Π2m

[

Ã∗

Ã∗Φ∗

]

=

[

Ã

ÃΦ

]

Λ. (3.43)

By rearranging this we get the following matrix equation pair

[

ΠmÃ∗Φ∗

ΠmÃ∗

]

=

[

ÃΛ

ÃΦΛ

]

. (3.44)

Inserting the bottom row equation in the top row equation and rearranging terms (note that Λ

and Φ are diagonal matrices) we have

ÃΛΦΦ
∗

= ÃΛ. (3.45)

From this we see that ΦΦ∗ = I, i.e. Φ is unitary. Since Φ is a diagonal matrix of the signal poles,

it is obvious that the signal poles are constrained to the unit circle.

3.2.5 Subspace estimation using the FB signal matrix

The first step in the Unitary ESPRIT algorithm consists of estimating the signal subspaces for

the two subarrays. Using the FB signal matrix in the ESPRIT algorithm, this can be done by

computing the singular value decomposition of JZ(k). The computational complexity of this can

be significantly reduced by exploiting the structure of the FB signal matrix [13]. To show this, we

start by making the following definition.

Definition 3.2. A matrix, M ∈ Cp×q, is said to be centro hermitian if the following is true for

each of its components [37]:

mi,j = m∗
p+1−i,q+1−j (1 ≤ i ≤ p, 1 ≤ j ≤ q).

Equally we may write

ΠpM
∗Πq = M .

2

Thus, a matrix is centro hermitian if it is equal to its complex conjugate with the rows and

columns in reverse order. The FB signal matrix, Z(k), is not itself centro hermitian. However, by

reversing the order of the last M colums of Z(k) we obtain a centro hermitian matrix, ZC(k)

ZC(k) = Z(k)

[

IM

ΠM

]

= [X(k) ΠmX∗(k)ΠM ] . (3.46)

We note, that the column spaces of Z(k) and ZC(k) are equal, R(Z(k)) = R(ZC(k)), since the

only difference between the matrices is a permutation of the columns. The symmetry of ZC(k)

can be exploited to decrease the complexity of the computation of the SVD of Z(k) as we will

show in the following.
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Isomorphism between centro hermitian and real matrices

There exists an isomorphism between the set of centro hermitian matrices and the set of real

matrices of equal dimensions. To show this, we start by making the following definition.

Definition 3.3. A matrix, Q is said to be column conjugate symmetric if it is equal to its complex

conjugate with the order of the rows reversed [37]:

ΠQ∗ = Q.

“Further we remark that if Q is column conjugate symmetric and R is an arbitrary real matrix (of

appropriate size), then QR is column conjugate symmetric as well.” [37]

2

Consider the following mapping where Tp ∈ Cp×p and Uq ∈ Cq×q are invertible column

conjugate symmetric matrices.

ϕ : M 7→ T−1
p MU q . (3.47)

This can be shown to be a bijective5 mapping that maps the set of all p× q (generally complex)

centro hermitian matrices onto Rp×q , the set of all real p × q matrices [37]. To prove this it is

sufficient to show that ϕ(M) is real when M is centro hermitian [37].

ϕ(M) = T−1
p MU q . (3.48)

Using that M is centro hermitian (Definition 3.2) we get

ϕ(M) = T−1
p ΠpM

∗ΠpUq . (3.49)

Then, using that Tp and Uq are column conjugate symmetric (Definition 3.3) yields

ϕ(M) = T ∗−1
p M∗U∗

q . (3.50)

Comparing (3.52) to (3.50) we see that ϕ(M) = ϕ(M)∗ and consequently ϕ(M) is real. Thus,

ϕ maps the set of all centro hermitian matrices onto the set of all real matrices and we may say

that every centro hermitian matrix is isomorph to a real matrix of the same dimensions.

The relations described above hold for any two column conjugate symmetric matrices, Tp and

Uq . However, a mapping which can be described very compactly is obtained when Tp and Uq are

chosen on the following form

Q2n =
1√
2

[

In jIn

Πn −jΠn

]

, (3.51)

or

Q2n+1 =
1√
2







In 0 jIn

0T
√

2 0T

Πn 0 −jΠn






, (3.52)

for even or odd p, q respectively. In addition to being column conjugate symmetric, these matrices

are also unitary. In the following we denote by ϕQ the mapping (3.49) using these unitary column

conjugate symmetric matrices

ϕQ : M 7→ QH
p MQq . (3.53)

5A mapping is said to be bijective if it is both injective (one-to-one) and surjective (onto).
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SVD of a centro hermitian matrix

The singular value decomposition of the centro hermitian matrix M ∈ Cp×q can be written as

M = UM ΣMV H
M . (3.54)

Now, consider the SVD of the real matrix ϕQ(M)

ϕQ(M) = QH
p MQq = UϕMΣϕMV H

ϕM . (3.55)

Isolating M in (3.57) and equating with (3.56) we get an expression for the SVD of M formulated

in terms of the SVD of ϕQ(M)

M = UM ΣMV H
M = (QpUϕM ) ΣϕM

(

V H
ϕMQH

q

)

, (3.56)

where, in the last expression, terms have been grouped to emphasize the relation between the SVD

of M and ϕQ(M) respectively. From this we see how the SVD of M can be derived from the

SVD of ϕQ(M)

UM = QpUϕM (3.57)

ΣM = ΣϕM (3.58)

VM = QqVϕM . (3.59)

Thus, the SVD of a complex centro hermitian matrix can be reduced to the SVD of a real matrix.

Efficient computation of ϕQ(M)

If we assume that p is odd and q is even and introduce r = (p − 1)/2 and s = q/2, M can be

written in the following form

M =







M1 ΠrM
∗
2 Πs

mT mT Πs

M2 ΠrM
∗
1 Πs







M1, M2 ∈ Cr×s

m ∈ Cs.
(3.60)

This expression is valid for odd p, however, if p is even the center row should simply be dropped and

r = p/2. In the following we will proceed with the assumption of odd p, noting that expressions

for even p can easily be deduced. Now, since M is centro hermitian, it can be mapped into a real

matrix by the following mapping

ϕQ(M) = QpMQq . (3.61)

Inserting (3.53), (3.54), and (3.62) in (3.63) yields an expression for ϕQ(M) in closed form

ϕQ(M) =
1√
2







Ir 0 jIr

0T
√

2 0T

Πr 0 −jΠr













M1 ΠrM
∗
2 Πs

mT mT Πs

M2 ΠrM
∗
1 Πs







1√
2

[

Is jIs

Πs −jΠs

]

=







Re (M1 + ΠrM
∗
2 ) −Im (M1 −ΠrM

∗
2 )√

2 · Re(mT ) −
√

2 · Im(mT )

Im (M1 + ΠrM
∗
2 ) Re (M1 −ΠrM

∗
2 )






. (3.62)

By inspection we verify that this is indeed a real matrix. In addition we note that for real M this

is a block diagonal6 matrix. Thus, the computation of the SVD of M is significantly simplified

using this mapping both for complex and real M .

6A block diagonal matrix A is a block matrix where, if we denote its block elements by Ai,j , we may write

Ai,j = 0 if i 6= j.



3.2 Unitary ESPRIT 27

SVD of a block diagonal matrix

The SVD of a block diagonal matrix can be found from the SVD of the individual blocks. To see

this, consider two matrices, F and G of which the SVD is given by

F = UF ΣF V H
F ,

G = UGΣGV H
G .

Then, it can be verified that the SVD of the 2 × 2 block diagonal matrix with F and G on the

diagonal is given by
[

F

G

]

=

[

UF

UG

][

ΣF

ΣG

][

VF

VG

]H

. (3.63)

Using this expression, however, most likely the singular values do not occur in non-decreasing

order. This must subsequently be ensured by the appropriate column permutations.

Since the computational complexity of the SVD of a matrix of size m × n is O
(

min(m, n)3
)

[16], computing the two SVDs of the block diagonal elements as opposed to computing the SVD

of the full matrix will reduce the computational complexity by a factor of four.

Estimation of signal subspaces

An estimate of the signal subspaces for the two subarrays can be found from the first d left singular

vectors of ZC(k). Since this is a centro hermitian matrix, the SVD of ZC(k) can be found from

the SVD of ϕQ(ZC(k)). Since ZC(k) is real, ϕQ(ZC(k)) is a real block diagonal matrix according

to (3.64). Let the SVD of ZC(k) be given by

ZC(k) = UZC
ΣZC

V H
ZC

, (3.64)

and the SVD of ϕQ(ZC(k)) be given by

ϕQ(ZC(k)) = UϕZC
ΣϕZC

V H
ϕZC

, (3.65)

If we denote the first d columns of UϕZC
by

ÊϕZC
= [uϕZC :,1, . . . , uϕZC :,d], (3.66)

then, according to (3.59)

ÊZC
= QmÊϕZC

. (3.67)

Finally, by an expression similar to (3.20), ˆ̄EZC
is given by

ˆ̄EZC
=

[

ÊZC1

ÊZC2

]

= JQmÊϕZC
. (3.68)

Summary of subspace estimation

The efficient computation of a subspace estimate for the two subarrays in Unitary ESPRIT can

be summarized in the following steps:

1. Compute the real block diagonal matrix, ϕQ(ZC(k)) using (3.64).

2. Compute the SVD of ϕQ(ZC(k)) by computing the SVD of its block elements, (3.65).

3. Extract the d left singular vectors corresponding to the d largest singular values, (3.68).

4. Compute an estimate of the signal subspaces for the two subarrays using (3.70).
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3.2.6 Total least squares solution using the FB signal matrix

The second step in the Unitary ESPRIT algorithm consists of solving the overdetermined system of

equations ÊZC1Ψ̂ ≈ ÊZC2 by means of least squares or total least squares. When using total least

squares, this requires computing the singular value decomposition of the matrix [ÊZC1 ÊZC2].

In the following we show how this computation can be significantly simplified by exploiting the

special structure of this matrix.

Inserting J =
[

J1

J2

]

in (3.70) yields

ˆ̄EZC
=

[

ÊZC1

ÊZC2

]

=

[

J1

J2

]

QmÊϕZC
. (3.69)

Using that the subarray selection matrices are centro symmetric with respect to each other (3.36)

and the column conjugate symmetry property of Qm (Definition 3.3) and noting that EϕZC
is

real we see
ÊZC2 = J2QmÊϕZC

= ΠnJ1ΠmΠmQ∗
mÊϕZC

= ΠnJ1Q
∗
mUϕZC

= ΠnÊ∗
ZC1.

(3.70)

The TLS solution in the Unitary ESPRIT algorithm requires taking the SVD of the matrix

[ÊZC1 ÊZC2]. Using (3.72) we may write

[ÊZC1 ÊZC2] = [ÊZC1 ΠnÊ∗
ZC1]. (3.71)

We see, that this matrix has the same special structure as Z(k). Consequently, it can be

transformed to a centro hermitian matrix by reversing the order of the last d columns. We denote

this centro hermitian matrix ĈZC

ĈZC
= [ÊZC1 ΠnÊ∗

ZC1]

[

IM

ΠM

]

= [ÊZC1 ΠnÊ∗
ZC1ΠM ]. (3.72)

Thus, the computation of its SVD can be simplified in the same way as we have shown for Z(k).

If the SVD of [ÊZC1 ÊZC2] is given by

ĈZC
= UCΣCV H

C , (3.73)

and the SVD of ϕQ(ĈZC
) is given by

ϕQ(ĈZC
) = UϕCΣϕCV H

ϕC , (3.74)

then according to (3.61) and using (3.74), the right singular vectors of [ÊZC1 ÊZC2] are given by

VC = Q2dVϕC

[

IM

ΠM

]

. (3.75)

Partitioning this similar to (3.28) we have

VC =

[

VC11 VC12

VC21 VC22

]

, (3.76)

where the block elements are of dimension d×d. Now, according to (3.33) we may obtain the TLS

estimate as

Ψ̂TLS = −VC12VC
−1
22 . (3.77)
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Signal poles are symmetric with respect to the unit circle

Properties of the TLS estimate derived in the previous section can be used to show that the

estimated signal poles will be symmetric with respect to the unit circle. Notice that since VϕC is

real, Q2dVϕC is column conjugate symmetric (Definition 3.3). Consequently it can be written on

the form [13]

Q2dVϕC =

[

VA VB

ΠdV
∗

A ΠdV
∗

B

]

, (3.78)

for some VA, VB ∈ Cd×d. If we insert (3.80) in (3.77) we have

VC =

[

VA VB

ΠdV
∗

AΠd ΠdV
∗

BΠd

]

. (3.79)

Comparing this to (3.78) see that VC12 = VC
∗
22 and thus the TLS solution can be found from

Ψ̂TLS = −VC12V
∗

C

−1
12 = Ψ̂∗−1

TLS . (3.80)

Remember that the signal poles are given by the eigenvalue decomposition of Ψ̂TLS . Since we

have Ψ̂TLS = Ψ̂∗−1
TLS , we see that the eigenvalues and thus the signal poles will be symmetric with

respect to the unit circle [36]: if zi is an eigenvalue then 1/z∗i is also an eigenvalue.

