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Abstract

We apply machine learning techniques to the problem of separat-
ing multiple speech sources from a single microphone recording.
The method of choice is a sparse non-negative matrix factorization
algorithm, which in an unsupervised manner can learn sparserep-
resentations of the data. This is applied to the learning of person-
alized dictionaries from a speech corpus, which in turn are used
to separate the audio stream into its components. We show that
computational savings can be achieved by segmenting the training
data on a phoneme level. To split the data, a conventional speech
recognizer is used. The performance of the unsupervised andsu-
pervised adaptation schemes result in significant improvements in
terms of the target-to-masker ratio.

1. Introduction
A general problem in many applications is that of extractingthe
underlying sources from a mixture. A classical example is the so-
called cocktail-party problem in which the problem is to recognize
or isolate what is being said by an individual speaker in a mix-
ture of speech from various speakers. A particular difficultversion
of the cocktail-party problem occurs when only a single-channel
recording is available, yet the human auditory system solves this
problem for us. Despite its obvious possible applications in, e.g.,
hearing aids or as a preprocessor to a speech recognition system,
no machine has been built, which solves this problem in general.

Within the signal processing and machine learning communi-
ties, the single channel separation problem has been studied exten-
sively, and different parametric and non-parametric signal models
have been proposed.

Hidden Markov models (HMM) are quite powerful for mod-
elling a single speaker. It has been suggested by Roweis [1] to use
a factorial HMM to separate mixed speech. Another suggestion
by Roweis is to use a factorial-max vector quantizer [2]. Jang and
Lee [3] use independent component analysis (ICA) to learn a dic-
tionary for sparse encoding [4], which optimizes an independence
measure across the encoding of the different sources. Pearlmutter
and Olsson [5] generalize these results to overcomplete dictionar-
ies, where the number of dictionary elements is allowed to exceed
the dimensionality of the data. Other methods learn spectral dic-
tionaries based on different types of non-negative matrix factoriza-
tion (NMF) [6]. One idea is to assume a convolutive sum mixture,
allowing the basis functions to capture time-frequency structures
[7, 8].

A number researchers have taken ideas from the computa-

tional auditory scene analysis (CASA) literature, trying to incorpo-
rate various grouping cues of the human auditory system in speech
separation algorithms [9, 10]. In the work by Ellis and Weiss[11]
careful consideration is given to the representation of theaudio sig-
nals so that the perceived quality of the separation is maximized.

In this work we propose to use the sparse non-negative ma-
trix factorization (SNMF) [12] as a computationally attractive ap-
proach to sparse encoding separation. As a first step, overcom-
plete dictionaries are estimated for different speakers togive sparse
representations of the signals. Separation of the source signals is
achieved by merging the dictionaries pertaining to the sources in
the mixture and then computing the sparse decomposition. We
explore the significance of the degree of sparseness and the num-
ber of dictionary elements. We then compare the basic unsuper-
vised SNMF with a supervised application of the same algorithm
in which the training data is split into phoneme-level subproblems,
leading to considerable computational savings.

The article is organized as follows: First, the separation
method based on SNMF is explained in details, and we elaborate
on the idea of computing the SNMF on individual phonemes. This
is followed by simulations demonstrating the usefulness ofthe al-
gorithm on a speech separation task. We conclude with a brief
discussion and suggest future improvements of the approach.

2. Method
In the following, we consider modelling a magnitude spectrogram
representation of a mixed speech signal. We represent the speech
signal in the non-negative Mel spectrum magnitude domain, as
suggested by Ellis and Weiss [11].

Here we posit that the spectrogram can be sparsely represented
in an overcomplete basis,

Y = DH (1)

that is, each data point held in the columns ofY is a linear combi-
nation of few columns ofD. The dictionary,D, can hold arbitrar-
ily many columns, and the code matrix,H, is sparse. Furthermore,
we assume that the mixture signal is a sum ofR source signals

Y =
R

∑

i

Yi.

