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Abstract

We present a novel method for automatic transcrip-
tion of polyphonic music based on a recently pub-
lished algorithm for non-negative matrix factor 2-D
deconvolution. The method works by simultaneously
estimating a time-frequency model for an instrument
and a pattern corresponding to the notes which are
played based on a log-frequency spectrogram of the
music.

1 Introduction

Automatic transcription of polyphonic music is a very
difficult and currently unsolved problem. The task
is to create a system which can extract the musical
score for a piece of recorded music where multiple
notes are played simultaneously by different instru-
ments. Even for trained musicians, manual music
transcription is very difficult to perform. Often it is
necessary to listen to the music repeatedly and tran-
scribe one instrument at a time [6]. In the recent
years a number of different approaches for automatic
music transcription have been proposed. However,
currently no system exists which performs as well as
skilled musicians [4].

Plumbley et al. [6] distinguishes between knowl-

edge based and data driven methods. The former
denotes methods based on knowledge of the physics
of music generation and the human auditory system
and seeks to mimic transcription as it is performed
by humans, whereas the latter denotes methods aim-
ing at extracting information of the structure of the
music directly from the audio signal.

The perception of music can be seen as the pro-
cess of transforming the low-level representation of
the music, the audio waveform, into a high level rep-
resentation, e.g. “Mozart’s Sonata in C-major”. The
term mid level representation is often used to denote
the intermediate representations of signals. A good
mid-level representation for audio should be able to
separate individual sources, be invertible in a per-
ceptual sense, reduce the number of components and
reveal the most important attributes of the sound [1].

Current methods for automatic music transcription
are often based on modeling the music spectrum as
a sum of harmonic sources and estimating the funda-
mental frequencies of these sources. This information
constitutes an ad hoc mid-level representation.

In order to succesfully create a system for auto-
matic music transcription, the information contained
in the analyzed audio signal must be combined with
knowledge of the structure of music [4]. The problem
of music transcription has many similarities with that
of speech recognition, where successful systems com-
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bine carefully selected speech features with statistical
language models.

Recently, Smaragdis and Brown [8] introduced
a data driven method for automatic music tran-
scription based on non-negative matrix factorization.
Their idea is to factorize a magnitude spectrogram of
music into factors corresponding to models of indi-
vidual notes and the times at which they are played.
This method provides a very useful mid-level repre-
sentation but has the disadvantage that it does not in
fact model notes but rather unique events. Thus, if
two notes are always played simultaneously they will
be modelled as one component. Also, some compo-
nents might not correspond to notes but rather model
e.g. background noise.

In this paper we propose a novel method for auto-
matic transcription of polyphonic music. The method
is based on a recently introduced non-negative ma-
trix factor 2-D deconvolution model [7, 5], which is
used to compute a very useful mid-level representa-
tion of music. The idea is to simultaneously model
the instruments and the notes which are played. The
described method is purely data driven and can be
combined with a knowledge based system to give a
functioning music transcription system.

2 Method

It is well known that the scale of music is logarithmic.
The twelve-tone equal tempered scale which forms
the basis of modern western music divides each oc-
tave into twelve halfnotes where the frequency ratio
between each successive halfnote is equal. If F1 is
the fundamental frequency of one note, then the fun-
damental frequency of the note which is p halfnotes
above can be expressed as F2 = F1 · 2

p/12. Taking
the logarithm gives: log F2 = log F1 + p

12
log 2, thus

in a log-frequency representation the notes are lin-
early spaced.

We assume, that an instrument can be modelled
by a specific time-frequency signature modulating the
sound of the instrument over the time τ . When an in-
strument plays a note at a certain time, this signature
is displaced onto the time axis. Similarly, when an
instrument plays a note with a certain pitch, φ, it cor-

responds to displacing the time-frequency signature
on the log-frequency axis. This constitutes the basic
idea in the recently introduced non-negative matrix
factor 2-D deconvolution (NMF2D) model [7]:

V ≈ Λ =
∑

τ

∑

φ

↓φ

W
τ
→τ

H
φ, (1)

where V ∈ RM×N
+ , W

τ ∈ RM×d
+ and H

φ ∈ Rd×N
+

are non negative matrices, ↓ φ denotes the downward
shift operator which moves each element in the ma-
trix φ rows down, and → τ denotes the right shift
operator which moves each element in the matrix τ
columns to the right.

The matrix V is a log-frequency magnitude spec-
trogram representation of a piece of polyphonic mu-
sic. The columns of W

τ correspond to the time-
frequency signature of a given instrument, and the
rows of H

φ correspond to the time-pitch signature of
each instrument, i.e. which notes are played by the
instrument at what time.