Summary of total least squares solution

The efficient computation of the total least squares solution in Unitary ESPRIT can be summarized

in the following steps

1. Compute the real matrix, ϕQ(ĈZC
) using (3.64).

2. Compute the SVD of ϕQ(ĈZC
).

3. Partition the right singular vectors according to (3.78).

4. Compute the TLS solution using (3.79).

3.2.7 Summary of the Unitary ESPRIT algorithm

The Unitary ESPRIT algorithm can be summarized in the following steps, where the dominating

computations for each step is included in the rightmost column

1. Obtain an estimate of the signal subspaces for the two

subarrays as described in section 3.2.5

2 × Real (m/2×M) SVD

2. Solve the overdetermined system of equations

ÊZC1Ψ̂ ≈ ÊZC2 by means of total least squares as

described in section 3.2.6

Real (m× 2d) SVD

3. Compute the signal poles by the eigenvalue decomposition

ẑi = λi(Ψ̂ )

Real (d× d) EVD
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3.3 Summary

In this chapter, we have presented the Unitary ESPRIT algorithm which belongs to the class of

subspace based single shift-invariance estimation methods. The data matrix used in the Unitary

ESPRIT algorithm consists of a signal matrix combined with a row-reversed version of the same

signal matrix, resulting in an algorithm which exploits the single shift-invariance property both

forwards and backwards. This essentially doubles the data used, thus increasing the accuracy of

the parameter estimation. By setting up the signal in a centro hermitian matrix we have shown,

that the computational complexity of the algorihm can be reduced significantly.

Since the signal poles estimated by the Unitary ESPRIT algorithm are constrained to the unit

circle, it is an accurate and efficient method for estimating parameters in a constant amplitude

sinusoidal model. The purpose of this dissertation is to introduce a novel approach to estimating

the most perceptually relevant parameters in a sinusoidal mdel using the Unitary ESPRIT

algorithm. In order to do this, the perceptual relevance of the parameter estimates must be

taken into account. This can be done by combining a psychoacoustic model with the Unitary

ESPRIT algorithm, one of which we will treat in the sequel.



Chapter 4

Psychoacoustic Model

“It is the province of knowledge to speak and it is

the privilege of wisdom to listen.
”

Oliver Wendell Holmes (1841 – 1935)

In this chapter: We start by reviewing the psychoacoustic phenomena on which perceptual masking

models are based. Then we thoroughly study a well known psychoacoustic model, namely the

MPEG-1 Psychoacoustic Model 1.

4.1 Psychoacoustics

Psychoacoustic models are based on the masking properties in the human auditory system.

Masking is the process in which one sound can be rendered inaudible due to the presence of

other sounds. In the following we briefly review the basic theories of human auditory perception.

For a thorough introduction to psychoacoustics see e.g. [38].

4.1.1 Human auditory system

The human hearing, or the perception of audio signals, is facilitated by the human auditory system.

Physiologically, the auditory system consist of three parts: the outer ear, the middle ear, and the

inner ear [38, pp. 15–28].

The outer ear contributes to the spatial location of sounds by changing the spectral coloring

dependent on the angle of arrival. From the outer ear the sound is transmitted to the middle

ear through the ear drum.

The middle ear consist of three bones connected to each other, to the ear drum, and to the

oval window in the inner ear. Through these connections, air vibrations are changed to

mechanical vibrations which are transferred to the inner ear.
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The inner ear (the cochlea) is shaped as a twirled up cone and filled with a liquid. The vibrations

transferred to the inner ear set in motion a standing wave, which has peaks at specific

locations correponding to the frequency contents of the vibration. Because of these standing

wave patterns in the cochlea, it is in effect a frequency to location analyzer. Along the

length of the cochlea, hair cells are excited by the vibrations. The hair cells stimulate nerve

endings, which convey the information to the brain.

4.1.2 Absolute threshold of hearing

The absolute hearing threshold is “the minimum detectable level of a sound in the absence of

any other external sounds” [38]. The absolute threshold depends on several factors such as the

frequency characteristics of the middle ear and the phycical condition of the inner ear. The middle

ear contributes to the frequency dependency of the sensitivity of the ear, because its transmission

is most efficient in the range of 500 Hz to 4000 Hz. With age and especially with exposure to loud

sounds, the cochlea can become damaged thus raising the threshold for specific frequencies.

By measuring the sensitivity of single tones for a large population, a model for the absolute

threshold of hearing has been developed, which approximates the sensitivity for a young listener

with good hearing. It has been found that the absolute threshold can be approximated with the

following non-linear function [15] shown in figure 4.1

Tq(f) = 3.64
( f

1000

)−0.8

− 6.5e−0.6
(

f
1000

−3.3
)

2

+ 10−3
( f

1000

)4

(dB SPL), (4.1)

where the frequency, f , is given in Hz and the threshold, Tg(f), has the unit dB sound pressure

level (SPL). The SPL is defined as the ratio between the pressure of a soundwave, p, and a reference

amplitude, p0, i.e. LSPL = 20 log10(p/p0). The reference level p0 = 20 µPa = 2 · 10−5 N/m2 is

defined so that the SPL is about 0 dB for the frequencies where the sensitivity is greatest.

4.1.3 Masking

The absolute threshold describes the hearing threshold in silence — when other sounds are present,

the threshold changes. This is due to a phenomenon known as masking. “Masking is the amount

(or the process) by which the threshold of audibility for one sound is raised by the presence of

another (masking) sound” [38]. It is the concealment of one sensation, resulting from the presence

of an other, often stronger, sensation.

Masking is often divided into two classes: non-simultaneous and simultaneous masking.

Non-simultanous masking occurs in two forms: post- and pre-masking (see figure 4.2). Post-

masking has the most significant masking effect which can last up to 200 ms after the

masking sound ends. The physiological cause of non-simultaneous masking is not completely

understood, but it most probably stems from nerve activity which dies out slowly [38]. In

some psychoacoustic models, such as the MPEG-1 Psychoacoustic Model 1, non-simultaneous

masking is not included.
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Figure 4.1: The absolute threshold of hearing [38], i.e. the minimum detectable level of a sound in a

quiet environment. The curve approximates the sensitivity of the hearing for a young listner with acute

hearing.

Simultaneous masking stems from the phenomenon of standing waves in the cochlea [38]. In

figure 4.3 an example of the amplitude envelope of the standing wave along the basilar

membrane in the cochlea is shown for a single frequency. As it can be seen, the standing

wave amplitude envelope has a considerable peak at a specific position. At a higher frequency,

the peak will be closer to the oval window and conversely further away from the oval window

for a lower frequency. Figure 4.3 illustrates how the effects of a single tone is spread out in

the cochlea. Because of this spreading, a single frequency is able to mask a signal of smaller

amplitude located close to the masking frequency.

4.1.4 Critical bands

The spread of masking is related to the concept of critical bands. Experimental results show that

the masking of a single tone is primarily affected by other sound components lying within a certain

frequency dependent band, the so-called critical band. To explain this, it has been suggested that

the auditory system behaves as if it consists of a non-linear distributed set of bandpass-filters known

as the auditory filters. The properties of the critical bands have been investigated experimentally

by numerous researchers and is well understood, although the underlying physiological explanation

is not fully understood [38]. Experiments show that the critical bandwidth is almost constant

(approximatly 100 Hz) at frequencies below 500 Hz. Above 500 Hz, the critical bandwidth increases

to about 20% of the center frequency [15].

Although physiologically, the critial bands are continuously distributed, the auditory system

is often considered as consisting of a discrete set of band-pass filters. Using 25 critical bandwidth



34 Psychoacoustic Model

Masker


Simultaneous
Pre-
 Post-masking


M
as

ke
e 

A
ud

ib
ili

ty



T
hr

es
ho

ld
 I

nc
re

as
e 

(d
B

)


-50
 0
 50
 100
 150
 0
 50
 100
 150
 200


20


40


60


Time after masker appearance (ms)
 Time after masker removal (ms)


Figure 4.2: An illustration of the masking phenomenon [15]: When a masker is present, the threshold of

audibility for the masked sound is raised. Non-simultaneously masking can occur right before (<50 ms)

or after (<200 ms) a masking sound.
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Figure 4.3: The amplitude of the standing wave along the basilar membrane [38]. The wave is generated

by a 1600 Hz tone, coming from the oval window located to the left. The figure illustrates how the effects

of a single tone is spread out in the cochlea. Because of this spreading, a single frequency is able to mask

a signal of smaller amplitude located close to the masking frequency.

auditory filters which span the audio spectrum, the Bark scale has been defined in which one Bark

corresponds to one critical band. The following expression approximates the relation between

frequencies in Hz and the Bark scale [15]

z(f) = 13 tan−1(7.6 · 10−4f) + 3.5 tan−1

(

f2

75002

)

(Bark). (4.2)

In figure 4.4, z(f) is depicted along with the location of the center frequencies of the 25 critical

bands.

4.1.5 Types of masking

The masking of one signal by another is a complex function of the signal spectra. For the purpose

of modeling perceptual masking, we often distinguish between two simple types of masking: noise-

maksing-tone and tone-masking-noise.

In figure 4.5 it is illustrated how a narrow-band noise signal masks the presence of a tone. The

signal-to-mask ratio (SMR) describes the smallest difference between the intensity of the masking

signal and the intensity of the masked signal [15]. Experiments show that the SMR is around 4
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Figure 4.4: The relation between frequency in Hz and the Bark scale (4.2). The x–marks, enumerated

1-25 in increments of 2, mark the center frequencies of the 25 critical bands, distributed linearly on the

Bark scale.

dB for a noise masker [15]. In figure 4.6 it is illustrated how a single tone can mask a narrow-band

noise signal. Experiments show that the SMR is around 24 dB for a tonal masker [15]. Comparing

the SMR of the tonal masker and the noise masker, it is obvious that noise has better masking

abilities than a pure tone.

4.2 MPEG-1 Psychoacoustic Model 1

The MPEG-1 Psychoacoustic Model 1 is based on the psychoacoustic properties presented in the

previous section. Here, we describe how the model is implemented using these properties. This

section is based on the MPEG-1 Standard [39] and a tutorial by Painter et al. [15]. The aim of

the MPEG-1 Psychoacoustic Model 1 is to estimate a global masking threshold for an arbitrary

signal.

4.2.1 Spectral analysis and SPL normalization

The MPEG-1 Psychoacoustic Model 1 can opererate in two modes, which differ in the frequency

resolution: it is based on either a 512 or a 1024 point DFT. The two modes in the MPEG-

1 Psychoacoustic Model 1 are very similar and for the sake of simplicity, we only describe the

algorithm based on a 512 point DFT which yields a frequency resolution of 86.13 Hz at a sample

rate of 44.1 kHz.

Consider a signal, s(k), which is assumed to have a maximum amplitude of ±1. This is divided

by the FFT-length, N , to achieve a 0 dB maximum after the DFT

x(k) =
s(k)

N
. (4.3)
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Figure 4.5: Illustration of a noise masker and

a tone at the threshold of detection. The pure

tone, located at 410 Hz with a SPL of 76 dB,

is just masked by the narrow-band noise with a

bandwidth of 1 Bark and an overall intesity of 80

dB.

Figure 4.6: Illustration of a tonal masker and

narrow-band noise at the threshold of detection.

The pure tone, located at 1000 Hz with an SPL

of 80 dB, just masks a narrow-band noise sig-

nal with a bandwidth of 1 Bark and an overall

intensity of 56 dB.

The signal is then windowed by a Hann window, w(k), and the power spectrum is calculated using

the DFT. A power normalization term, PN = 90.302 dB is added, in order to set the maximum

amplitude to PN = 90.302 dB SPL.