The basis of the mixture signal is then the concatenation of the
source dictionaries,D = [D1 . . .Di . . .DR], and the complete
code matrix is the concatenation of the source-individual codes,



H =
[

H
⊤

1 . . .H⊤

i . . .H⊤

R

]⊤

. By enforcing the sparsity of the
code matrix,H, it is possible to separateY into its sources if the
dictionaries are diverse enough.

As a consequence of the above, two connected tasks have to
be solved: 1) the learning of source-specific dictionaries that yield
sparse codes, and, 2) the computing of sparse decompositions for
separation. We will use the sparse non-negative matrix factoriza-
tion method proposed by Eggert and Körner [12] for both tasks.

2.1. Sparse Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) computes the decom-
position in Equation (1) subject to the constraints that allmatri-
ces are non-negative, leading to solutions that are parts-based or
sparse [6]. However, the basic NMF does not provide a well-
defined solution in the case of overcomplete dictionaries, when
the non-negativity constraints are not sufficient to obtaina sparse
solution. The sparse non-negative matrix factorization (SNMF)
optimizes the cost function

E = ||Y − D̄H||2F + λ
∑

ij

Hij s.t. D,H ≥ 0 (2)

whereD̄ is the column-wise normalized dictionary matrix. This
cost function is the basic NMF quadratic cost augmented by an
L1 norm penalty term on the coefficients in the code matrix. The
parameter,λ, controls the degree of sparsity. Any algorithm that
optimizes Equation (2) can be regarded as computing a maximum
posterior (MAP) estimate given a Gaussian likelihood function and
a one-sided Laplacian prior distribution overH. The SNMF can
be computed by alternating updates ofD andH by the following
rules [12]

Hij ← Hij •
Y

⊤

i D̄j

R⊤

i D̄j + λ

Dj ← Dj •

∑

i
Hij

[

Yi + (R⊤

i D̄j)D̄j

]

∑

i
Hij

[

Ri + (V⊤

i D̄j)D̄j

]

whereR = DH, and the bold operators indicate pointwise multi-
plication and division.

We first apply SNMF to learn dictionaries of individual speak-
ers. To separate speech mixtures we keep the dictionary fixedand
update only the code matrix,H. The speech is then separated by
computing the reconstruction of the parts of the sparse decomposi-
tion pertaining to each of the used dictionaries. In cases, when the
identities of the speakers within a given mixture are unknown, they
can be estimated as the combination of dictionaries that minimize
Equation (2).

2.2. Two Ways to Learn Sparse Dictionaries

We study two approaches to learning sparse dictionaries, see Fig-
ure 1. The first is a direct, unsupervised approach where the dic-
tionary is learned by computing the SNMF on a large training data
set of a single speaker. The second approach is to first segment
the training data according to phoneme labels obtained by speech
recognition software based on a hidden Markov model. Then, a
sparse dictionary is learned for each phoneme and the final dic-
tionary is constructed by concatenating the individual phoneme
dictionaries. As a consequence, a smaller learning problemis ad-
dressed by the SNMF for each of the phonemes.
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Figure 1: Two approaches for learning sparse dictionaries of
speech. The first approach (a) is to learn the dictionary from
a sparse non-negative matrix factorization of the completetrain-
ing data. The second approach (b) is to segment the training
data into individual phonemes, learn a sparse dictionary for each
phoneme, and compute the dictionary by concatenating the indi-
vidual phoneme dictionaries.

The computational savings associated with this divide-and-
conquer approach are significant. Since the running time of the
SNMF scales with the size of the training data and the number
of elements in the dictionary, dividing the problem into SNMF
subproblems for each phoneme reduces the overall computational
burden by a factor corresponding to the number of phonemes. For
example, if the data is split into 40 phonemes, we need to solve 40
SNMF subproblems each with a complexity of1/402 compared
to the full SNMF problem. In addition to this, since the phoneme
SNMF subproblems are much smaller than the total SNMF prob-
lem, a faster convergence of the iterative SNMF algorithm can
be expected. These advantages makes it desirable to comparethe
quality of sparse dictionaries estimated by the two methods.

