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Abstract

In this work we address the problem of separating multiple speakers from a single microphone

recording. We formulate a linear regression model for estimating each speaker based on features derived

from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech

mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature

representation by itself provides some degree of separation. We show that the performance is significantly

improved when regression analysis is performed on the sparse, non-negative features.

I. INTRODUCTION

The cocktail-party problem can be defined as that of isolating or recognizing speech from an individual

speaker in the presence of interfering speakers. An impressive feature of the human auditory system, this

is essentially possible using only one ear, or, equivalently, listening to a mono recording of the mixture.

It is an interesting and currently unsolved research problem to devise an algorithm which can mimic this

ability.

A number of signal processing approaches have been based on learning speaker-dependent models on

a training set of isolated recordings and subsequently applying a combination of these to the mixture.

One possibility is to use a hidden Markov model (HMM) based on a Gaussian mixture model (GMM)
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for each speech source and combine these in a factorial HMM to separate a mixture [1]. Direct (naive)

inference in such a model is not practical because of the dimensionality of the combined state space of

the factorial HMM, necessitating some trick in order to speed up the computations. Roweis shows how to

obtain tractable inference by exploiting the fact that in a log-magnitude time-frequency representation, the

sum of speech signals is well approximated by the maximum. This is reasonable, since speech is sparsely

distributed in the time-frequency domain. Recently, impressive results have been achieved by Kristjansson

et al. [2] who devise an efficient method of inference that does not use the max-approximation. Based on

a range of other approximations, they devise a complex system which in some situations exceeds human

performance in terms of the error rate in a word recognition task.

Bach and Jordan [3] do not learn speaker dependent models but instead decompose a mixture by

clustering the time-frequency elements according to a parameterized distance measure designed with the

psychophysics of speech in mind. The algorithm is trained by learning the parameters of the distance

measure from a training data set.

Another class of algorithms, here denoted ‘dictionary methods’, generally rely on learning a matrix

factorization, in terms of a dictionary and its encoding for each speaker, from training data. The dictionary

is a source dependent basis, and the method relies on the dictionaries of the sources in the mixture being

sufficiently different. Separation of a mixture is obtained by computing the combined encoding using the

concatenation of the source dictionaries. As opposed to the HMM/GMM based methods, this does not

require a combinatorial search and leads to faster inference. Different matrix factorization methods can

be conceived based on various a priori assumptions. For instance, independent component analysis and

sparse decomposition, where the encoding is assumed to be sparsely distributed, have been proposed for

single-channel speech separation [4], [5]. Another way to constrain the matrices is achieved through the

assumption of non-negativity [6], [7], which is especially relevant when modeling speech in a magnitude

spectrogram representation. Sparsity and non-negativity priors have been combined in sparse, non-negative

matrix factorization [8] and applied to music and speech separation tasks [9], [10], [11].

In this work, we formulate a linear regression model for separating a mixture of speech signals based

on features derived from a real-valued time-frequency representation of the speech. As a set of features,

we use the encodings pertaining to dictionaries learned for each speaker using sparse, non-negative matrix

factorization. The resulting maximum posterior estimator is linear in the observed mixture features and

has a closed-form solution. We evaluate the performance of the method on synthetic speech mixtures by

computing the signal-to-error ratio, which is the simplest, arguably sufficient, quality measure [12].
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II. METHODOLOGY

The problem is to estimate P speech sources from a single microphone recording,

y(t) =

P∑

i=1

yi(t), (1)

where y(t) and yi(t) are the time-domain mixture and source signals respectively. The separation is

computed in an approximately invertible time-frequency representation, Y = TF {y(t)}, where Y is a

real-valued matrix with spectral vectors as columns.

A. Linear estimator

In the following we describe a linear model for estimating the time-frequency representations of the

sources in a mixture based on features derived from the mixture. The linear model reads,

Y i = W ⊤

i (X − µ1⊤) + m i1
⊤ + N , (2)

where Y i = TF {yi(t)} is the time-frequency representation of the i’th source, W i is a matrix of

weights, X is a feature matrix derived from Y , µ is the mean of the features, m i is the mean of the

i’th source and N is an additive noise term.

If we assume that the noise follows an i.i.d. normal distribution, vec(N ) ∼ N (0 , σ2

nI ), and put an

i.i.d. zero mean normal prior over the weights, vec(W i) ∼ N (0 , σ2

wI ), the maximum posterior (MAP)

estimator of the i’th source is given by

Ŷ i = Γ iΣ
−1(X ∗ − µ1⊤) + m i1

⊤, (3)

where X ∗ is the feature mapping of the test mixture Y ∗ and

Γ i =
(
Y i −m i1

⊤
)(

X −µ1⊤
)⊤

, (4)

Σ =
(
X − µ1⊤

)(
X − µ1⊤

)⊤
+

σ2
n

σ2
w

I . (5)

Here, X is a matrix with feature vectors computed on a training mixture with mean µ, and Y i is the

corresponding time-frequency representation of the source with mean m i. For a detailed derivation of

the MAP estimator, see e.g. Rasmussen and Williams [13].