P (l) = PN + 10 log10

∣

∣

∣

∣

∣

N−1
∑

k=0

w(k)x(k)e−j(2πlk/N)

∣

∣

∣

∣

∣

2

, 0 ≤ l ≤ N

2
. (4.4)

The term PN is added in order to normalize the power spectrum to correspond to a worst case

sound pressure level. Since the sound pressure level at which the sound is played cannot be

determined at the point of analysis, the signal is assumed to be played at a loudness where 0 dB

SPL corresponds to ±1 least significant bit. Because the psychoacoustic model is designed to work

with 16 bit resolution, the maximum sound pressure level is set at 90.302 dB.

In figure 4.7, the SPL normalized power spectrum of a signal is showed. This signal will function

as an example in the following. The example signal is taken from a segment of pop-music sampled

at 44.1 kHz, and it contains both tonal and noise-like components. The signal is plotted on the

Bark scale in order to best visualize the perceived spectrum of the signal.

4.2.2 Identification of tonal and noise maskers

When the power spectrum has been determined, tonal maskers and noise maskers are identified.

Tonal maskers are defined to exist at local maxima in the power spectrum, where the peak is

more than 7 dB higher than the neighboring spectral components within a certain window.

This window is defined as a frequency dependent number of spectral bins. Tonal maskers

are identified at the following frequency bins

ST =

{

l

∣

∣

∣

∣

∣

P (l) > P (l ± 1),

P (l) > P (l ±∆l) + 7 dB

}

, (4.5)
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Figure 4.7: The power spectrum of an example signal segment normalized to dB sound pressure level. The

signal, sampled at 44.1 kHz, is a segment of pop-music, containing both tonal and noise-like components.

The absolute threshold of hearing is plotted as a dashed line. The frequency axis is on the Bark scale.

where the distance, ∆k, is defined as,

∆l ∈











2 2 < l < 63 (0.17–5.5 kHz)

[2, 3] 63 ≤ l < 127 (5.5–11 kHz).

[2, 6] 127 ≤ l < 256 (11–20 kHz)

(4.6)

The power of the tonal maskers PTM (k) is calculated from the sum of the frequency bins of

the tonal masker and the two neighboring bins

PTM (l) = 10 log10

1
∑

i=−1

100.1P (i+l) (dB). (4.7)

The tonal maskers identified in the example signal is shown in figure 4.8, indicated by the

symbol ’x’.

Noise maskers are computed form the part of the spectrum in which no tonal maskers reside.

One noise masker is computed for each critical band, and the location of the noise maskers

is defined as the geometric mean l̄ of the frequency bins in the critical band,

l̄ =

(

b
∏

l=a

l

)1/(b−a+1)

. (4.8)

Where a and b respectively denote the lower and upper spectral bins associated with the

critical band. The power of the noise maskers PNM (l̄) is computed from the spectral bins

which are not within the neighboring window of a tonal masker

PNM (l̄) = 10 log10

b
∑

l=a

100.1P (l) (dB)

∀ l /∈ {ST , ST ± 1, ST ±∆k}. (4.9)

The noise maskers identified in the example signal is shown in figure 4.8, indicated by the

symbol ’o’.
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Figure 4.8: Identified tonal and noise maskers for an example signal segment. Tonal maskers are indicated

by the symbol ’x’ and noise maskers are indicated by the symbol ’o’.
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Figure 4.9: Decimated and reorganized tonal and noise maskers. Tonal maskers are indicated by the

symbol ’x’ and noise maskers are indicated by the symbol ’o’. Compared to figure 4.8 the removal of

maskers is exemplified at around 17 bark, where a tonal and noise masker is removed.

4.2.3 Decimation and reorganization of maskers

In order to reduce computational complexity and avoid redundant maskers, some of the maskers

are removed under certain circumstances. Firstly, maskers below the absolute threshold of hearing

are discarded. Thus, any masker that does not satisfy

PTM,NM (l) ≥ Tq(l) (4.10)

is removed. Secondly, to avoid clustering of maskers, a sliding window of one-half Bark length is

moved across the maskers. If two or more maskers are present at any time within the one-half

Bark window, only the most powerful masker is retained. For the example signal, the result of

this is shown in figure 4.9.

Next, the higher frequencies are also subsampled to reduce the spectral resolution at these

frequencies. In the critical bands 18–22, the frequency bins are decimated by 2:1 and in the

critical bands 23–25 by 4:1. The total of 256 frequency bins is hereby reduced to 106 bins.



4.2 MPEG-1 Psychoacoustic Model 1 39

0 5 10 15 20 25

0

50

100

Bark (z)

So
un

d 
Pr

es
su

re
 L

ev
el

 (
dB

 S
PL

)

Figure 4.10: The individual masking thresholds for tonal and noise maskers. This figure shows the

spreading of the individual maskers. Notice how the noise maskers “o” have a higher masking threshold

than tonal maskers “x”.

4.2.4 Calculation of individual masking thresholds

Before the global masking threshold can be computed, the individual contributions from each

masker is computed. This is done by, for each masker denoted by i, computing the spread of

masking in the adjacent frequency bins denoted by l. The threshold of masking for the tonal

maskers is given by,

TTM (l, i) = PTM (i)− 0.275z(i) + SF (l, i)− 6.025 (dB SPL). (4.11)

Where PTM (i) is the SPL of the tonal masker located at position i. z(i) is the Bark scale indexed

by the frequency bin i. SF (l, i) describes the spread of masking from masker bin i to maskee bin

l. The spread of masking is approximated by,

SF (l, i) =



















17∆z − 0.4PTM (i) + 11, −3 ≤ ∆z < −1
(

0.4PTM (i) + 6
)

∆z, −1 ≤ ∆z < 0

−17∆z, 0 ≤ ∆z < 1
(

0.15PTM(i)− 17
)

∆z − 0.15PTM (i), 1 ≤ ∆z < 8

(dB SPL). (4.12)

The separation between the masker and maskee is defined by ∆z as z(l) − z(i). The individual

thresholds of masking for noise maskers is described similarly as

TNM (l, i) = PNM (i)− 0.175z(i) + SF (l, i)− 2.025 (dB SPL). (4.13)

For the example signal, the individual masking thresholds for the identified tonal and noise maskers

are shown in figure 4.10.

4.2.5 Calculation of global masking threshold

Finally, the masking threshold of the individual maskers are combined to yield the global masking

threshold. For each frequency bin, all the individual maskers and the absolute threshold of hearing

are added together on a linear intensity scale and converted back to the dB SPL scale.

Tg(l) = 10 log10

(

100.1Tq(l) +
∑

i

100.1TTM (l,i) +
∑

i

100.1TNM(l,i)
)

(dB SPL). (4.14)
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Figure 4.11: The final gobal masking threshold for the example signal segment as estimated by the

MPEG-1 Psychoacoustic Model 1.

This concludes the computation of the global masking threshold as defined in the MPEG-1

Psychoacoustic Model 1. For the example signal, the global masking threshold is shown in

figure 4.11.

4.3 Summary

In this chapter we have investigated the physiological principles which acount for the masking

effects in the human auditory system. These masking effects, combined with the absolute

threshold of hearing, are the building blocks of the MPEG-1 Psychoacoustic model 1. Using

this psychoacoustic model, we can calculate the global masking threshold for an arbitrary signal

segment. This threshold describes the frequency dependent sensitivity of the ear when a masking

sound is present and describes in effect the signal-to-mask ratio. Since the most perceptually

relevant frequency components are the components with the greatest signal-to-mask ratio, the

global masking threshold can be used to find the most perceptually relevant components of the

signal segment. The next step is to introduce the global masking threshold in the Unitary ESPRIT

algorithm, which we will treat in the sequel.



Chapter 5

Perceptual Unitary ESPRIT

“I don’t think necessity is the mother of invention

— invention, in my opinion, arises directly from

idleness, possibly also from laziness. To save

oneself trouble.
”

Agatha Christie (1890 – 1976)

In this chapter: We present a novel approach to estimating the most perceptually relevant

parameters in a sinusoidal audio model: We propose a method which incorporates the perceptual

model from the MPEG-1 standard in the Unitary ESPRIT algorithm. We start by discussing how

the perceptual distortion of a signal can be measured, based on information from a psychoacoustic

model. Then, we introduce methods for incorporating perceptual knowledge in the estimation of

signal frequencies by means of Unitary ESPRIT as well as in the estimation of amplitudes and

phases.

5.1 Perceptual distortion

To include a perceptual model in the Unitary ESPRIT algorihm such that perceptually relevant

signal parameter estimates can be made, we must modify the algorithm such that the perceptual

distiortion of the signal is minimized. Thus, we must use a distortion measure which takes the

psychoacoustic properties of the human auditory system into account.

5.1.1 Perceptual distortion measure

Let us define the distortion of a signal estimate as the difference between the original signal, x(k),

and the modeled signal, x̂(k)

∆x(k) = x(k) − x̂(k). (5.1)

When applying an analysis window, w(k), which defines the signal segment to be analyzed, taking

the discrete Fourier tranform yields

E(ω) =

∞
∑

k=−∞

w(k)∆x(k)e−jωk , (5.2)
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where ω is the normalized frequency in radians per sample. Now, we define a perceptual distortion

measure, D, as a weighted integral of the signal distortion in the frequency domain [40]

D =
1

2π

∫

2π

H2(ω)
∣

∣E(ω)
∣

∣

2
dω, (5.3)

where H2(ω) is non-negative and real for all ω. H2(ω) “is a weighting function representing the

sensitivity of the human auditory system which we will generally select to be the inverse of the

masking threshold” [40].

If we define h(k) as the inverse Fourier transform of H(ω) we may equally express the perceptual

distortion measure, D, in terms of the following infinite convolution sum [1]

D =

∞
∑

k=−∞

∣

∣h(k) ∗ w(k)∆x(k)
∣

∣

2
, (5.4)

where ∗ denotes the convolution operation. This infinite summation is recognized as the squared

vector `2 norm of the convolution sequence and we may thus write

D =
∣

∣

∣

∣h(k) ∗ w(k)∆x(k)
∣

∣

∣

∣

2

2
. (5.5)

Alternatively we may express the perceptual distortion measure in terms of a matrix vector

multiplication

D =
∣

∣

∣

∣HW∆x
∣

∣

∣

∣

2

2
, (5.6)

where H is an infinite Toeplitz filter matrix constructed from the filter impulse response h(k).

W is a diagonal matrix with the window, w(k), on the main diagonal, and ∆x is the distortion

signal vector.

The `2 norm of the distortion signal, ||∆x(k)||2, corresponds to the energy of the distortion.

However, the signal energy is not necessarily in correspondence with the perceived signal distortion.

An intuitive understanding of the perceptual distortion measure, as shown in (5.5) and (5.6), is to

see it as a weighted signal norm. When the signal distortion, ∆x(k), is windowed and convolved

with the perceptual weighting filter, h(k), it is transformed into a domain in which the `2 norm is

in better correspondence with the perceived signal distortion.

5.1.2 Perceptual weighting filter design

In the following, we consider methods in which the perceptual weighting filter is approximated by

a finite impulse response (FIR) filter derived from the psychacoustic model described in chapter 4.

Thus, we need to design an FIR filter based on the estimated masking threshold curve for a signal

segment. A variety of methods for designing an FIR filter with arbitrary frequency response exist,

such as the frequency sampling method and the Parks-McClellan method [41]. As an example, we

here describe the frequency sampling method.

We start with a specification of the desired frequency response of the filter given by a set

desired filter magnitudes at a corresponding set of frequencies. This is given by the inverse of the

estimated masking threshold.

H2(ωl) =
1

Tg(l)
, (5.7)
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where ωl is the frequency corresponding to the lth frequency bin in the global masking threshold

Tg(l). We interpolate this desired frequency response onto a dense evenly spaced frequency grid

of length Q/2. Let the frequencies in this grid be denoted by

ωi =
2πi

Q
, i = 0, 1, . . . ,

Q

2
− 1. (5.8)

The frequency response and the filter coefficients of an FIR filter are related by the discrete Fourier

transform (DFT)

H(ω) =

Q−1
∑

k=0

h(k)e−jωk , (5.9)

and thus, the response specified at the frequency grid is related to the filter coefficients by

H(ωi) =

Q−1
∑

k=0

h(k)e−j2πik/Q. (5.10)

Isolating h(k) gives an expression for the filter coefficients in terms of H(ωi)

h(k) =
1

Q

Q−1
∑

i=0

H(ωi)e
j2πik/Q, k = 0, 1, . . . , Q− 1. (5.11)

Note that this is simply the inverse discrete Fourier transform (IDFT) of H(ωi). Finally, the filter

coefficients are windowed to give a filter of the desired impulse response length, q

hq(k) = wq(k)h(k), (5.12)

where wq(k) is a window function of length q. An example of an FIR filter computed from

a masking threshold curve for a sample signal segment is shown in figure 5.1. Because of the

linear frequency resolution of an FIR filter (as compared to the frequency resolution of the human

auditory system), the filter fits the desired frequency response best at high frequencies.

