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ABSTRACT

In this work we address the problem of separating multiple speak-

ers from a single microphone recording. We formulate a linear

regression model for estimating each speaker based on features

derived from the mixture. The employed feature representation

is a sparse, non-negative encoding of the speech mixture in terms

of pre-learned speaker-dependent dictionaries. Previous work has

shown that this feature representation by itself provides some de-

gree of separation. We show that the performance is significantly

improved when regression analysis is performed on the sparse,

non-negative features, both compared to linear regression on spec-

tral features and compared to separation based directly on the non-

negative sparse features.

1. INTRODUCTION

The cocktail-party problem can be defined as that of isolating or

recognizing speech from an individual speaker in the presence of

interfering speakers. The ability of the human auditory system to

solve this problem is impressive, even when using only one ear, or

equivalently, listening to a mono recording of a mixture of differ-

ent speakers. It is an interesting and currently unsolved research

problem to devise an algorithm which can mimic this ability.

Different approaches for constructing such a system have been

proposed, including methods based on computational auditory

scene analysis (CASA) inspired by the mechanisms of the human

auditory system; blind source separation (BSS) using little or no

prior information about the signals; and machine learning meth-

ods, where speech models are learned from training data and sub-

sequently used to separate the mixed speech. In this paper we

focus on the machine learning approach, where isolated record-

ings of the individual speakers we wish to separate are available

for training.

A number of such methods have been propsed. One approach,

which arguably has been the most successful, is to use a hid-

den Markov model (HMM) based on a Gaussian mixture model

(GMM) for each speech source and combine these in a facto-

rial HMM to separate a mixture [1]. Direct inference in such a

model is not practical because of the dimensionality of the com-

bined state space of the factorial HMM. Roweis [1] shows how

to obtain tractable inference by exploiting the fact that in a log-

magnitude time-frequency representation, the sum of speech sig-

nals is well approximated by the maximum. Recently, impressive

results have been achieved by Kristjansson et al. [2] who have de-

vised an efficient method of inference that does not use the max-

approximation. In some situations, their system exceeds human

performance in terms of the error rate in a word recognition task.

Another class of algorithms, here denoted ‘dictionary meth-

ods’, generally rely on learning a matrix factorization, in terms of

a dictionary and its encoding for each speaker, from training data.

The dictionary is a source dependent basis, and the method relies

on the dictionaries of the sources in the mixture being sufficiently

different. Separation of a mixture is obtained by computing the

combined encoding using the concatenation of the source dictio-

naries. As opposed to the HMM/GMM based methods, this does

not require a combinatorial search and leads to faster inference.

Different matrix factorization methods can be conceived based on

various a priori assumptions. For instance, independent compo-

nent analysis and sparse decomposition, where the encoding is

assumed to be sparsely distributed, have been proposed for single-

channel speech separation [3, 4]. Another way to constrain the ma-

trices is achieved through the assumption of non-negativity [5, 6],

which is especially relevant when modeling speech in a magni-

tude spectrogram representation. Sparsity and non-negativity pri-

ors have been combined in sparse, non-negative matrix factoriza-

tion [7] and applied to music and speech separation tasks [8, 9, 10].

In this work, we formulate a linear regression model for sepa-

rating a mixture of speech signals based on features derived from

a time-frequency representation of the speech. As a set of fea-

tures, we use the encodings pertaining to dictionaries learned for

each speaker using sparse, non-negative matrix factorization. We

evaluate the performance of the method on synthetic speech mix-

tures by computing the signal-to-error ratio, which is the simplest,

arguably sufficient, quality measure [11].

2. METHODOLOGY

The problem is to estimate P speech sources from a single micro-

phone recording,

y(t) =
P

∑

i=1

yi(t), (1)

where y(t) and yi(t) are the time-domain mixture and source sig-

nals respectively.

We compute the separation in a time-frequency magnitude

representation, Y = TF {y(t)}, where Y is a non-negative real-

valued matrix with spectral vectors as columns, i.e., we do not

try to estimate the phase. Instead, to compute the separated time-

domain signals, we refilter the original mixture signal using the

estimated magnitude spectra.
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2.1. Linear regression

To perform the separation we propose a simple method, namely

linear regression. We estimate the magnitude time-frequency rep-

resentations of the sources in a mixture as a linear regression on

features derived from the mixture. The linear model reads,

Y i = W
⊤

i (X − µ1
⊤) + mi1

⊤ + N , (2)

where Y i = TF {yi(t)} is the time-frequency representation of

the i’th source, W i is a matrix of weights, X is a feature matrix

derived from Y ; in the following we discuss these features in de-

tail. The vectors µ and mi are the means of the features and the

sources respectively and are computed on training data. The matix

N is an additive noise term.

