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ABSTRACT

We introduce a new speaker independent method for reducing

wind noise in single-channel recordings of noisy speech. The

method is based on non-negative sparse coding and relies on a

wind noise dictionary which is estimated from an isolated noise

recording. We estimate the parameters of the model and discuss

their sensitivity. We then compare the algorithm with the clas-

sical spectral subtraction method and the Qualcomm-ICSI-OGI

noise reduction method. We optimize the sound quality in terms of

signal-to-noise ratio and provide results on a noisy speech recog-

nition task.

1. INTRODUCTION

Wind noise can be a major problem in outdoor recording and pro-

cessing of audio. A good solution can be to use a high quality

microphone with a wind screen; this is not possible, however, in

applications such as hearing aids and mobile telephones. Here,

we typically have available only a single-channel recording made

using an unscreened microphone. To overcome the wind noise

problem in these situations, we can process the recorded signal to

reduce the wind noise and enhance the signal of interest. In this

paper, we deal with the problem of reducing wind noise in single-

channel recordings of speech.

There exists a number of methods for noise reduction and

source separation. When the signal of interest and the noise have

different frequency characteristics, the Wiener filter is a good ap-

proach to noise reduction. The idea is to attenuate the frequency

regions where the noise is dominant. In the case of speech and

wind noise, however, this approach leads only to limited perfor-

mance, since both speech and wind noise are non-stationary broad-

band signals with most of the energy in the low frequency range as

shown in Figure 1.

Another widely used approach is spectral subtraction [1].

Here, the idea is to subtract an estimate of the noise spectrum from

the spectrum of the mixed signal. Spectral subtraction takes advan-

tage of the non-stationarity of the speech signal by reestimating the

noise spectrum when there is no speech activity. During speech

activity, the noise is assumed stationary, and for this reason the

method is best suited for situations where the noise varies slowly

compared to the speech. This is not the case for wind noise. As

illustrated in Figure 2, wind noise changes rapidly and wind gusts

can have very high energy.

A number of methods for separating non-stationary broad-

band signals based on source modeling have been proposed. The

idea is to first model the sources independently and then model the
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Fig. 1. Average spectrum of speech and wind noise. Both speech

and wind noise are broad-band signals with most of the energy in

the low frequency range. The spectra are computed using the Burg

method based on a few seconds of recorded wind noise and a few

seconds of speech from eight different speakers.

mixture using the combined source models. Finally, the sources

can be reconstructed individually for example by refiltering the

mixed signal. Different models for the sources have been pro-

posed, such as a hidden Markov model with a Gaussian mixture

model [2], vector quantization [3, 4], and non-negative sparse cod-

ing [5]. A limitation of these approaches is that each source must

be modeled prior to the separation. In the case of wind noise re-

duction, this means that we must model both the speech and the

wind noise beforehand.

Binary spectral masking is a source separation method, where

the main assumption is that the sources can be separated by multi-

plying the spectrogram by a binary mask. This is reasonable when

each time-frequency bin is dominated by only one source. Thus,

the problem of separating signals is reduced to that of estimat-

ing a binary time-frequency mask. One approach to estimating

the mask is to use a suitable classification technique such as the

relevance vector machine [6]. Similar to the source modeling ap-

proach, however, both the sources must be known in advance in

order to estimate the parameters of the classifier.

A completely different approach to source separation is com-

putational auditory scene analysis (CASA). Here, the idea is to

simulate the scene analysis process performed by the human audi-

tory system. We will not discuss this further in this paper.
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Fig. 2. Example spectrograms and the result of the algorithm.

Spectrograms of clean speech and wind noise: Both speech and

wind noise are non-stationary broad-band signals. Speech has both

harmonic and noise-like segments and sometimes short pauses be-

tween words. Wind noise is characterized by a constant broad-

band background noise and high energy broad-band wind gusts.

There is a large overlap between the speech and noise in the noisy

recording. In the processed signal, a large part of the noise is re-

moved.

2. METHOD

In this work, we propose a new method for noise reduction, which

is related to the source modeling approach using non-negative

sparse coding. The key idea is to build a speaker independent sys-

tem, by having a source model for the wind noise but not for the

speech.