5.2 Signal prefiltering

The Unitary ESPRIT algorithm gives estimates of the d most powerful frequency components in a

signal. However, the most powerful components are not necessarily the most perceptually relevant.

To ensure that the signal parameters estimated by the Unitary ESPRIT are the most perceptually

relevant, we propose to prefilter the signal matrix using the weighting filter hq(k) derived from

the perceptual masking model, Tg(l).

Prefiltering is not trivial since the filtering process must not disturb the underlying signal

model on which the Unitary ESPRIT algorithm relies. This means that the rank and the rotational

invariance properties of the original signal matrix must be retained in the prefiltered signal matrix.

Several methods for signal matrix prefiltering for use in other subspace based parameter

estimation methods have been proposed (cf. [42],[43],[1]). In the following we show how the

signal model is affected by different filtering operations and based on this we propose suitable

prefiltering methods for the Unitary ESPRIT algorithm.

We identify two different strategies for prefiltering the signal prior to its use in the Unitary

ESPRIT algorithm.
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Figure 5.1: Example of an FIR filter designed to approximate the inverse of a perceptual masking curve.

The dashed line indicates the desired frequency response (the inverse of the masking curve), and the full

line shows the frequency of an FIR filter designed by the frequency sampling method to match the desired

frequency response. The filter impulse repsonse length is q = 256, and the window function used in the

design is a Kaiser windows with the parameter β = 10. The masking curve is estimated by the MPEG-1

Psychoacoustic Model 1 as described in section 4.2 for an example signal segment of length 512 from

a piece of pop music sampled at 44.1 kHz. The signal segment is the same as used as an example in

section 4.2.

1. The signal is filtered prior to being arranged in the signal matrix.

2. The signal is arranged in the signal matrix, and the individual rows of the signal matrix are

filtered seperately.

In the following, we denote these two strategies “signal vector prefiltering” and “signal matrix

prefiltering” respectively. Both strategies offer useful results as we will show in the following.

5.2.1 Signal vector prefiltering

One method we may use for prefiltering is to filter the signal prior to arranging it in the signal

matrix. To understand how such a prefiltering affects the signal model, consider the noise free

sinusoidal signal model

x(k) =

d
∑

i=1

sie
jωik. (5.13)

This model corresponds to an autoregressive moving average (ARMA) model with d poles and

d− 1 zeros. Taking the Z-transform of equation 5.13 yields

X(z) =

d
∑

i=1

si

1− ziz−1
=

∑d−1
i=0 biz

−i

1 +
∑d

i=1 aiz−i
, (5.14)

where zi = sie
jkωi are the signal poles, and bi and ai are the moving average (MA) and

autoregressive (AR) parameters respectively. Returning to the time domain, the signal can be

described by the following difference equation

x(k) =
d−1
∑

i=0

biδ(k − i)−
d
∑

i=1

aix(k − i). (5.15)
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Now, consider filtering the signal with an FIR filter of order q

H(z) =

q
∑

i=0

hiz
−i. (5.16)

Denoting the filtered signal in the z-domain Y (z), we have

Y (z) = H(z)X(z) (5.17)

=

q
∑

i=0

hiz
−i

∑d−1
i=0 biz

−i

1 +
∑d

i=1 aiz−i
(5.18)

=

∑d+q−1
i=0 ciz

−i

1 +
∑d

i=1 aiz−i
, (5.19)

where ci are the new MA coefficients of the filtered signal. Naturally, the poles of the filtered signal

are equal to those of the original signal, but the number of zeros has increased to d+q−1. Taking

the inverse z-transform, the filtered signal can be described by the following difference equation

y(k) =

d+q−1
∑

i=0

ciδ(k − i)−
d
∑

i=1

aiy(k − i). (5.20)

With zero initial conditions, y(−1) = · · · = y(−d) = 0, we may write the forward recursion of the

difference equation in matrix form as [43]









y(0)

y(1)
...









=

























c0

c1

...

cd+q−1

0
...

























−

































0
... y(0)

... y(0) y(1)
...

y(0) y(1) · · · y(d− 1)

y(1) y(2) · · · y(d)
...

...
...













































ad

ad−1

...

a1













. (5.21)

Examining this set of equations gives a lot of information on y(n). If we look at the part of the

matrix equation starting from the row yielding y(q + d) we have









y(d + q)

y(d + q + 1)
...









= −









y(q) y(q + 1) · · · y(q + d− 1)

y(q + 1) y(q + 2) · · · y(q + d)
...

...
...
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
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. (5.22)

The matrix in this equation is a Hankel structured matrix consisting of the filtered signal, y(k),

starting at y(q). This filtered signal matrix has rank d since there are d independent columns.

Notice, that extending the signal matrix with extra columns on the right does not increase its

rank, since these extra columns will be linear combinations of the existing columns. This is not

the case if samples of y(k) for k < q are included in the signal matrix. Thus, in order to retain the

rank property of the existing signal, the first q rows of the filtered signal matrix must be truncated.

This corresponds to truncating the part of the signal matrix which is affected by the choice of

initial conditions for the FIR filter.
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Since we must truncate the first q rows of the signal matrix, we possibly discard useful

information. The prefiltered signal matrix constructed using this method will not have the same

dimensions as the original signal matrix of size m × M , although it does retain the rank and

rotational invariance properties of the original signal matrix. This will affect the estimation

accuracy of the unitary ESPRIT algorithm. To overcome this, we could use a signal block of

N + q samples. After filtering and discarding the first q samples of the filtered signal, a signal

matrix of size m×M where N = m+M+1 can be formed. However, this will affect the stationarity

assumptions, since now a signal block of size N + q must be assumed stationary.

Example 5.1. Consider a signal, x(k), consisting of two cosines with unit amplitude at frequencies

ω1 = 0.3π and ω2 = 0.7π with random phase in additive white gaussian noise, n(k), with a variance

of σn = 0.1.

x(k) = cos(ω1k + p1) + cos(ω2k + p2) + n(k),

where p1 and p2 are random variables distributed evenly on the interval [0, 2π). Since each cosine

can be written as a sum of two complex sinusoids, the signal, x(k), consists of 4 cisoids plus noise.

Consider now a fourth order low pass filter with a cut-off frequency at ωn = 0.3π where the

q = 5 filter coefficients are given by h(n) = {0.0201, 0.2309, 0.4981, 0.2309, 0.0201}. The frequency

response of the filter can be seen in figure 5.2. Using this, the filtered signal will be dominated

by the cosine at frequency ω1 = 0.3π. Thus, using the prefiltered Unitary ESPRIT algorithm,

assuming a signal order of 2, we should be able to estimate ω1. We now filter a signal block of

0 0.25 0.5 0.75 1

−20

−10

0

H
(ω

) 
[d

B
]

ω/π

Figure 5.2: Frequency response of the fourth order low-pass filter used in example 5.1.

length N = 50 by the filter h(k). Then, we discard the first q samples of the filtered signal, and

arrange the remaining samples in a Hankel structured matrix X of size 25 × 21. Finally, we

use the Unitary ESPRIT algorithm as described in section 3.2.7 on the matrix X to estimate the

frequency ω1. We wish to examine the statistical properties of the frequency estimation using this

method, i.e. the mean value and the variance of the estimated frequency. Doing 100 Monte Carlo1

runs we get the following estimates of the mean value and variance of the estimated frequency, ω1.

m̂ω1
= 0.300π

σ̂ω1
= 3.58 · 10−6

We see that using the method described, the frequency ω1 was estimated without significant bias

and with a relatively low variance.

2

1A Monte Carlo method can be defined as any method which solves a problem numerically by generating a

suitable number of random inputs, generating corresponding outcomes, and observing some statistical property of

these. Monte Carlo methods are useful for finding solutions to problems which are too complex to solve analytically.
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5.2.2 Signal matrix prefiltering

The second method we may use to prefilter the signal is to first arrange it in the signal matrix

and then filter each row of the signal matrix individually.

It is important to ensure that the prefiltering does not affect the underlying signal model —

otherwise the Unitary ESPRIT algorithm will not apply to the filtered signal matrix. That is,

the filtered signal matrix must retain the rank and rotational invariance properties of the original

signal matrix.

Filtering the FB signal matrix

In the Unitary ESPRIT algorithm, we estimate the signal subspaces of the subarrays based on the

column space of the FB signal matrix, i.e. the left singular vectors. By right multiplying the FB

signal matrix by a full rank filter matrix, the rank property of the FB signal matrix is retained,

since multiplication by a full rank matrix does not change the rank [17, p. 250]. Also, the column

space of the FB signal matrix and the filtered FB signal matrix will be equal [43], and thus it will

retain the rotational invariance property of the original signal matrix [43].

We propose to use a block diagonal filter matrix, such that the filtering corresponds to

prefiltering the signal matrix X(k) prior to arranging it in the FB signal matrix, Z(k).

HZ =

[

H

H

]

, (5.23)

where H is an M ×M filter matrix, the specific structure of which we will treat in the sequel.

Thus, we may write the filtered FB signal matrix in the following form

Z(k)HZ =
[

X(k)H ΠmX∗(k)H
]

. (5.24)

By writing out the convolution sequence, it can be verified that X(k)H indeed is a matrix where

each row of X is convolved by the filter in H .

To see that the column space of the FB signal matrix and the filtered FB signal matrix

are equal, consider the following: Let the rank of the FB signal matrix be denoted by r,

rank
(

Z(k)
)

= rank
(

Z(k)HZ

)

= r, and let the SVD of the FB signal matrix Z(k) be given

by

Z(k) = UZΣZV H
Z = [UZ1 UZ2]

[

ΣZ1

ΣZ2

]

[

VZ
H
1

VZ
H
2

]

, (5.25)

where UZ1 contains the first r columns of UZ and thus spans the range of the FB signal matrix.

Similarly, let the SVD of the filtered FB signal matrix Z(k)H be denoted by

Z(k)HZ = UZHΣZHV H
ZH = [UZH1 UZH 2]

[

ΣZH1

ΣZH2

]

[

VZH
H
1

VZH
H
2

]

. (5.26)

Since both matrices, UZ and UZH , are unitary, there must exist a unitary matrix, Ω, such that

[17]

UZH = UZΩ, (5.27)

[UZH1 UZH2] = [UZ1 UZ2]

[

Ω11 Ω12

Ω21 Ω22

]

. (5.28)
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From (5.25) and (5.26) we have [43]

UZ1ΣZ1VZ
H
1 H = UZH 1ΣZH1VZH

H
1 . (5.29)

Isolating UZH 1 yields

UZH 1 = UZ1ΣZ1VZ
H
1 HVZH

H
1 ΣZH

−1
1 . (5.30)

By comparing (5.30) and (5.28) we see that the following relations must hold

Ω11 = ΣZ1VZ
H
1 HVZH

H
1 ΣZH

−1
1 , (5.31)

Ω12 = 0. (5.32)

Now, since Ω is unitary, such that ΩΩH = ΩHΩ = I, it is straightforward to show that Ω21 = 0

and that Ω11 and Ω22 are unitary. Thus, for the left singular vectors of the FB signal matrix and

the filtered FB signal matrix we may write

UZH = UZ

[

Ω11

Ω22

]

, (5.33)

where Ω11 and Ω22 are unitary and Ω11 is of size r × r. This proves that the range of the FB

signal matrix and the range of the filtered FB signal matrix are equal, R
(

Z(k)
)

= R
(

Z(k)HZ

)

,

and thus, the rotational invariance property is retained.

Filter matrix structure

Now, we proceed to discuss the specific structure of the filter matrix. For use in other subspace

based parameter estimation techniques, filter matrices have been proposed which realize the

discrete convolution with zero padding [43] or the circular convolution [1], [42] of the filter with

each row of the signal matrix. For the discrete convolution with zero padding, the filter matrix

can be written on the form

HT =
























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...

. . .
. . .

. . .
...

h1
. . .

. . . 0

0
. . .

. . . hq

...
. . .

. . .
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...
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















. (5.34)

We note that this is a Toeplitz2 structured matrix, and in the following, we refer to HT as the

toeplitz filter matrix.