We make two assumptions in order to obtain a particularly

simple maximum a posteriori (MAP) estimator based on this

model: i) the noise is zero mean normal i.i.d. with variance σ2

n and

ii) the prior distribution of the weights is zero mean normal i.i.d.

with variance σ2

w. For a detailed derivation of the MAP estimator,

see e.g. Rasmussen and Williams [12]. Under these assumptions,

the MAP estimator of the i’th source is given by

Ŷ
∗

i = ΓiΣ
−1(X∗ − µ1

⊤) + mi1
⊤

, (3)

where X∗ is the feature matix computed from the test mixture,

Y ∗, and

Γi =
(

Y i − mi1
⊤

)(

X − µ1
⊤

)⊤
, (4)

Σ =
(

X − µ1
⊤

)(

X − µ1
⊤

)

⊤
+

σ2

n

σ2
w

I . (5)

Here, X is a matrix with feature vectors computed on a training

mixture and Y i is the corresponding time-frequency representa-

tion of the source.

When an isolated recording, Y i is available as training data

for each of the speakers, it is necessary to construct the training

feature matrix, X , from synthetic mixtures. One way to exploit

the available data would be to generate mixtures, X , such that all

possible combinations of time-indices are represented. However,

the number of sources and/or the number of available time-frames

would be prohibitively large. For example, the five minute training

data used for each speaker in this paper lead to matrices Y i with

approximately 104 columns. Creating all combinations of just two

speakers would require computing a feature matrix, X , having 108

columns.

A feasible approximation can be found in the limit of a large

training set by making two additional assumptions: i) the features

are additive, X =
∑

P

i
X i with mean vectors µ

i
, which is reason-

able for, e.g., sparse features, and ii) the features are uncorrelated

between sources such that all cross-products are negligible. Then,

we can make the following approximation

Γi ≈
(

Y i − mi1
⊤

)(

Xi − µ
i
1
⊤

)⊤
, (6)

Σ ≈
P

∑

i=1

(

X i − µ
i
1
⊤

)(

X i − µ
i
1
⊤

)⊤
, (7)

which allows us to use isolated recordings of each source as train-

ing data directly without generating synthetic mixtures.

2.2. Features

In this work, we explore two sets of feature mappings. The first,

and most simple, is to use the mixture time-frequency represen-

tation itself as input to the linear model, X i = Y i, X∗ = Y ∗.

With these features, the spectra of each speaker is modeled as a

linear combination of the mixed speech spectra; this allows the

model to capture correlations between frequency bands specific to

each speaker.

The second feature set we explore is the encodings of a sparse,

non-negative matrix factorization algorithm (SNMF) [7]. Possi-

bly, other dictionary methods provide equally viable features. In

the SNMF method, the time-frequency representation of the i’th

source is modelled as Y i ≈ DiH i where Di is a dictionary

matrix containing a set of spectral basis vectors, and H i is an en-

coding which describes the amplitude of each basis vector at each

time point. In order to use the method to compute features for a

mixture, a dictionary matrix is first learned separately on a training

set for each of the sources. Next, the mixture and the training data

is mapped onto the concatenated dictionaries of the sources,

Y i ≈ DiH i, Y
∗ ≈ DH

∗
, (8)

where D = [D1, . . . , DP ]. The encoding matrices, H i and H∗,

are then the features used as input to the linear model, X i = H i,

X∗ = H∗.

In previous work, the sources were estimated directly from

these features as Ŷ
∗

i = DiH
∗

i [10]. For comparison, we include

this method in our evaluations. This method yields very good re-

sults when the sources, and thus the dictionaries, are sufficiently

different from each other. In practice, however, this will not al-

ways be the case. In the factorization of the mixture, D1 may not

only encode Y 1 but also Y 2 etc. This suggests that the encodings

should rather be used as features in an estimator for each source.

3. EVALUATION

The proposed speech separation method was evaluated on a subset

of the GRID speech corpus [13] consisting of the first 4 male and

first 4 female speakers (no. 1, 2, 3, 4, 5, 7, 11, and 15). The data

was preprocessed by concatenating 5 minutes of speech from each

speaker and resampling to 8 kHz. As a measure of performance,

the signal-to-error ratio (SER) averaged across sources was com-

puted in the time-domain. The testing was performed on a total of

9 minutes of synthetic 0 dB mixtures of two speakers, constructed

using all combinations of speakers in the test set.

The time-frequency representation of the sources and mixtures

were computed by normalizing the time-signals to unit power and

computing the short-time Fourier transform (STFT) using 64 ms

Hamming windows with 50% overlap. The absolute value of the

STFT was then mapped onto a mel frequency scale using a pub-

licly available toolbox [14] in order to reduce the dimensionality.