We assume that the speech signal and the wind noise are ad-

ditive in the time domain, i.e., we assume that the noise is not so

strong, that we have problems with saturation. Then, the noisy

signal, x(t), can be written as

x(t) = s(t) + n(t), (1)

where s(t) is the speech signal, and n(t) is the wind noise. If

we assume that the speech and wind noise are uncorrelated, this

linearity applies in the power spectral domain as well.

In line with Berouti et al. [7], we represent the signal in the

time-frequency domain as an element wise exponentiated short

time Fourier transform

X = |STFT{x(t)}|γ . (2)

When the exponent, γ, is set to 2 the representation is the power

spectrogram and the above mentioned linearity holds on average.

Although using γ 6= 2 violates the linearity property, it often leads

to better performance; in the sequel, we estimate a suitable value

for this parameter.

2.1. Non-negative sparse coding

The idea in non-negative sparse coding (NNSC) is to factorize the

signal matrix as

X ≈ DH , (3)

where D and H are non-negative matrices which we refer to as

the dictionary and the code. The columns of the dictionary matrix

constitute a source specific basis and the sparse code matrix con-

tains weights that determine by which amplitude each element of

the dictionary is used in each time frame. It has been shown that

imposing non-negativity constraints leads to a parts-based repre-

sentation, because only additive and not subtractive combinations

are allowed [8]. Enforcing sparsity of the code leads to solutions

where only a few dictionary elements are active simultaneously.

This can lead to better solutions, because it forces the dictionary

elements to be more source specific.

There exists different algorithms for computing this factoriza-

tion [9, 10, 11, 12]. In the following we use the method proposed

by Eggert and Körner [10], which is perhaps not the most effi-

cient method, but it has a very simple formulation and allows easy

implementation. The NNSC algorithm starts with randomly ini-

tialized matrices, D and H , and alternates the following updates

until convergence

H ← H •
D̄

⊤
X

D̄
⊤

D̄H+λ

, (4)

D ← D̄ •
XH

⊤
+D̄•(1(D̄HH

⊤
•D̄))

D̄HH
⊤

+D̄•(1(XH
⊤

•D̄))
. (5)

Here, D̄ is the columnwise normalized dictionary matrix, 1 is a

square matrix of suitable size with all elements equal to 1, and the

bold operators indicate pointwise multiplication and division. The

parameter λ determines the degree of sparsity in the code matrix.



2.2. Non-negative sparse coding of a noisy signal

When the sparse coding framework is applied to a noisy signal and

we assume that the sources are additive, we have

X = Xs + Xn ≈ [Ds Dn]

[

Hs

Hn

]

= DH , (6)

where the subscripts, s and n, indicate speech and noise. Inherent

in the sparse coding approach, however, is a permutation ambigu-

ity; the order of the columns of D can be changed as long as the

rows of H are changed correspondingly. Consequently, we need a

mechanism to fix or determine which components pertain to which

source. One method is to precompute the source dictionaries us-

ing isolated recordings of the sources [5]. Another idea is to devise

an automatic grouping rule as argued by Wang and Plumbley [14].

We suggest to precompute the source dictionary for only one of the

sources, the wind noise, and to learn the dictionary of the speech

directly from the noisy data. This results in a method which is

independent of the speaker.

We modify the NNSC algorithm so that only Ds, Hs, and

Hn are updated. This gives us the following update equations

Hs ←Hs •
D̄

⊤

s
X

D̄
⊤

s
D̄H+ℓs

, Hn ←Hn •
D̄

⊤

n
X

D̄
⊤

n
D̄H+ℓn

, (7)

Ds ← D̄s •
XH

⊤

s
+D̄s•(1(D̄HH

⊤

s
•D̄s))

D̄HH
⊤

s
+D̄s•(1(XH

⊤

s
•D̄s))

. (8)

We have introduced different sparsity parameters for the speech

and noise because we hypothesize that having different sparsity

for the speech and noise can improve the performance of the algo-

rithm.

To reduce the wind noise in a recording we first compute the

NNSC decomposition of an isolated recording of the wind noise

using Equation (4–5). We discard the code matrix and use the

noise dictionary matrix to compute the NNSC decomposition of

the noisy signal using Equation (7–8). Finally we estimate the

clean speech as

X̂s = D̄sHs. (9)

To compute the waveform of the processed signal, we invert the

STFT using the phase of the noisy signal.

3. EXPERIMENTAL RESULTS

To evaluate the algorithm we first used a test set consisting of

eight phonetically diverse sentences from the Timit database. The

sentences were spoken by different speakers, half of each gender.