2A matrix, A, is said to be Toeplitz structured when it has constant diagonals. In other words, ai,j depends

only on i− j.
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For the circular convolution, the filter matrix has the form

HC =















































hτ · · · hq 0 · · · 0 h1 · · · hτ−1

...
. . .

. . .
. . .

. . .
. . .

...

h1
. . .

. . .
. . .

. . . h1

0
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0

hq
. . .

. . .
. . .

. . . hq

...
. . .

. . .
. . .

. . .
. . .

...

hτ+1 · · · hq 0 · · · 0 h1 · · · hτ















































(5.35)

We note that this, in addition to being Toeplitz, is a circulant3 matrix, and in the following, we

refer to HC as the circulant filter matrix. In the two filter matrix expressions, τ = (q + 1)/2.

Note, that if the filter coefficients are symmetric around hτ , the filter matrices are symmetric in

addition to being toeplitz and are thus centro hermitian (or centro symmetric since H is real).

Using the circulant filter matrix corresponds to circularly convolving each row of the signal

matrix with the filter. This, in turn, correponds to a point wise multiplication in the frequency

domain. It has been argued that this leads a better performance than the toeplitz filter matrix

[1]. However other studies show that the toeplitz filter matrix leads to better results because the

zero padding reduces the filter end–effects[43]. The difference in results might be attributed to

the different types of signals, which where analysed in these studies. In [1] the signals of interest

were audio signals, while in [43] the signals were nuclear magnetic resonanse (NMR) recordings.

The difference in other factors such as signal data lengths and prefilter order, can also have an

influence on the results obtained. In the sequel we study both the toeplitz and the circulant filter

matrix.

Example 5.2. Consider the signal and filter from (Example 5.1). Now, we arrange the signal in

a matrix X of size 25× 26. Two experiments are now conducted, in which the filter coefficients

are arranged in a filter matrix H of size 26×26 according to (5.34) and (5.35) respectively. Then,

we use the Unitary ESPRIT algorithm as described in section 3.2.7 on the matrix product XH.

Doing 100 Monte Carlo runs we get the following estimates of the mean value and variance of the

estimated frequency, ω2

Circulant filter matrix Toeplitz filter matrix

m̂ω1
= 0.300π m̂ω1

= 0.300π

σ̂ω1
= 2.88 · 10−6 σ̂ω1

= 2.93 · 10−6.

As in (Example 5.1), the frequency is estimated with no significant bias and with a comparable

variance.

2

3An n×n matrix, A, is said to be circulant when each column is equal to the previous column rotated downward

by one element. In other words, ai,j depends only on (i− j) modulo n.
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Example 5.3. Let us repeat the two experiments from (Example 5.1) and (Example 5.2). This

time we vary the signal to noise ratio (SNR), and estimate the variance of the frequency estimates

obtained using the three methods. The results are shown in figure 5.3 and 5.4. As we see in

figure 5.4, the variance on the estimates is lowest for the signal vector prefiltering method and

highest for the signal matrix prefiltering with toeplitz filter matrix at SNRs below approximatly

−10 dB.

2
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Figure 5.3: Example 5.3: Estimates of the mean of frequency estimates using signal vector prefiltering

and signal matrix prefiltering with circulant and toeplitz filter matrices.
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Figure 5.4: Example 5.3: Estimates of the variance of frequency estimates using signal vector prefiltering

and signal matrix prefiltering with circulant and toeplitz filter matrices.
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Summary of the signal prefiltering algorithm

The prefiltering of the signal matrix in the Perceptual Unitary ESPRIT can be summarized in the

following steps

1. Compute the FIR filter coefficients hq(k) for the perceptually weighted filter using e.g. the

method described in section 5.1.2.

2. Do one of the following:

(a) Filter the signal by hq(k), discard the first q samples, and anrrange the remaining

samples in the FB signal matrix.

(b) Arrange the signal in a Hankel structured signal matrix and post multiply by either the

toeplitz or the circulant filter matrix. Then, form the FB signal matrix.

3. Use the FB signal matrix in the Unitary ESPRIT algorithm.

5.3 Selection of perceptually relevant amplitudes and phases

When the signal poles have been estimated using the Perceptual Unitary ESPRIT algorithm, the

complex amplitudes of each cisoid can be found by solving the following weighted least squares

problem [1]

ŝ = argmin
s
||HW (x−As) ||22, (5.36)

where H is the perceptual weighting filter matrix given by either (5.34) or (5.35), W = diag
(

w(k)
)

is a diagonal matrix of the analysis window w(k), and the Vandermonde matrix A is given by (2.5).

This minimization problem has the following closed form solution [17]

ŝ = (HWA)†HWx (5.37)

where (HWA)† is the pseudoinverse of (HWA).

5.4 Summary of the Perceptual Unitary ESPRIT algorithm

We are now able to sum up the steps for the Perceptual Unitary ESPRIT algorithm.

Analysis of signal segment

The analysis of a signal segment for a sinusoidal model using the Perceptual Unitary ESPRIT

algorithm can then be summarized in the following steps

1. Compute the global masking threshold, as described in section 4.2.

2. Compute the coefficients of the perceptual weighting filter e.g. as described in section 5.1.2.

3. Filter the signal as described in section 5.2.1.

4. Compute the signal poles using the Unitary ESPRIT algorithm as described in section 3.2.7

5. Compute the complex amplitudes using (5.37).
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Synthesis of signal segment

Synthesis of a modeled signal using the overlap-and-add method can be summarized in the

following steps where l is the signal segment index and i indexes the individual sinusoids

1. For each signal pole ẑl,i and complex amplitude ŝl,i in each signal segment l, compute a time

sequence for the segment of length N

x̂l,i(k) = ŝl,iẑ
k
l,i. (5.38)

2. Sum up all the time sequences in each segment and multiply by the synthesis window w(k)

x̂l(k) = w(k)
∑

i

x̂l,i(k). (5.39)

3. Reconstruct the signal with overlap and add.

x̂(k) =
∑

l

x̂l(k − lp). (5.40)

5.5 Summary

In this chapter we have described how a psychoacoustic model can be incorporated in the Unitary

ESPRIT algorithm by means of prefiltering the signal prior to applying the Unitary ESPRIT

algorithm. We have identified three different techniques for filtering the signal matrix prior to

parameter estimation: signal vector prefiltering and signal matrix prefitering with a toeplitz

or circulant filter matrix. Finally, we have summarized the final Perceptual Unitary ESPRIT

algorithm on which we will conduct a series of experiments in the following chapter.



Chapter 6

Experimental results

“You cannot acquire experience by making

experiments. You cannot create experience. You

must undergo it.
”

Albert Camus (1913 – 1960)

In this chapter: We perform a series of experiments with the proposed Perceptual Unitary ESPRIT

algorithm for a wide range of deterministic and real speech and audio signals. To examine the

effects of the psychoacoustic model, we compare the Perceptual Unitary ESPRIT algorithm with

the Unitary ESPRIT algorithm. Then, we relate the proposed algorithm to the P-ESM algorithm

introduced by Jensen et al. [1].

6.1 Experiments

In the preceeding chapters we have presented the theoretical framework for a novel algorithm:

Perceptual Unitary ESPRIT. Now, through a series of objective and subjective experiments, we

seek to evaluate the performance of the proposed algorithm under various conditions. We introduce

a perceptually weighted signal-to-noise ratio, which we use to compare the Perceptual Unitary

ESPRIT algorithm with P-ESM.

Comparisons between Perceptual Unitary ESPRIT and Unitary ESPRIT: We exami-

nine how the inclusion of a psychoacoustic model in the Unitary ESPRIT algorithm influ-

ences the parameter estimation. Through three case studies, we show how the Perceptual

Unitary ESPRIT algorithm finds the most perceptually relevant sinusoidal signal compo-

nents as opposed to the Unitary ESPRIT algorithm which finds the most powerful signal

components. Then we examine how the two algorithms choose frequencies over time for two

different audio signals. Finally, we study how often different frequencies are chosen for the

two algorithms.
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Perceptual Unitary ESPRIT: We examine how the signal matrix height-to-width ratio affects

the parameter estimation in the Perceptual Unitary ESPRIT algorithm. For the three

different proposed signal prefiltering methods, we study how the choice of model order relates

to the perceptual signal-to-noise ratio for different types of signal segments.

Comparisons between Perceptual Unitary ESPRIT and P-ESM: We show that an in-

creased estimation accuracy is achieved the by using Unitary ESPRIT as opposed to HTLS

which is the subspace based parameter estimation technique used in P-ESM. Then we com-

pare the Perceptual Unitary ESPRIT algorithm with P-ESM both for stationary signal

segments and for transient segments.

6.1.1 Test signals

All the test signals used are sampled at 44.1 kHz and quantized in 16 bit resolution, corresponding

to CD-audio quality. The signals are imported into Matlab and processed in floating point

precision. For an overview of the different signals see appendix D.

6.1.2 Perceptual signal-to-noise ratio

In order to objectively be able to compare the perceptual quality of a signals, we define the

following perceptually weighted signal-to-noise ratio for a signal vector x as the squared `2 norm

of the windowed and prefiltered signal vector divided by the squared `2 norm of the windowed and

prefiltered signal distortion, ∆x = x− x̃

PSNR = 10 log10

∣
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∣HWx
∣
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∣

2

2
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∣

∣

∣HW∆x
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∣

2

2

, (6.1)

where W = diag
(

w(k)
)

is a diagonal matrix which defines the signal window and H is the

perceptual weighting filter matrix. Notice, that the denominator of this expression corresponds to

the perceptual distortion measure defined in section 5.1.1.

6.2 Comparisons between Perceptual Unitary ESPRIT and

Unitary ESPRIT

The Perceptual Unitary ESPRIT algorithm aims at finding the most perceptually relevant signal

parameters in a sinusoidal signal model as opposed to Unitary ESPRIT which models the most

powerful signal components. Through a series of experiments, we investigate the effects of including

a psychoacoustic model in the Unitary ESPRIT algorithm.
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6.2.1 Three sinusoids

We wish to show how the inclusion of the psychoacoustic model in the Unitary ESPRIT algorithm

affects the parameter estimation for a signal consisting of a sum of sinusoids.

Test signal

We generate a synthetic signal segment of length 1024 at a sample rate of 44.1 kHz, consisting

of three sinusoids, with the frequencies f1 = 1.2 kHz, f2 = 1.4 kHz, and f3 = 20 kHz. The

amplitudes are chosen to be a1 = 0.03, a2 = 0.032, and a3 = 0.1, and the phases are set to

zero. A small amount of white gaussian noise with a standard deviation of σn = 1 · 10−4 is added

to the signal.

Procedure

Using the Perceptual Unitary ESPRIT and the Unitary ESPRIT algorithms, we estimate the

signal parameters for the test signal block, assuming a signal order of d = {2, 4, 6}.

Results

The power spectrum, normalized to dB sound pressure level, is shown in figure 6.1 (a and b) as a

solid line. The frequency dependent perceptual weighting is shown in (a through h) as a dashed

line. The perceptual weighting curve is not the inverse of the global masking threshold from the

psychoacoustic model, but rather the frequency response of the weigting filter derived from the

perceptual masking curve found using the approach described in chapter 5.

Figure 6.1 is divided into two columns where the first column shows the spectrum of the input

signal (a) and the spectra of the estimated signals (c), (e), and (g) of the Perceptual Unitary

ESPRIT algorithm. The second column shows the same original signal spectrum in (b) while the

reconstructed signal spectra of the Unitary ESPRIT is shown in (d), (f), and (h). For the second

row (c) and (d) the model order, d, is set to 2 so that only one sinusoid is modeled. For the other

rows the model order is 4 and 6 respectively.

The Unitary ESPRIT algorithm (the right column), for a model order d = 2 detects the most

powerful signal component, namely the sinusoid at 20 kHz. Next, the second most powerful

sinusoid at 1.4 kHz is found, an finally, the third most powerful sinusoid at 1.2 kHz is detected.