3. Simulations
Part of the Grid Corpus [13] was used for evaluating the proposed
method for speech separation. The Grid Corpus consists of simple
structured sentences from a small vocabulary, and has 34 speakers
and 1000 sentences per speaker. Each utterance is a few seconds
and word level transcriptions are available. We used half ofthe
corpus as a training set.

3.1. Phoneme Transcription

First, we used speech recognition software to generate phoneme
transcriptions of the sentences. For each speaker in the corpus a
phoneme-based hidden Markov model (HMM) was trained using
the HTK toolkit1. The HMM’s were used to compute an align-
ment of the phonemes in each sentence, taking the pronuncia-
tions of each word from the British English Example Pronuncia-
tion (BEEP) dictionary2. This procedure provided phoneme-level
transcriptions of each sentence. In order to evaluate the quality
of the phoneme alignment, the automatic phoneme transcription
was compared to a manual transcription for a few sentences. We
found that the automatic phoneme alignment in general was quite

1Avaiable fromhtk.eng.cam.ac.uk.
2Available by anonymous ftp from

svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.
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Figure 2: The automatic phoneme transcription as computed by
the trained hidden Markov model (HMM) for an example sentence
from the Grid Corpus. A manual transcription is provided forcom-
parison, confirming the conventional hypothesis that the HMM is
a useful tool in segmenting a speech signal into its phonemes.

reasonable. An example is given in Figure 2.

3.2. Preprocessing and Learning Dictionaries

We preprocessed the speech data in a similar fashion to Ellisand
Weiss [11]: the speech was prefiltered with a high-pass filter,
1−0.95z−1, and the STFT was computed with an analysis window
of 32ms, corresponding to800 samples at a sample rate of25kHz.
An overlap of50 percent was used between frames. This yielded
a spectrogram with 401 frequency bins which was then mapped
into 80 frequency bins on the Mel scale. The training set was re-
weighted so that all frames containing energy above a threshold
were normalized by their standard deviation. The resultingmag-
nitude Mel-scale spectrogram representation was employedin the
experiments.

In order to assess the effects of the model hyper-parameters
and the effect of splitting the training data according the phoneme
transcriptions, a subset of four male and four female speakers were
extracted from the Grid Corpus. We constructed a set of 64 mixed
sentences by mixing two randomly selected sentences for allcom-
binations of the eight selected test speakers.

Two different sets of dictionaries were estimated for each
speaker. The first set was computed by concatenating the spec-
trograms for each speaker and computing the SNMF on the com-
plete training data for that speaker. The second set was com-
puted by concatenating the parts of the training data correspond-
ing to each phoneme for each speaker, computing the SNMF for
each phoneme spectrogram individually, and finally concatenat-
ing the individual phoneme dictionaries. To save computation,
only 10 percent of the training set was used to train the dictionar-
ies. In a Matlab environment running on a1.6GHz Intel proces-
sor the computation of the SNMF for each speaker took approxi-
mately 30 minutes, whereas the SNMFs for individual phonemes
were computed in a few seconds. The algorithm was allowed
to run for maximally 500 iterations or until convergence as de-
fined by the relative change in the cost function. Figure 3 shows
samples from a dictionary which was learned using SNMF on
the phoneme-segmented training data for a female speaker. The
dictionaries were estimated for four different levels of sparsity,
λ = {0.0001, 0.001, 0.01, 0.1}, and four different dictionary
sizes,N = {70, 140, 280, 560}. This was done for both the com-
plete and the phoneme-segmented training data.
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Figure 3: A few samples of columns of phoneme dictionaries
learned from female speech. The SNMF was applied to data,
which had been phoneme-labelled by a speech recognizer. Not
surprisingly, the basis functions exhibit the some generalproper-
ties of the respective phonemes, and additional variation is cap-
tured by the algorithm, such as the fundamental frequency inthe
case of voiced phonemes.