In order to estimate the parameters of the model,
we use the following least squares cost function:

CLS =
1

2
||V −Λ||2f =

1

2

∑

i

∑

j

(Vi,j −Λi,j)
2. (2)

Based on gradient descent with multiplicative up-
dates, the following recursive updates can be used
to compute W

τ and H
φ [7, 5]:

W
τ ←W

τ •

∑

φ

↑φ

V

→τ

H
φ

T

∑

φ

↑φ

Λ

→τ

Hφ
T

, (3)

H
φ ← H

φ •

∑

τ

↓φ

W
τ

T
←τ

V

∑

τ

↓φ

Wτ

T
←τ

Λ

, (4)

where A •B denotes element-wise multiplication and
A
B

denotes element-wise division. The algorithm has
been proven to converge with these updates [5].

It is important to note that the NMF2D model
has certain ambiguities between the factors W

τ and
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H
φ. If a time-frequency signature of an instrument is

shifted in time or frequency, there exists an adverse
shift of the time-pitch signature (if we disregard edge
effects). In order to alleviate the shift ambiguity it
can be useful to shift W

τ and H
φ during the recur-

sive computation, e.g. such that the geometric mean
value of the row coefficients in W

τ and the column
coefficients of H

φ are centered.
Another ambiguity is, that NMF2D is not in gen-

eral unique. If the data does not span the positive
octant adequately a rotation of W

τ and adverse ro-
tation of H

φ can yield equivalent results. Further-
more, the structure of a factor in H

φ can to some
extend be put into the signature of the same factor
in W

τ and vice versa [5]. The upper harmonics in the
time-frequency signature of an instrument in W

τ can
for example to some extent be modelled by notes of
higher pitch being present in H

φ. In order to ensure
unique solutions, constraints in the form of sparse-
ness are useful [2, 3]. In this case we wish to have all
information pertaining to the instrument included i
W

τ , which can be ensured by a sparsity constraint
on H

φ. A sparse solution can be obtained by modi-
fying the cost function so that we minimize the norm
of H

φ while keeping the norm of each instrument in
W

τ constant. While Hoyer [2, 3] uses the 1-norm we
here use the 1/2-norm since it more heavily penalizes
small values in H

φ [5]. To find the update equations
for the sparse NMF2D (SNMF2D) we consider the
following cost function [5]:

CSLS = CLS + β · ‖H‖1/2 (5)

s.t. ‖Wd‖2 = 1, (6)

where:

‖H‖1/2 =





∑

φ,d,j

(

|Hφ
d,j|

)1/2





2

, (7)

‖Wd‖2 =





∑

τ,i

(

|Wτ
i,d|

)2





1/2

, (8)

and β is a sparseness parameter defining the relative
weight of the sparseness term to the approximation
of V.

Based on gradient descent, the following recursive
updates can be used to compute W

τ and H
φ [5]:

W
τ ←W

τ + ηW





∑

φ

↑φ

(V−Λ)
→τ

H
φ



 , (9)

H
φ ← H

φ + ηH





β ·Hφ(−1/2)

‖H‖
−1/2

1/2

+
∑

τ

↓φ

W
τT

←τ

(V−Λ)



 , (10)

where H
φ(−1/2)

denotes rasing each element of H
φ to

the power −1/2.
The algorithm is summarized in the following

steps:

1. Initialize W
φ and H

τ randomly.

2. Update W
τ according to (9).

3. Set any negative elements in W
τ to zero.

4. Normalize W
τ according to (6).

5. If cost function is reduced accept W else reject
update, reduce step size, ηW , and go to step 2.

6. Update H
φ according to (10).

7. Set any negative elements in H
φ to zero.

8. If cost function is reduced accept H else reject
update, reduce step size, ηH , and go to step 6.

9. Repeat from step 2 until convergence.

Since the SNMF2D requires adaption of the step
sizes ηW and ηH it does not converge as fast as the
NMF2D. Consequently, it can be convenient to use
NMF2D to find a starting point as opposed to start-
ing from random.

3 Experimental Results

The NMF2D and SNMF2D methods were tested on
two pieces of music; a computer generated piece and
a real piano recording. Both pieces of music are the
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first bars of Mozart’s Sonata in C-major K.545 Al-
legro. The computer generated music was created
using a single sampled piano note.

We resampled the music to a sample rate of 16 kHz
and analyzed it by the short time Fourier transform
with a 2048 point Hanning windowed FFT and 50%
overlap. This gave us 61 FFT slices. We grouped the
spectrogram bins into 303 logarithmically spaced fre-
quency bins in the range from 100 Hz to 8 kHz with
48 bins per octave, which corresponds to four times
the resolution of the equal tempered musical scale.
Then, we performed the NMF2D and SNMF2D anal-
ysis of the log-frequency magnitude spectrogram. We
used one factor, d = 1, corresponding to modelling
one instrument. We empirically chose to use eight
convolutive components in time, τ = {0, . . . , 7}, cor-
responding to 50 milliseconds. We chose to use 128
convolutive components in pitch, φ = {0, . . . , 127},
corresponding to more than 2 1/2 octaves. For the
SNMF2D analysis we chose a sparseness parameter,
β = 0.1.