The Perceptual Unitary ESPRIT algorithm (the left colum), first identifies the perceptually

most important sinusoid at 1.2 kHz. This is the most perceptually relevant sinusoidal component,

since the component at 1.4 kHz is partially masked by this, and the component at 20 kHz is below

the absolute hearing threshold. Next, the second most perceptually relevant sinusoid, namely that

at 1.4 kHz is detected. Finally, with a model order of 6, all three sinusoids are estimated.
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Figure 6.1: Modeling of three sinusoids for different model orders, using Perceptual Unitary ESPRIT (left

column) and Unitary ESPRIT (right column). (a) and (b) shows the power spectrum of the synthesized

signal (solid) along with the inverse frequency response of the perceptual filter (dashed). (c) and (d) shows

the modeled signal for d = 2. (e) and (f) modeling with d = 4. (g) and (h) modeling with d = 6.
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6.2.2 Three frequency chirps

Tonal signals, such as voiced regions in speech signals or instrument sounds such as trumpets or

violins, can be modeled as a sum of slowly varying harmonically related sinusoids. This experiment

aims at showing how the inclusion of the psychoacoustic model in the Unitary ESPRIT algorithm

affects the parameter estimation for these types of signals.

Test signal

We generate a synthetic signal segment of length 1024 samples at a sample rate of 44.1 kHz,

consisting of three frequency chips with the initial frequencies, f1 = 2 kHz, f2 = 2.5 kHz, and

f3 = 3 kHz. To simulate the slowly varying pitch-change of real audio signals, the frequencies

are increased by 5% during the segment, which causes a “spreading” in the frequency domain. The

amplitudes are chosen to be a1 = 0.06, a2 = 0.12, and a3 = 0.03. The phases are all set

to zero. As in the previous experiment, a small amount of white gaussian noise with a standard

deviation of σn = 1 · 10−4 is added to the signal.

Procedure

Using the Perceptual Unitary ESPRIT and the Unitary ESPRIT algorithms, we estimate the

signal parameters for the test signal segment, assuming a signal order of d = {2, 4, 6}.

Results

The power spectrum of the original signal, and the inverse frequency response of the masking filter

is shown in the first row of figure 6.2. The next rows shows how the two algorithms model the

signal for model orders 2, 4, and 6 respectively.

The Unitary ESPRIT algorithm (the right column) models the most powerful chirp (d), when

the model order is 2. With a model order of 4, the algorithm uses two sinusoids to model the most

powerful chirp signal, and with a model order of 6, two of the chirps are modeled.

The Perceptual Unitary ESPRIT algorithm (the left column), with a model order of 2, also

models the most powerful chirp. Increasing the model order to 4 and 6 respectively, the Perceptual

Unitary ESPRIT algorithm uses one sinusoid to model each of the chirp signals.

This example shows how the Perceptual Unitary ESPRIT algorithm models the chirps as

individual sinusoids — thus, the frequency variations of the chirp signals are considered less

perceptually important. The Unitary ESPRIT, which seeks to model the most powerful signal

components, aims at modeling the frequency variation of the most powerful chirp signal, before

the second most powerful chirp signal is modeled.
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Figure 6.2: Modeling of three sinusoids with a linear chirp, using Perceptual Unitary ESPRIT (left

column) and Unitary ESPRIT (right column). (a) and (b) shows the power spectrum of the synthesized

signal (solid) along with the inverse frequency response of the perceptual filter (dashed). (c) and (d) shows

the modeled signal for d = 2. (e) and (f) modeling with d = 4. (g) and (h) modeling with d = 6.
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6.2.3 Noise-like signal segment

Noise-like signal segments are not well modeled by a sinusoidal model; however, we wish to examine

how the inclusion of the perceptual model in the Unitary ESPRIT algorithm affects the signal

parameter estimation for such a signal segment.

Test signal

A signal segment of lengh 1024 samples is extracted from a wave file containing male speech:

”spme50 1 short”. The signal segment is chosen from the ”s” sound in the spoken word ”distance”.

This signal possesses an noise-like quality which is especially dificult to model with the sinusoidal

model.

Procedure

Using the Perceptual Unitary ESPRIT and the Unitary ESPRIT algorithms, we estimate the

signal parameters for the test signal block, assuming a signal order of d = {2, 4, 16}.

Results

The power spectrum of the original signal, and the inverse frequency response of the masking filter

is shown in the first row of figure 6.3. The next rows shows how the two algorithms models the

signal for model orders 2, 4, and 16 respectively.

The Unitary ESPRIT algorithm (the right column) for model orders 2, 4, and 16, chooses the

most powerful frequencies which are all in the range 3–8 kHz.

The Perceptual Unitary ESPRIT algorithm (the left column) mainly estimates the low

frequency components in the range 100 Hz – 4 kHz, which by this algorithm are considered most

perceptually relevant.
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Figure 6.3: Modeling of a noise-like segment from an unvoiced part of a monologue spoken by a male

speaker, using Perceptual Unitary ESPRIT (left column) and Unitary ESPRIT (right column). (a) and

(b) show the power spectrum of the origitnal signal (solid) along with the inverse frequency response of

the perceptual filter (dashed). (c) and (d) shows the modeled signal for d = 2. (e) and (f) modeling with

d = 4. (g) and (h) modeling with d = 16.
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6.2.4 Frequency distribution for a speech signal

From the previous experiments, it is evident that the inclusion of the psychoacoustic model in the

Unitary ESPRIT algorithm significantly changes the parameter estimates. Now, we examine this

further, by looking at the frequency estimates as a function of time for the Unitary ESPRIT and

the Perceptual Unitary ESPRIT.

Test signal

The test signal is a 1.2 seconds sample at 44.1 kHz of a female speaker pronouncing the words:

“To administer medicine” (spfe49 1 short).

Procedure

For consecutive 50% overlapping segments of 1024 samples, the signal parameters are estimated

using Unitary ESPRIT and Perceptual Unitary ESPRIT using a model order of d = 50.

Results

The results of the parameter estimation is shown in figure 6.4. In (a) the waveform of the test

signal is shown, (b) is the frequency estimates using the Perceptual Unitary ESPRIT, and (c) is the

frequency estimates using Unitary ESPRIT. The individual estimated frequencies are represented

by dots, and thus only the estimated frequencies and not their amplitudes and phases are shown.

We notice that the frequency estimates using the Perceptual Unitary ESPRIT algorithm are

distributed more evenly than the Unitary ESPRIT. Especially for the unvoiced periods of the

signal at around t = 0.1 s, t = 0.6 s, and t = 1.1 s, the Unitary ESPRIT algorithm (c) uses all

its available sinusoids on the high energy regions at 6− 12 kHz. In those regions, the Perceptual

Unitary ESPRIT algorithm (b) has a better modeling of the lower frequency bands. It can also

be seen that for the voiced periods both of the algorithms are able to model the harmonics of the

pitch frequency of the voice, which can be seen as a series of horizontal lines of dots where the

first line starts at around 200 Hz at e.g. t = 0.3 s. In the voiced regions, the Perceptual Unitary

ESPRIT is noted to include more high frequency components than the Unitary ESPRIT.

Informal listenting tests confirm these results. When the speech signal is modeled by the

Perceptual Unitary ESPRIT and reconstructed using OLA, it is perceived to have a wider

bandwidth in the voiced regions than for the Unitary ESPRIT algorithm. However, the unvoiced

regions sound less “crisp” when using the Perceptual Unitary ESPRIT algorithm.
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Figure 6.4: Female speaker pronouncing “To administer medicine” from the wave-file “spfe49 1 short”.

(a) shows the wave form of the signal. (b) shows the distribution of frequency estimates over time using

the Perceptual Unitary ESPRIT algorithm. (c) shows the distribution of frequency estimates over time

using the Unitary ESPRIT algorithm.
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6.2.5 Frequency distribution for an audio signal

Similar to the previous experiment, we here examine the frequency estimates as a function of time

for the Unitary ESPRIT and the Perceptual Unitary ESPRIT, this time with a tonal audio test

signal: a male bass singer.

Test signal

The test signal is a 1.2 seconds sample at 44.1 kHz of a male bass singer (bass47 1 short).

Procedure

For consecutive 50% overlapping segments of 1024 samples, the signal parameters are estimated

using Unitary ESPRIT and Perceptual Unitary ESPRIT using a model order of d = 50.

Results

The results of the parameter estimation is shown in figure 6.5. In (a) the waveform of the test

signal is shown, (b) is the frequency estimates using the Perceptual Unitary ESPRIT, and (c) is

the frequency estimates using Unitary ESPRIT.

Throughout the signal, the bass singer maintains a voiced tone. Both the Unitary ESPRIT and

the Perceptual Unitary ESPRIT can be seen to model the pitch frequency and the harmonics well.

However, the Unitary ESPRIT mainly models the low to mid range frequencies where most of

the energy is contained. The Perceptual Unitary ESPRIT also models some of the high frequency

components in the signal.

Informal listening tests confirm this: The audio signal of the bass singer modeled by the

Perceptual Unitary ESPRIT algorithm and reconstructed using OLA is perceived to have a wider

bandwidth and thus has a more natural sounding quality than when the signal is modeled by

Unitary ESPRIT.
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Figure 6.5: Male bass singer, first 1.3 seconds of “bass47 1 short”. (a) shows the wave form of the signal.

(b) shows the distribution of frequency estimates over time using the Perceptual Unitary ESPRIT. (c)

shows the distribution of frequency estimates over time using the Unitary ESPRIT.
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6.2.6 Frequency histograms

It has been argued that parameter estimation for sinusoidal modeling of audio signals can well be

performed on a subsampled signal, since vast majority of the estimated frequencies lie in the low

frequency range [1]. By resampling the signal prior to performing the parameter estimates the

computational complexity of the parameter estimation algorithm is reduced significanly due to

the reduction of the dimesions of the signal matrices employed. Here, we investigate the average

distribution of estimated frequencies for the Perceptual Unitary ESPRIT algorithm, based on a

wide range of audio signals.

Test signals

Eight different audio signals are used covering a wide variety of different types of audio signals:

speech, song, tonal instruments, percussion, and band music (see appendix D)

Procedure

All the audio signals are modeled using Unitary ESPRIT and Perceptual Unitary ESPRIT for

consecutive segments of length 1024 with 50% overlap and a model order of d = 50. A total of

3921 signal segments is used. Histograms of the frequencies estimated in all the signal segments

are then created.

Results

In figure 6.6 the histograms of the frequency distribution for (a) the Perceptual Unitary ESPRIT

algorithm and (b) the Unitary ESPRIT algorithm is shown. We notice that the frequency

estimation of the Unitary ESPRIT algorithm is dominated by the often powerful lower frequencies.

The high-frequency regions we saw modeled in the unvoiced regions of speech signals, were only

characteristic for this signal type. For most other signals, the frequencies are primarily distributed

in the region below 10 kHz.

The Perceptual Unitary ESPRIT algorithm has a different distribution. The lowest frequencies,

below 1 kHz, are chosen more often than with the Unitary ESPRIT algorithm. Also it can be

seen that some of the higher frequencies, are more frequently represented than with the Unitary

ESPRIT algorithm.

It is, however, evident that for both algorithms the dominant part of the frequencies are in the

region below 10 kHz. This corresponds to the observations made by Jensen et al. [1].
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Figure 6.6: Histograms of the distribution of the frequencies estimated by (a) the Perceptual Unitary

ESPRIT algorithm and (b) the Unitary ESPRIT algorithm. The data is collected from the modeling of

eight wave-files, and normalized to an estimated probability for a bin size of 500 Hz.
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6.3 Perceptual Unitary ESPRIT

In the following we investigate how the characteristics of the proposed Perceptual Unitary ESPRIT

algorithm. We examine how the dimensions of the signal matrix should be chosen and we look

into the differences between the three different proposed signal prefiltering techniques.

6.3.1 Height-to-width ratio of data matrix

One factor which influences the estimation accuracy of the Perceptual Unitary ESPRIT algorithm

is the proper selection of the signal matrix heigth-to-width ratio. For the P-ESM algorithm, Jensen

et al. found that the most optimum ratio, in a perceptual sense, between the height and width of

the signal matrix was approximately 1/3 [1], i.e the best results were obtained with a “fat” signal

matrix.

Test signals

Eight different audio signals are used covering a wide variety of different types of audio signals:

speech, song, tonal instruments, percussion, and band music (see appendix D)

Procedure

A total of 16 segments of length 1024 samles are chosen by random — two from each of the test

files. For different signal matrix dimensions 0.3 < m/N < 0.7 the Perceptual Unitary ESPRIT

algorithm using circulant matrix prefiltering is used to model each of the segments with a model

order of d = 50. Then, the signal segments are reconstructed from the parameters and windowed

by a Hann window. Finally, the PSNR is computed for each reconstructed signal segment, and

the PSNR is averaged over the 16 signal segments for each m/N ratio.