When an isolated recording is available for each of the speakers, it is necessary to construct the feature

matrix, X , from synthetic mixtures. One way to exploit the available data would be to generate mixtures,

X , such that all possible combinations of time-indices are represented. However, the number of sources

and/or the number of available time-frames would be prohibitively large.
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A feasible approximation can be found in the limit of a large training set by making two additional

assumptions: i) the features are additive, X =
∑P

i X i with means µi, which is reasonable for, e.g.,

sparse features, and ii) the sources are independent such that all cross-products are negligible. Then,

Γ i ≈
(
Y i −m i1

⊤
)(

Xi − µi1
⊤
)⊤

, (6)

Σ ≈
P∑

i=1

(
X i − µi1

⊤
)(

X i − µi1
⊤
)⊤

. (7)

B. Features

In this work, two sets of feature mappings are explored. The first, and most simple, is to use the

time-frequency representation itself as input to the linear model,

X i = Y i, X ∗ = Y ∗. (8)

A second, more involved, possibility is to use the encodings of a sparse, non-negative matrix

factorization algorithm (SNMF) [8] as the features (see appendix A for a summary of SNMF). Possibly,

other dictionary methods provide equally viable features.

In the SNMF method, the time-frequency representation of the i’th source is modelled as Y i ≈ D iH i

where D i is a dictionary matrix containing a set of spectral basis vectors, and H i is an encoding which

describes the amplitude of each basis vector at each time point. In order to use the method to compute

features for a mixture, a dictionary matrix is first learned separately on a training set for each of the

sources. Next, the mixture and the training data is mapped onto the concatenated dictionaries of the

sources,

Y i ≈ DH i, Y ∗ ≈ DH ∗, (9)

where D = [D1, . . . ,DP ]. The encoding matrices, H i and H ∗, are used as features,

X i = H i, X ∗ = H ∗. (10)

In previous work, the sources were estimated directly from these features as Ŷ i = D iH
∗

i [11]. For

comparison, we include this method in our evaluations. This method yields very good results when the

sources, and thus the dictionaries, are sufficiently different from each other. In practice, however, this

will not always be the case. In the factorization of the mixture, D1 will not only encode Y 1 but also Y 2

etc. This indicates that the encodings should rather be used as features in an estimator for each source.
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III. EVALUATION

The proposed speech separation method was evaluated on a subset of the GRID speech corpus [14]

consisting of the first 4 male and first 4 female speakers (no. 1, 2, 3, 4, 5, 7, 11, and 15). The data was

preprocessed by concatenating T = 300 s of speech from each speaker and resampling to Fs = 8 kHz.

As a measure of performance, the signal-to-error ratio (SER) averaged across sources was computed in

the time-domain. The testing was performed on synthetic 0 dB mixtures of two speakers, Ttest = 20 s,

constructed from all combinations of speakers in the test set.

In figures 1 and 2, the performance is shown for a collection of feature sets. The acronyms MAP-mel

and MAP-SNMF refer to using the mel spectrum or the SNMF encoding as features, respectively. For

reference, figures are provided for the basic SNMF approach as well [11]. The numeral suffix, ’1’ or

’5’, indicates whether using one or stacking five consecutive feature vectors, spaced 32 ms. The best

performance is achieved for MAP-SNMF-5, reaching an ≃ 1.2 dB average improvement over the SNMF

algorithm. It is noteworthy that the improvement is larger for the most difficult mixtures, those involving

same-gender speakers.

In order to verify that the method is robust to changes in the relative gain of the signals in the mixtures,

the performance was evaluated in a range of different target-to-interference ratios (TIR) (see figure 3).

The results indicate that the method works very well even when the TIR is not known a priori. In figure

5, the performance is measured as a function of the available training data, indicating that the method is

almost converged at 300 s.

The time-frequency representation was computed by normalizing the time-signals to unit power and

computing the short-time Fourier transform (STFT) using 64 ms Hamming windows with 50% overlap.

The absolute value of the STFT was then mapped onto a mel frequency scale using a publicly available

toolbox [15] in order to reduce the dimensionality. Finally, the mel-frequency spectrogram was amplitude-

compressed by exponentiating to the power p. By cross-validation we found that best results were obtained

at p = 0.55 which gave significantly better results compared with, e.g., operating in the amplitude (p = 1)

or the power (p = 2) domains (see figure 4). Curiously, this model prediction is similar to the empirically

determined p ≈ 0.67 exponent used in power law modelling of perceived loudness in humans, known as

Stevens’ Law, (see for example Hermansky [16]).