Complete Segmented

Same gender 4.8±0.4 dB 4.3±0.3 dB
Opp. gender 6.6±0.3 dB 6.4±0.3 dB

Table 1: Average signal-to-noise ratio (SNR) of the separated
signals for dictionaries trained on the complete speech spectro-
grams and on individual phonemes. Dictionaries were learned with
N = 560 andλ = 0.1.

3.3. Speech Separation

For each test sentence, we concatenated the dictionaries ofthe
two speakers in the mixture, and computed the code matrix using
the SNMF updates. Then, we reconstructed the individual magni-
tude spectra of the two speakers and mapped them from the Mel-
frequency domain into the linear frequency STFT domain. Sepa-
rated waveforms were computed by spectral masking and spectro-
gram inversion, using the original phase of the mixed signal. The
separated waveforms were then compared with the original clean
signals, computing the signal-to-noise ratio.

The results in Figure 4 show that the quality of separation in-
creases withN . This agrees well with the findings of Ellis and
Weiss [11]. Furthermore, the choice of sparsity,λ, is important for
the performance of the separation method, especially in thecase
of unsegmented data. The individual phoneme-level dictionaries
are so small in terms ofN that the gain from enforcing sparsity
in the NMF is not as significant; the segmentation in itself sparsi-
fies the dictionary to some extend. Table 1 shows that the method
works best for separating speakers of opposite gender, as would be
expected. Audio examples are available atmikkelschmidt.dk .

3.4. Speaker Identification

We further studied how the sparse dictionaries can be used toiden-
tify the speaker. We mapped each mixed sentence onto each com-
bination of dictionaries by concatenating the two dictionaries and
computing the SNMF only updating the code matrix. The qual-
ity of fit between the mixed signal and the combined dictionary is
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Figure 4: Average signal-to-noise ratio (SNR) of the separated sig-
nals for dictionaries trained on the complete speech spectrograms
and on individual phonemes, (a) as a function of the dictionary
size,N , with sparsityλ = 0.1, and (b) as a function of the spar-
sity with N = 560.

reflected in the final value of the SNMF cost function. The combi-
nation of dictionaries which gave the lowest cost is a good estimate
of the identity of the two speakers in the mixture. In our simula-
tions, this estimate was correct 95 percent of the time.

4. Discussion and Outlook
In this work, we have successfully applied sparse non-negative
matrix factorization (SNMF) to the problem of monaural speech
separation and speaker identification.

The SNMF learns large overcomplete dictionaries in an unsu-
pervised fashion, leading to a more sparse representationsof in-
dividual speakers than for example the basic NMF. Inspection of
the dictionaries reveals that they capture fundamental properties of
speech, in fact they learn basis functions that resemble phonemes.
This has lead us to adopt a working hypothesis that the learning
of signal dictionaries on a phoneme level is a computationalshort-
cut to the goal, leading to similar performance. Our experiments
show, that the practical performance of sparse dictionaries learned
in this way performs only slightly worse than dictionaries learned
on the complete dataset. In future work, we hope to benefit fur-
ther from the phoneme labelling of the dictionaries in formulating
transitional models in the encoding space of the SNMF, hopefully
matching the dynamics of speech.

Our results confirm that it is viable to learn personalized dic-
tionaries and apply them blindly, that is, when the identities of the
speakers are unknown. We are currently investigating methods to
more efficiently determine the active sources in a mixture, rather
than exhaustively evaluating all possibilities.

An issue that we are currently studying is that of applying the

proposed single-channel speech separator to the task of speech
recognition. A major obstacle in this connection is to overcome
the generally high sensitivity of speech recognizers to noise and, in
particular, the artifacts created by signal enhancement algorithms.
A possible answer to this challenge is to train the speech recog-
nizer on data that contains these artifacts, more specifically on
“separated” speech sources.
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