Results

The result of the experiment is shown in figure 6.7. The PSNR is greatest for a m/N ratio

around 0.55. We notice that since the width of the FB signal matrix used in the Perceptual

Unitary ESPRIT is 2M , the best results are obtained with a “fat” signal matrix as in the P-ESM

algorithm.
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Figure 6.7: The perceptual SNR as a function of the ratio between m and N using the Perceptual

Unitary ESPRIT algorithm. Each data point is averaged over 16 signal segments chosen from 8 different

wave-files.
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6.3.2 Type of prefiltering and model order

In the previous chapter we introduced three different methods in which the prefiltering of the

signal matrix could be performed in the Perceptual Unitary ESPRIT algorithm: signal vector

prefiltering and signal matrix prefiltering with a toeplitz or circulant filter matrix. Now, we

examine how these different prefiltering methods affect the PSNR in the modeling of two different

type of signal segments at a range of different model orders.

Test signals

Two different types of signal segments of length 1024 samples are selected: tonal segments from

a voiced part of male speech (spme50 1 short), and noise-like segments from a musical piece

consisting of cymbals and a choir (sicas13 orig). For each segment type, 13 consecutive segments

are used.

Procedure

For each of the two different segment types the following is performed: The 13 consecutive signal

segments are modeled using the Perceptual Unitary ESPRIT algorithm with model orders ranging

from d = 4 to d = 50. This is done for each of the three different prefiltering methods. In

addition to this, we also include results for the Unitary ESPRIT algorithm. The signal segments

are reconstructed from the estimated parameters and windowed by a Hann window. Finally, the

PSNR is computed for each reconstructed signal segment and the PSNR is averaged over the 13

consecutive segments.

Results

The results are shown in figure 6.8 for (a) the tonal segment and (b) the noise-like segment. We

notice that the PSNR is generally higher for the tonal segment since a tonal segment is better

modeled by the sinusoidal model. Naturally, the Perceptual Unitary ESPRIT algorithm provides

a higher PSNR than the Unitary ESPRIT, since it is in fact designed to minimize the perceptual

distortion. The results for the three different prefiltering methods are seen to be almost equal,

increasing with the model order. Thus, we see that the three proposed prefiltering methods provide

almost equal performance as measured by the PSNR.
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Figure 6.8: The average PSNR for 13 consecutive signal segments from (a) a tonal part from male speech

(spme50 1 short) and (b) a noise-like segment from a symphony orchestra (sicas13 orig). Each segment is

modeled with four different methods to illustrate the influence of the perceptual filter, and how this was

applied.
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6.4 Comparisons between Perceptual Unitary ESPRIT and

P-ESM

Recently, Jensen et al. have proposed an algorithm for estimating perceptually relevant parameters

in an exponentially damped sinusoidal model [1]. The method proposed by Jensen et al. is denoted

P-ESM and is based on incorporating a psychoacoustic model in a subspace parameter estimation

method known as HTLS.

The idea behind our development of the Perceptual Unitary ESPRIT algorithm is to overcome

two drawbacks of the method proposed by Jensen et al., namely to achieve an increased estimation

accuracy at an equal computational cost and to employ a signal model consisting of constant

amplitude sinusoids as opposed to the exponentially damped sinusoids used in the P-ESM

algorithm. Thus, the main differences between P-ESM and Perceptual Unitary ESPRIT is that

the former provides more degrees of freedom due to the use of exponentially damped sinusoids,

whereas the latter provides a more accurate parameter estimation.

In the following, we compare the Perceptual Unitary ESPRIT algorithm with the P-ESM

algorithm. In our implementation of the P-ESM algorithm we use the same psychoacoustic model

as in the Perceptual Unitary ESPRIT algorithm such that the two algorithms can be readily

compared. In the following we show the main differences between the two algorithms through a

few selected examples.

6.4.1 Parameter estimation accuracy

Since the Unitary ESPRIT algorithm exploits the signal data twice in the FB signal matrix, it

provides an increased estimation accuracy over algorithms such as HTLS [13] — especially with

regards to seperating closely spaced sinusoids. Here, we show that this is indeed true.

Test signal

We generate a signal segment of length 1024 samples consisting of two closely spaced frequencies:

ω1 = 0.1 rad/sample and ω2 = ω1 + ∆ω with unit amplitude. A small amount of white gaussian

noise with a standard deviation of σn = 0.1 is added to the signal.

Procedure

For a wide range of ∆ω, the parameters of the synthesized signal segment are estimated using

Unitary ESPRIT and HTLS assuming a model order of d = 4 corresponding to two sinusoids.

Reults

The results are shown in figure 6.9. We see that both HTLS and Unitary ESPRIT are able to

seperate the two sinusoids correctly when they are properly spaced, however both algorithms break

down when the two frequencies are very close. It is obvious from the figure, however, that the

Unitary ESPRIT provides a better frequency seperation than the HTLS algorithm.
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Figure 6.9: The frequency estimation, using (a) HTLS and (b) Unitary ESPRIT for two closely spaced

sinusoids, with varying frequency spacing. One sinusoid maintains a constant normalized frequency of

0.01 rad/sample. The normalized frequency of the other sinusoid is offset with by ∆ω varying from -0.004

to 0.004 rad/sample.
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6.4.2 Pre-echo

A general problem with sinusoidal models is that when the underlying parameters of the signal

change abruptly within one signal segment an artefact known as pre-echo can occur. Pre-echo

occurs because the underlying assumption of constant parameters within each frame is violated.

Here, we give an example of a signal which induces a pre-echo when modeled.

Test signal

The test signal is a 0.04 seconds sample at 44.1 kHz of the attack transient of a glockenspiel

(gspi35 2 short).

Procedure

The test signal is divided in to 50% overlapping segments of length 1024 samples corresponding to

approximatly 23 miliseconds. Each segment is modeled using HTLS, Unitary ESPRIT, P-ESM,

and Perceptual Unitary ESPRIT with a model order of d = 50. Then, the signals are reconstructed

using OLA.

Reults

The results are seen in figure 6.10, where the smearing of the sharp attack transient is evident

for all four parameter estimation methods although to a larger extent in the perceptually based

algorithms. Since the glockenspiel signal has a simple harmonic structure, the HTLS and Unitary

ESPRIT algorithm can use the remaining sinusoids to model the transient. For the Perceptual

Unitary ESPRIT algorithm and P-ESM, much of the high frequency contents of the signal which is

responsible for the transient is removed, since it is not considered perceptually relevant. Therefore

these algorithms cannot accurately model the signal since the transient is in effect removed by

the perceptual weighting filter. Since both the perceptual model and the sinusoidal model itself

is based on the assumption of constant signal parameters, it is obvious that a transient signal is

not modeled well. For this reason, sinusoidal audio models are often used in hybrid audio coders

which also include explicit models for transient and noise-like signals.
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Figure 6.10: Waveform of glockenspiel: In (a) the original signal is shown. The reconstructed signal is

shown when modeled by (b) HTLS, (c) Unitary ESPRIT, (d) P-ESM and (e) Perceptual Unitary ESPRIT
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6.4.3 Transient and stationary segments

In order to get a better picture of how the two perceptual algorithms, Perceptual Unitary ESPRIT

and P-ESM, differ with respect to modeling transient signal segments and stationary signal

segments, the PSNR is computed for the glockenspiel signal used in section 6.4.2. This signal

consists of a sharp attack transient followed by a stationary part. Here, we compare the two

algorithms for different segment sizes by evaluating the PSNR for each segment.

Test signal

The test signal is a 0.04 seconds sample at 44.1 kHz of the attack transient of a glockenspiel

(gspi35 2 short). In the quiet period the signal is set to zero.

Procedure

The signal is segmented into 50% overlapping blocks of length 1024, 512, and 256 samples

respectively. The perceptual filter length used is 1/4 of the segment length, for all three segment

lengths. Each signal segment is modeled by the Perceptual Unitary ESPRIT algorithm (with

circulant matrix prefiltering) and by P-ESM using a model order of d = 50, and the perceptual

signal-to-noise ratio is computed for each signal segment.

Reults

The results are shown in figure 6.11, where the segmentation is indicated by the greytoned Hann

windows. For all three segment sizes, the PSNR is set to zero for all segments where the signal

is zero. For segment sizes 1024 and 512, examining the transient part of the signal, we see that

the P-ESM algorithm has the highest PSNR, whereas in the stationary part of the signal, the

PSNR is almost equal for the two algorithms. This is due to the exponential window used in the

P-ESM which enables some transient modeling to take place. For the 256 samples segments, the

PSNR is highest for the Perceptual Unitary ESPRIT algorithm. When only 256 samples are used

to estimate the signal parameters, the superior frequency resolution of the Perceptual Unitary

ESPRIT algorithm has a significant influence on the results.
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Figure 6.11: Waveform of glockenspiel, (a). PSNR computed for each block, before reconstruction. (b)

shows the PSNR for the two perceptual algorihms, with a segment size of 1024 samples. (c) shows the

PSNR for segments 512 samples in length. (d) shows the PSNR for segments 256 samples in length. The

analysis windows are represented by the graytoned Hann windows.
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6.4.4 Deterministic transient signal

Finally, we repeat the previous experiment, this time using a deterministic signal consisting of a

single sinusoid.

Test signal

We generate a signal consisting of the sudden onset of a 1 kHz tone. The signal is generated at a

sample rate of 44.1 kHz.

Procedure

The signal is segmented into 50% overlapping blocks of length 1024, 512, and 256 samples

respectively. Each signal segment is modeled by the Perceptual Unitary ESPRIT algorithm (with

circulant matrix prefiltering) and by P-ESM using a model order of d = 2. Then, the perceptual

signal-to-noise ratio is computed for each signal segment.

Reults

The results are shown in figure 6.12. Concerning the segments in which the transient occurs, we

notice a slightly higher PSNR for the P-ESM algorithm when using a large segment length, 1024,

however for the short segment length, 256, the PSNR is slightly higher for the Perceptual Unitary

ESPRIT algorithm. This corresponds well with the results obtained in the previous experiment

for the attack transient of a glockenspiel. For the stationary part, consisting of just one sinusoid,

there is no significant difference between the Perceptual Unitary ESPRIT algorithm and P-ESM.

Thus, when only one sinusoid is to be estimated, there is not much difference in the accuracy of

the two methods.
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Figure 6.12: Waveform of a sudden onset of a single sinusoid (a). PSNR computed for each block,

before reconstruction. (b) shows the PSNR for the two perceptual algorihms, with a segment size of 1024

samples. (c) shows the PSNR for segments 512 samples in length. (d) shows the PSNR for segments 256

samples in length. The analysis windows are represented by the graytoned Hann windows.
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Chapter 7

Discussion and conclusions

“I may not have gone where I intended to go, but I

think I have ended up where I intended to be.
”

Douglas Adams (1952 – 2001)

In this chapter: We summarize the results obtained in this work and discuss strengths and

weaknesses of the proposed algorithm.

In this dissertation we have proposed a novel algorithm for estimating perceptually relevant

parameters for constant amplitude sinusoidal audio modeling. The proposed algorithm combines

a psychoacoustic model with the Unitary ESPRIT algorithm.

The main goal of this work is to alleviate two drawbacks of a similar algorithm proposed by

Jensen et al., namely the P-ESM algorithm, in which a subspace based parameter estimation

method known as HTLS is combined with a psychoacoustic model for the purpose of estimating

perceptually relevant parameters in an exponentially damped sinusoidal signal model. The two

identified drawbacks are the following: 1) Exponentially damped sinusoids are used — in stationary

signal segments, where an exponential damping factor is of little use, a constant amplitude

sinusoidal model provides a more compact representation. 2) It is computationally complex

— other subspace based parameter estimation methods provide better estimation accuracy at

a comparable computational cost.

Concerning the modeling of signal segments which can rightly be considered stationary, there

is not much difference between the results obtained by the Perceptual Unitary ESPRIT and the

P-ESM for long signal segments of e.g. 1024 samples. For such signal segments, the Perceptual

Unitary ESPRIT algorithm provides an equally good signal model using one parameter less than

the P-ESM algorithm. For small signal segments of e.g. 256 samples the signal pole estimates will

naturally be less precise because they are found from a relatively small amount of data. Here, the

Perceptual Unitary ESPRIT provides superior estimates compared with the P-ESM algorithm,

due to its increased frequency resolution.