The speech signals were normalized to unit variance. We recorded

wind noise outdoors using a setup emulating the microphone and

amplifier in a hearing aid. We used half a minute of wind noise for

estimating the noise dictionary. The signals were sampled at 16

kHz and the STFT were computed with a 32 ms Hanning window

and 75% overlap. We mixed speech and wind noise at signal-to-

noise ratios (SNR) of 0, 3, and 6 dB. In all our experiments the

stopping criterion for the algorithm was when the relative change

in the squared error was less than 10−4 or at a maximum of 500

iterations. As for most non-negative matrix factorization methods,

the NNSC algorithm is prone to finding local minima and thus a

suitable multi-start or multi-layer approach could be used [13]. In

practice, however, we obtained good solutions using only a single

run of the NNSC algorithm.

3.1. Initial setting of parameters

To find good initial values for the parameters of the algorithm, we

evaluated the results on an empirically chosen range of values for

each of the parameters shown below.

γ ∈ {.5, .6, .7, .8} The exponent of the short time Fourier

tranform.

λn ∈ {.2, .5} The sparsity parameter used for learning the

wind noise dictionary.

Ns ∈ {32, 64, 128} The number of components in the speech

dictionary.

Nn ∈ {4, 16, 64, 128} The number of components in the wind

noise dictionary.

ℓs ∈ {.05, .1, .2} The sparsity parameter used for the speech

code during separation.

ℓn ∈ {0, .1} The sparsity parameter used for the noise code

during separation.

For each of the 576 combinations of parameter settings, we com-

puted the average increase in SNR. In total, more than six hours

of audio was processed. The underlined parameter settings gave

the highest increase in SNR. We used these parameter settings as

a starting point for our furhter experiments. An example of the

result of the algorithm is illustrated in Figure 2.

3.2. Importance and sensitivity of parameters

Next, we varied the parameters one by one while keeping the oth-

ers fixed to the value chosen above. In these experiments, the input

SNR was fixed at 3 dB. Figure 3–8 show the results; the box plots

shows the median, upper and lower quartiles, and the range of the

data. In the following we comment on each parameter in detail.

γ (See Figure 3) The exponent of the STFT appears to be

quite important . The best results in terms of SNR is

achieved around γ = 0.7, although the algorithm is not

particularly sensitive as long as γ is chosen around 0.5–1.

Noticably, results are significantly worse when using the

power spectrogram representation, γ = 2. The estimated

value of the exponent corresponds to a cube root compres-

sion of the power spectrogram which curiously is an often

used approximation to account for the nonlinear human per-

ception of intensity.

λn (See Figure 4) The sparsity parameter used in estimating the

wind noise dictionary does not significantly influence the

SNR . Qualitatively, however, there is a difference between

low and high sparsity. Listening to the processed signals we

found that with a less sparsified noise dictionary, the noise

was well removed, but the speech was slightly distorted.

With a more sparsified dictionary, there was more residual

noise. Thus, this parameter can be used to make a tradeoff

between residual noise and distortion.

Ns (See Figure 5) The number of components in the speech

dictionary is a very important parameter. Naturally, a rea-

sonable number of components is needed in order to be able

to model the speech adequately. Qualitatively, when using

too few components, the result is a very clean signal con-

sisting only of the most dominant speech sounds, most of-

ten the vowels. Interestingly though, having too many com-

ponents also reduces the performance, since excess compo-

nents can be used to model the noise. In this study we found
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Fig. 3. Exponent of the short time Fourier transform versus SNR.

The best performance is achieved around γ = 0.7. The algorithm

is not very sensitive to γ as long as it is chosen around 0.5–1.
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Fig. 4. Sparsity parameter for the precomputation of the wind

noise dictionary versus SNR. The method is not particularly sen-

sitive to the selection of this parameter.
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Fig. 5. Number of components in the speech dictionary versus

SNR. The best performance on the test set is achieved at Ns = 64.

Using too few or too many components reduces the performance.
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Fig. 6. Number of components in the wind noise dictionary versus

SNR. The results indicate that there should be at least Nn = 32
noise components.
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Fig. 7. Sparsity parameter for the speech versus SNR. The method

is not particularly sensitive to the selection of this parameter.
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Fig. 8. Sparsity parameter for the noise versus SNR. The method

is very sensitive to the selection of this parameter, and it appears

that no sparsity, ℓn = 0, leads to the best performance.



that Ns = 64 components gave the best results, but we ex-

pect that it is dependent on the length of the recordings and

the setting of the sparsity parameters etc.