In the dictionary learning phase, the SNMF algorithm was allowed 250 iterations to converge from

random initial conditions drawn from a uniform distribution on the unit interval. The number of dictionary

atoms was fixed at r = 200 and the level of sparsity was chosen by cross-validation to λ = 0.15.
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Fig. 1. The distribution of the signal-to-error (SER) performance of the method for all combinations of two speakers. The

mel magnitude spectrogram (MAP-mel) and the SNMF encodings (MAP-SNMF) were used as features to the linear model. The

results of using basic SNMF are given as a reference. The box plots indicate the extreme values along with the quartiles of the

dB SER, averaged across sources.
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Fig. 2. The performance of the methods given as signal-to-error (SER) in dB, depending on the gender of the speakers. Male

and female are identified by ‘M’ and ‘F’, respectively. The improvement of MAP-SNMF-5 over MAP-mel-5 and SNMF is

largest in the most difficult (same-gender) mixtures.

When computing the encodings on the test mixtures, we found that non-negativity alone was sufficiently

restrictive, hence λ = 0.

Time-domain reconstruction was performed by binary masking in the STFT spectrogram and subse-

quent inversion using the phase of the original mixture as described for example by Wang and Brown

[17]. The phase errors incurred by this procedure are not severe due to the sparsity of speech in the

spectrogram representation. Audio examples of the reconstructed speech are available online [18].
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Fig. 3. The performance of the MAP-mel-5 algorithm given as the signal-to-error ratio (SER) of the target signal versus the

target-to-interference ratio (TIR) of the mixture. The solid and dashed curves represent training on 0dB or the actual TIR of the

test mixture, respectively. Clearly, the method is robust to a mismatch of the TIR between the training and test sets.
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Fig. 4. The effect of amplitude compression on the performance of the MAP-mel-5 algorithm as measured in the signal-to-error

ratio (SER). The optimal value of the exponent was found at p ≃ 0.55, in approximate accordance with Steven’s power law for

hearing. The dashed curve indicates the standard deviation of the mean.

IV. DISCUSSION

The presented framework enjoys at least two significant advantages. First and foremost, computation in

the linear model is fast. The estimation of the separation matrix is closed-form given the features, and the

most time-consuming operation in the separation phase is a matrix product scaling with the dimensions

of spectrogram and the number of features. Secondly, it is possible to fuse different features sets. Here,

the spectrogram and sparse NMF were used, but many others could be imagined, possibly inspired by

auditory models. The estimator integrates features across time, although the effect is relatively small,

confirming previous reports that the inclusion of a dynamical model yields only marginal improvements

[2], [19].
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Fig. 5. The learning curve of the method, measured in signal-to-error ratio (SER), as a function of the size of the training set,

depending on the complexity of the method.
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APPENDIX

A. Sparse Non-negative Matrix Factorization

Let Y ≥ 0 be a non-negative data matrix. We model Y by

Y = DH + N , (11)

where N is normal i.i.d. zero mean with variance σ2
n. This gives rise to the likelihood function,

p(Y |D ,H ) ∝ exp

(
−
|Y −DH |2F

2σ2
n

)
, (12)

where | · |F denotes the Frobenius norm. We put a prior on D that is uniform over the part of the unit

hyper-sphere lying in the positive orthant, i.e., D is non-negative and column-wise normalized. To obtain

sparsity, the prior on H is assumed i.i.d. one-sided exponential, p(H ) ∝ exp(−β|H |1), H ≥ 0 , where

|H |1 =
∑

ji |hji|. Now, the log-posterior can be written as

log p(D ,H |Y ) ∝ −
1

2
|Y −DH |2F − λ|H |1, (13)

s.t. D ≥ 0 , |d j |2 = 1, H ≥ 0 ,
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where d j is the j’th column vector of D .

The log-posterior can be seen as a quadratic cost function augmented by an L1 norm penalty term

on the coefficients in H . The hyper-parameter λ = βσ2

n controls the degree of sparsity. A maximum

posterior (MAP) estimate can be computed by optimizing (13) with respect to D and H .

Eggert and Körner [8] derive a simple algorithm for computing this MAP estimate based on alternating

multiplicative updates of D and H

H ← H •
D̄

⊤
Y

D̄
⊤
Ỹ + Λ

, (14)

d j ← d̄ j •

∑
i hji

[
y i + (ỹ⊤

i d̄ j)d̄ j

]

∑
i hji

[
ỹ i + (y⊤

i d̄ j)d̄ j

] , (15)

where Ỹ = D̄H , D̄ is the column-wise normalized dictionary matrix, Λ is a matrix with elements λ,

and the bold operators indicate pointwise multiplication and division.
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