With regards to modeling of transient signal segments neither the Perceptual Unitary ESPRIT

nor the P-ESM show excellent results. This is due to the fact that the assumption of stationarity,

on which both the signal model and the psychoacoustic model rely, is not valid. For long segment
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sizes, such as segments of 1024 samples as used in some experiments in this work, the effects

of an exponential damping factor is however quite evident. In transient signal segments, where

the exponential damping is of great value in modeling the signal, the P-ESM clearly gives better

results. However, the situation is reversed for short segments, such as segments of 256 samples.

Here, the increased frequency estimation accuracy of the Perceptual Unitary ESPRIT algorithm

is significant.

The computational cost of the algorithm proposed in this dissertation is comparable to that of

the P-ESM algorithm; however, the data used for the parameter estimation is essentially doubled

resulting in an increased estimation accuracy.

The objective of the work has been to combine a perceptual model with the Unitary ESPRIT

algorithm. Three prefiltering schemes have been identified: the signal vector prefiltering and the

signal matrix prefiltering with a toeplitz or circulant filter matrix. Each of these methods have

been implemented and analysed. Experimental results, conducted on a wide range of signals have

not shown any preference to one particular method. Therefore, further studies of the effects of the

method of prefiltering should be conducted.

In conclusion, the Perceptual Unitary ESPRIT algorithm constitutes a robust, accurate, and

efficient method for estimating perceptually relevant parameters for constant amplitude sinusoidal

audio modeling.



Appendix A

ESPRIT: The covariance method

Here, we present an alternative approach to the ESPRIT algorithm, based on covariance matrices

of the signal. Consider a signal consisting of d complex sinusoids in additive noise

x(k) =

d
∑

i=1

sie
jωi + n(k). (A.1)

Let us define the vectors x(k), y(k), and n(k) [27]

x(k) = [x(k), . . . , x(k + m− 1)]T (A.2)

y(k) = [x(k + 1), . . . , x(k + m)]T , (A.3)

n(k) = [n(k), . . . , n(k + m− 1)]T , (A.4)

where m > d. We may then write [27]

x(k) = As(k) + n(k), (A.5)

y(k) = AΦs(k) + n(k + 1), (A.6)

where s = [s1, . . . , sd]
T is a vector of complex amplitudes, Φ = diag(ejω1 , . . . , ejωd) is a diagonal

matrix of the phase lags of the d frequencies, and A is a Vandermonde matrix where each column

corresponds to an individual complex sinusoid [27]. In the case where the noise is white Gaussian

with variance σ2
n, the autocovariance matrix of the signal vector, x(k), can be written as

Rxx = E{x(k)xH(k)} = ASAH + σ2
nI, (A.7)

where S = E{s(k)sH(k)} ∈ Cd×d is the covariance matrix of the complex amplitudes of the

sinusoids. Similarly, the crosscovariance matrix of x(k) and y(k) can be written as

Rxy = E{x(k)yH(k)} = ASΦAH + σ2
nZ, (A.8)

where Z is a square matrix with ones on the first subdiagonal and zeros elsewhere. Then, we

define

Cxx = Rxx − σ2
nI = ASAH , (A.9)

Cxy = Rxy − σ2
nZ = ASΦAH , (A.10)

Now, consider the matrix pencil

Cxx − λCxy = AS(I − λΦH)AH . (A.11)
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By inspection, we can see that when λ = ejωi , the ith row of I−λΦH is zero and the matrix pencil

will decrease in rank. Thus, it is obvious that λ = ejωi is a generalized eigenvalue of the matrix

pair {Cxx, Cxy}. Thus, the signal frequencies can be determined from the generalized eigenvalue

decomposition of the matrix pair {Cxx, Cxy}: The d generalized eigenvalues of the matrix pair

closest to the unit circle will correspond to the signal poles.
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Singular value decomposition

The singular value decomposition (SVD) provides a means for factoring any matrix, A ∈ Cm×n

as

A = UΣV H ,

where U ∈ Cm×m and V ∈ Cn×n are unitary and Σ is real non-negative diagonal with the

elements arranged in non-increasing order [17, ch. 7].

Σ = diag(σ1, . . . , σp), p = min(m, n).

The singular values are the diagonal elements of Σ. These are real positive numbers ordered such

that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = 0.

The rank of A is equal to the number of non-zero eigenvalues: rank(A) = r.

The matrix A can be seen as a linear operator that is capable of performing some transformation

on an input vector

b = Ax.

The column space of A is spanned by the independent columns of A. The dimensionality of

the column space is equal to the number of independent colums, i.e. rank(A) = r. The

column space corresponds to the range of the transformation Ax, i.e. the set of all values

the matrix product Ax can take. If we wish to find a solution to the equation b = Ax it is

thus required that b resides in the column space of A.

The nullspace of A corresponds to the vectors x which solve the equation 0 = Ax. The

dimensionality of the nullspace is determined by the number of linear dependent rows in

A since the linear combination of independent rows can only be 0 for the trivial case of

x = 0. The number of linear dependent rows is m− r.

The row space of A is spanned by the independent rows of A. The dimensionality of the row

space is equal to the number of independent rows, i.e. rank(A) = r. The row space can

also be decribed as the column space of the conjugate transpose of A, i.e. the row space is

spanned by R(AH ). The row space is the orthogonal complement of the nullspace of A.

The left nullspace of A corresponds to the vectors which cannot be written as the matrix

product Ax. The dimensionality of the left nullspace is determined by the number of linear

dependent columns in A. The left nullspace is the orthogonal complement of the range of

A.
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The singular value decomposition of A provides orthonormal bases for all four fundamental

subspaces of A. A visual interpretation of the four fundamental subspaces is given in B.1. For a

discussion of the computational aspects of the SVD see e.g. [16, sec. 8.6].

First r columns of U : Column space = R(A)

Last m− r columns of U : Nullspace = N (A)

First r columns of V : Row space = R(AH )

Last n− r columns of V : Left nullspace = N (AH )

Row space

Nullspace nullspace
Left

Column space

CmCn

N (A)

R(A)

N (AH)

R(AH)

Figure B.1: Visualization of the four fundamental matrix subspaces [36].
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Signal and noise subspaces

In subspace based signal analysis methods, the notion of signal and noise subspaces for a signal

matrix is often used. In the following, we give a short introduction to the idea of signal and noise

subspaces.

Consider a signal x(k) consisting of one cosine with frequency ω and amplitude a

x(k) = a · cos(ωk). (C.1)

Using Eulers relation, this can be written as the sum of two complex exponentials

x(k) =
a

2

(

ejωk + e−jωk
)

. (C.2)

We now construct a Hankel structured signal matrix

X(k) =













x(k) x(k + 1) · · · x(k + M)

x(k + 1) x(k + 2) · · · x(k + M + 1)
...

...
...

x(k + m) x(k + m + 1) · · · x(k + N − 1)













. (C.3)

By the so-called Vandermonde decomposition, this matrix can also be written on the following

form

X(k) =













1 1

ejω e−jω

...
...

ejωm−1 e−jωm−1













[

a
2 · ejωk

a
2 · ejωk

][

1 ejω · · · ejωM

1 e−jω · · · e−jωM

]

. (C.4)

By comparing (C.4) to (C.3) and (C.2) it can be verified that this is indeed true. We can identify

(C.4) as a sum of two independent outer vector products. Since the rank of an outer vector product

is one, we see that the matrix X(k) is of rank two. In general we may say that a signal matrix

for a signal consisting of d complex exponentials will be of rank d. Thus, the signal resides in a

d-dimensional subspace of Cm. This subspace we denote the signal subspace. The singular value

decomposition (see appendix B) can be used to determine this subspace.

Consider now the case where noise is added to the signal, x(k)

s(k) = x(k) + n(k), (C.5)
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where n(k) is a stationary, zero-mean, white, gaussian noise signal. If we construct a Hankel

structured signal matrix from s(k) it will in general be full rank. Since the noise is uncorrelated, it

will span the entire vector space Cm. We may still say that the signal resides in a signal subspace

(although it should more accurately now be denoted a signal-plus-noise subspace). The orthogonal

complement of the signal subspace, we denote the noise subspace. If we know the dimensionality

of the signal subspace, it can be estimated using the singular value decomposition. It will be

spanned by the left singular vectors corresponding to the greatest singular values.

By setting the singular values which signify the noise subspace to zero, a rank d matrix

approximating the signal matrix can be found. This is the best rank d approximant of the signal

matrix in the Frobenius norm. This matrix only contains the signal-subspace part of the original

signal matrix.

Example C.1. Consider a signal consisting of three real sinusoids in additive white gaussian

noise. From a signal block of length 100, we construct a Hankel signal matrix of dimensions

87 × 16. By taking the SVD of the signal matrix, we get an estimate of the signal and noise

subspaces. In figure C.1, the singular value spectrum is shown. Since the model order is known,

we know that the first six singular values belong to the signal subspace and the rest of the singular

values is associated with the noise subspace. Thus, we know that the signal subspace is spanned by

the first six left singular vectors, and the noise subspace is spanned by the remaining left singular

vectors.

2

0 2 4 6 8 10 12 14 16
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Singular values

Noise Subspace

Signal Subspace

Figure C.1: Singular value spectrum for a signal consisting of three sinusoids in white gaussian noise.

This illustrates the subspace identification problem. The three sinusoids in the signal will span a six-

dimensional subspace, whereas the noise spans the whole space.



Appendix D

Sound files

The files used for experiments have primarily been found in the sound quality assestment material

(SQAM) database [44], which is a collection of audio files chosen by the European Broadcasting

Union (EBU), for sound quality assestment. The files have been chosen for their characteristic

sounds, i.e. tonality, transient behaviour, and noise-like sections. In addition to the files from the

SQAM, two other files suplied from our supervisors have also been included.

Each file is sampled at 44.1 kHz and is recorded with audio-CD quality, i.e. each sample is

represented in 16 bits resolution. Each file has been reduced to include only a few seconds.

bass47 1 short.wav A wav-file from the SQAM, of male bass singer.

gspi35 2 short.wav A wav-file from the SQAM, of a glockenspiel.

quar48 1 short.wav A wav-file from the SQAM, of a quartet of male and

female singers.

spfe49 1 short.wav A wav-file from the SQAM, of a female speaker

reading a english text.

spme50 1 short.wav A wav-file from the SQAM, of a male speaker reading

a english text.

trpt21 2 short.wav A wav-file from the SQAM, of a trumpet.

sicas3 orig.wav A wav-file from the supervisors, ABBA - Head over

heels, from the album: The Visitors.

sicas13 orig.wav A wav-file form the supervisors, symphony orchestra

and a choir.

Both the shortened, and full version of each file can be found on the CD-ROM in the wav-files

section.
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Appendix E

Project proposal

The following is the original project proposal written by Jesper Jensen and Søren Holdt Jensen.

Perceptual Unitary ESPRIT Algorithm

Sinusoidal models, which aim at representing signal segments as sums of sinusoidal

functions, have proven to provide accurate and flexible representations of a large

class of acoustic signals including audio and speech signals. For speech and audio

processing, sinusoidal models have been applied in areas such as speech coding, speech

enhancement, speech signal transformations, music synthesis, and more recently low

bit-rate audio coding.

The problem of robust and accurate estimation of perceptually relevant model

parameters based on an observed signal segment is of critical importance in any

sinusoidal model based system, especially for coding purposes where a limited set

of model parameters is necessary. A potential class of algorithms for solving this

estimation problem are the so-called subspace based algorithms. However, a well-

known problem with this algorithm class is the difficulty in representing only the

perceptually relevant time/frequency regions of the signal in question by exploiting

the masking properties of the human auditory system. Only recent research [1] has

shown how to achieve this. While the algorithm described in [1] certainly outperforms

non-perceptual parameter estimation algorithms, it has two drawbacks: i) it uses

exponentially damped sinusoids as basis functions (and thus requires as many as four

parameters per sinusoid: amplitude, damping, frequency, and phase), and ii) it is

computationally complex. This project attemts to eliminate the problems i) and ii)

related to the algorithm in [1] through use of the so-called Unitary ESPRIT algorithm

[13], which is a subspace-based algorithm for estimating sinusoids. The goal is to

design a variant of the Unitary ESPRIT algorithm which takes perceptual relevance

into account in the estimation process. Although theoretically advanced and highly

demanding, the computational complexity of the Unitary ESPRIT is lower than the

algorithm in [1]. Furthermore, Unitary ESPRIT uses undamped sinusoids as basis

functions and thus reduces the parameter set of [1] by eliminating the damping factors.

A successful outcome of this project is of current and immediate interest for parametric,

low-rate audio coding purposes.
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