The results of the analyses of the computer gen-
erated music and the real music are shown in Fig-
ure 1 and Figure 2 respectively. The figures show
the score for the piece of music and log amplitude of
H

φ, W
τ , and the modelled spectrogram, Λ, for the

NMF2D and SNMF2D analysis. In all analyses we
note, that the instrument time-frequency signature,
W

τ , reveals a clear harmonic structure as would be
expected. The time-pitch signature in the NMF2D
analyses show that part of the harmonics and back-
ground noise are modelled here in addition to the
notes which are played. In the SNMF2D analyses
however, only the notes are present in the time-pitch
signature.

4 Discussion

The results show, that the proposed SNMF2D
method is very well suited for automatic transcription
of polyphonic music. The analysis of the computer
generated music in Figure 1 shows that all notes can
be identified. The same is the case for the real piano
recording shown in Figure 2, except for the second
low C, which is missing in the sparse analysis, be-

cause the note is played very softly and is removed
by the sparsity constraint.

In our examples, we do not translate the result of
the analysis into an actual score. The frequencies
of the notes can be found by computing the funda-
mental frequency of the time-frequency signature of
the instrument, e.g. by fitting a harmonic model and
compare this to the relative pitch of the notes in H.
In order to perform automatic transcription based on
the SNMF2D decomposition, it should be combined
with a suitable knowledge based system, which can
perform quantization, rejection of spurious notes etc.

The NMF2D has a large number of parameters,
depending on the number of time shifts τ and pitch
shifts φ. In the analyzed examples above, the number
of elements in V was 18438 while W and H had a
total of 10232 elements, thus the number of parame-
ters in the model is more than half that of the data.
Even when the number of parameters in the model
is greater than that of the data, i.e. the problem is
overcomplete, the SNMF2D model can give reason-
able results because of the sparsity constraint on H

φ.
In all the experiments, the estimated model fitted

the data very well; in all our experiments, both us-
ing NMF2D and SNMF2D, the explained variation
was above 95%. It is also worth to mention, that
for the four second music examples described here
the algorithm took less than one minute to run. The
complexity of the algorithm is approximately linear i
the length of the signal.

In these examples the analyzed instrument was a
piano. Our studies show that the method also works
very well when analyzing other instruments such as
guitars, flutes and violins. For many real instru-
ments, the assumption that all notes can be mod-
elled by a time-frequency signature which is simply
shifted on the time- and frequency axes does hold rea-
sonably well. However, instruments for which it does
not hold, can e.g. be modelled by multiple factors
which each span a shorter range of the scale.

One aspect which is not directly modelled is the
length of the notes. Since each note is modelled by
a fixed time-frequency signature, the note length is
captured in the time-pitch signature, where the notes
appear as lines. However, sometimes the lines of a
single tone is broken and can thus falsely be identified
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Figure 1: Computer generated music: Musical score and analysis by NMF2D and SNMF2D. The two analysis
plots show the log amplitude of H

φ (top), W
τ (bottom left), and Λ (bottom right).
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Figure 2: Recorded piano music: Musical score and analysis by NMF2D and SNMF2D. The two analysis
plots show the log amplitude of H

φ (top), W
τ (bottom left), and Λ (bottom right).
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as two notes. The model could gain from including a
more direct way of modelling note lengths. Also the
method could be improved by modelling the way the
time-frequency profile of an instrument changes from
the low notes to the high notes.

Compared to the method proposed by Smaragdis
and Brown [8], the sparse NMF2D method has the
advantage that it directly provides a representation
which can be used to determine the notes played by
an instrument, and that it can identify notes which do
not occur in isolation. Furthermore, the method can
be used to model multiple simultaneous instruments.

Initial studies show, that the SNMF2D algorithm
also works well for transcription of simple computer
generated multiple instrument polyphonic music, but
cannot directly be used for transcription of complex
real polyphonic music with multiple instruments. Fu-
ture work will focus on extending the NMF2D model
on multiple instrument transcription using super-
vised approaches.

5 Conclusion

We have presented a method for automatic transcrip-
tion of polyphonic music based on a novel sparse
non-negative matrix factor 2-D deconvolution model.
We have demonstrated the method for two pieces of
polyphonic piano music with good results. SNMF2D
seems to be a promising method for automatic music
transcription.
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