Nn (See Figure 6) The number of components in the wind noise

dictionary is also important. Our results indicate that at

least Nn = 32 components must be used and that the

performance does not decrease when more components are

used. Since the noise dictionary is estimated on an isolated

recording of wind noise, all the elements in the dictionary

will be tailored to fit the noise.

ℓs (See Figure 7) The sparsity parameter used for the speech

code does not appear very important when we look at the

SNR, although slightly better results are obtained around

ℓs = 0.02. When we listen to the signals, however, there

is a huge difference. When the parameter is close to zero,

the noise in the processed signal is mainly residual wind

noise. When the parameter is chosen in the high end of the

range, there is not much wind noise left, but the speech is

distorted. Thus, although not reflected in the SNR, this pa-

rameter balances residual noise and distortion similar to the

sparsity parameter used for estimating the wind dictionary.

ℓn (See Figure 8) The sparsity parameter used for the wind

noise during separation should basically be set to zero.

Both qualitatively and in terms of SNR, imposing sparsity

on the noise code only worsens performance. This makes

sense, since the sparsity constrains the modeling ability of

the noise dictionary, and consequently some of the noise is

modeled by the speech dictionary.

3.3. Comparison with other methods

We compared our proposed metod for wind noise reduction to two

other noise reduction methods. We used a test set consisting of 100

sentences from the GRID corpus. The sentences were spoken by

a single female speaker. We mixed the speech with wind noise at

different signal-to-noise ratios in the range 0–6 dB to see how the

algorithm works under different noise conditions. All parameter

settings were chosen as in the previous experiments.

We compared the results with the noise reduction in the

Qualcomm-ICSI-OGI frontend for automatic speech recognition

[15], which is based on adaptive Wiener filtering. We also com-

pared to a simple spectral subtraction algorithm, implemented with

an “oracle” voice activity detector. During non-speech activity we

set the signal to zero and when speech was present we subtracted

the spectrum of the noise taken from the last non-speech frame.

We computed two quality measures: i) the signal to noise ratio

averaged over the 100 sentences and ii) the word recognition rate

using an automatic speech recognition (ASR) system. The features

used in the ASR were 13 Mel frequency cepstral coefficients plus

∆ and ∆∆ coefficients, and the system was based on a hidden

Markov model with a 16 component Gaussian mixture model for

each phoneme. The results are given in Figure 9– 10.

In terms of SNR, our proposed algorithm performs well (see

Figure 9). The spectral subtraction algorithm also increases the

SNR in all conditions, whereas the Qualcomm-ICSI-OGI algo-

rithm actually decreases the SNR. In terms of word recognition

rate the Qualcomm-ICSI-OGI algorithm gives the largest quality

improvement (see Figure 10). This might not come as a surprise,

since the algorithm is specifically designed for preprocessing in

an ASR system. At low SNR, our proposed algorithm does in-

crease the word recognition rate, but at high SNR, it is better not
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Fig. 9. Output SNR versus input SNR. In terms of SNR, the pro-

posed algorithm performs well.
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Fig. 10. Word recognition rate on a speech recognition task versus

input SNR. The Qualcomm-ICSI-OGI algorith which is designed

for this purpose performs best. At low SNR our proposed algo-

rithm gives better results than using the noisy speech directly.

to use any noise reduction at all. The spectral subtraction algo-

rithm performs much worse than using the original noisy speech

in all conditions.

4. DISCUSSION

We have presented an algorithm for reducing wind noise in record-

ings of speech based on estimating a source dictionary for the

noise. The main idea was to make a system based on non-negative

sparse coding, using a pre-estimated source model only for the

noise. Our results show that the method is quite effective, and in-

formal listening test indicate that often the algorithm is able to re-

duce sudden gusts of wind where other methods fail. In this work,

we studied and optimized the performance in terms of signal-to-

noise ratio, which is a simple but limited quality measure. Possi-

bly, the algorithm will perform better in listening test and in speech

recognition tasks, if the parameters are carefully tuned for these

purposes, e.g., by optimizing a perceptual speech quality measure

or word recognition rate.
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