Finally, the mel-frequency magnitude spectrogram was amplitude-

compressed by exponentiating to the power p. By cross-validation

we found that best results were obtained at p = 0.55 which gave

significantly better results compared with, e.g., operating in the

amplitude (p = 1) or the power (p = 2) domains (see Figure 4).

Curiously, this is similar to the empirically determined p ≈ 0.67
exponent used in power law modelling of perceived loudness in

humans, known as Stevens’ Law (see for example Hermansky

[15]).
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When learning the sparse dictionaries, the SNMF algorithm

was allowed 250 iterations to converge from random initial condi-

tions drawn from a uniform distribution on the unit interval. The

number of dictionary atoms was fixed at 200. The SNMF method

has a sparsity parameter, λ, which we chose by cross-validation to

λ = 0.15. When computing the encodings on the test mixtures,

we did not enforce sparsity, as cross-validation showed that best

results were obtained at λ = 0.

Since the methods separate speakers in the magnitude time-

frequency domain and do not estimate the phase of the separated

signals, we used a simple refiltering method to compute separated

time-domain signals. We computed the STFT of the mixture sig-

nal and performed a binary masking and subsequent inversion as

described by Wang and Brown [16]. Audio examples of the recon-

structed speech are available online [17].

In Figures 1 and 2, the performance is shown for the different

methods. The acronyms MAP-Mel and MAP-SNMF refer to using

the mel spectrum or the SNMF encoding as features in the linear

regression, respectively. For reference, results are provided for

the basic SNMF approach as well [10]. We also experimented

with using a stacked feature representation, where five consecutive

feature vectors spaced 32 ms apart were combined into one large

feature vector. In the figures, this is denoted by the suffix “5”.

The best performance is achieved for MAP-SNMF-5, reaching

an ≃ 1.2 dB average improvement over the SNMF algorithm. It

is noteworthy that the improvement is larger for the most difficult

mixtures, those involving same-gender speakers.

In order to verify that the method is robust to changes in the

relative gain of the signals in the mixtures, the performance was

evaluated in a range of different target-to-interference ratios (TIR)

(see Figure 3). The results indicate that the method works very

well even when the TIR is not known a priori.

In Figure 5, the performance is measured as a function of the

available training data, indicating that the method is almost con-

verged when using 5 minutes of training data.

4. DISCUSSION

The main idea in this paper was to use sparse coding features in

a linear estimation scheme. We have shown that this approach

leads to better performance compared to linear regression on spec-

tral features and compared to separation using the sparse features

directly. Our results warrant further studies of the use of sparse

features for speech separation, possibly using a more sophisticated

estimator than the linear regression model discussed here.

The computation in the linear model is fast, since the estima-

tion of the separation matrix is closed-form given the features. The

SNMF for computing the dictionaries and the sparse feature map-

ping of the mixture, however, is quite expensive. A possible rem-

edy for the latter computations could be to devise a greedy approx-

imation.

We experimented with concatenating features across time as a

simple means of modeling the temporal dynamics of speech. Do-

ing this appears to improve performance slightly, but the effect is

relatively small, confirming previous reports that the inclusion of

an acoustical dynamical model yields only marginal improvements

[2], [18].
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Figure 1: The distribution of the signal-to-error (SER) perfor-

mance of the method for all combinations of two speakers. The

mel magnitude spectrogram (MAP-Mel) and the SNMF encodings

(MAP-SNMF) were used as features to the linear model. The re-

sults of using basic SNMF are given as a reference. The box plots

indicate the extreme values along with the quartiles of the dB SER,

averaged across sources.
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Figure 2: The performance of the methods given as signal-to-error

(SER) in dB, depending on the gender of the speakers. Male and

female are identified by ‘M’ and ‘F’, respectively. The improve-

ment of MAP-SNMF-5 over MAP-Mel-5 and SNMF is largest in

the most difficult (same-gender) mixtures.
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Figure 3: The performance of the MAP-Mel-5 algorithm given as

the signal-to-error ratio (SER) of the target signal versus the target-

to-interference ratio (TIR) of the mixture. The solid and dashed

curves represent training on 0dB or the actual TIR of the test mix-

ture, respectively. Clearly, the method is robust to a mismatch of

the TIR between the training and test sets.
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Figure 4: The effect of amplitude compression on the perfor-

mance of the MAP-Mel-5 algorithm as measured in the signal-

to-error ratio (SER). The optimal value of the exponent was found

at p ≃ 0.55, in approximate accordance with Steven’s power law

for hearing. The dashed curve indicates the standard deviation of

the mean.
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