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Summary

Single-channel source separation problems occur when a number of sources emit
signals that are mixed and recorded by a single sensor, and we are interested
in estimating the original source signals based on the recorded mixture. This
problem, which occurs in many sciences, is inherently underdetermined and its
solution relies on making appropriate assumptions concerning the sources.

This dissertation is concerned with model-based probabilitic single-channel
source separation based on non-negative matrix factorization, and consists of
two parts: i) three introductory chapters and ii) five published papers. The
first part introduces the single-channel source separation problem as well as
non-negative matrix factorization and provides a comprehensive review of ex-
isting approaches, applications, and practical algorithms. This serves to provide
context for the second part, the published papers, in which a number of methods
for single-channel source separation based on non-negative matrix factorization
are presented. In the papers, the methods are applied to separating audio sig-
nals such as speech and musical instruments and separating different types of
tissue in chemical shift imaging.






Resumé

Kildeseparationsproblemer i én kanal opstar nar et antal kilder udsender sig-
naler som blandes og optages med én enkelt sensor, og vi er interesseret i at
estimere de originale kildesignaler baseret pa det optagne mikstursignal. Dette
problem, som opstar indenfor mange grene af videnskaberne, har en iboende
underbestemthed og dets lgsning beror pa at indfgre passende antagelser om
signalkilderne.

Denne afhandling omhandler modelbaseret probabilistisk kildeseparation i én
kanal, baseret pa ikke-negativ matrix-faktorisering, og bestar af to dele: i) tre
introducerende kapitler og ii) fem publicerede artikler. Den fgrste del intro-
ducerer enkeltkanals-kildeseparationsproblemet savel som ikke-negativ matrix-
faktorisering og giver en omfattende redeggrelse for eksisterende tilgange, an-
vendelser og praktiske algoritmer. Dette har til formal at give kontekst til
den anden del, de publicerede artikler, hvori et antal metoder til enkeltkanals-
kildeseparation baseret pa ikke-negativ matrix-faktorisering praesenteres. I ar-
tiklerne anvendes metoderne blandt andet til separation af lydsignaler sasom
tale og musikinstrumenter samt til separation af forskellige veevstyper i billed-
dannende spektroskopi.
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CHAPTER 1

Introduction

Source separation problems arise when a number of sources emit signals that
mix and propagate to one or more sensors. The objective is to identify the
underlying source signals based on measurements of the mixed sources. This
thesis deals with the underdetermined problem of source separation when the
mixed signals are recorded using only a single sensor.

Source separation methods can be divided into blind and non-blind methods.
Blind source separation (BSS) denotes the separation of completely unknown
sources without using additional information. BSS methods typically rely on
the assumption that the sources are non-redundant, and the methods are based
on, for example, decorrelation, statistical independence, or the minimum de-
scription length principle. Non-blind source separation denotes the separation
of sources for which further information is available, for example in terms of a
prior distribution. The single-channel source separation problem is underdeter-
mined and cannot in general be solved using completely blind methods.

Sometimes separating a single-channel mixture of sources is easy, because some
simple natural characteristic can be used to distinguish the sources. This is
the case, for example, when the sources lie in known disjoint frequency bands.
When no such simple natural characteristic separates the sources, the problem
can be extremely difficult.



2 Introduction

The single-channel source separation problem is ubiquitous in many different
application areas including:

Audio processing, for example to separate instruments in music recordings
[A, 208, 224, 225], to separate the voices of multiple simultaneous speakers
[B, D, 122, 223], or to reduce background noise [C];

Bioinformatics, for example to identify and discriminate between different
types of tissue in chemical shift imaging [E, 151, 199, 200];

Chemometrics, for example to determine the spectra and concentration pro-
files of chemical components in an unresolved mixture [73];

Environmetrics, for example to identify the sources of pollutant particles in
spectroscopic measurements of air quality [129]; and

Image processing, for example to extract meaningful image features or sep-
arate mixed images [140].

1.1 Thesis outline and contributions

The focus of this thesis is model-based probabilistic separation of single channel
recordings of mixed sources using non-negative matrix factorization. The thesis
consists of two introductory chapters and five published papers that constitute
the main contribution of the thesis. The introductory chapters review exist-
ing methods for probabilistic single channel source separation and non-negative
matrix factorization respectively, and the aim is to give an overview of the field
and place the published papers into context.

Chapter 2, Single-channel source separation, introduces the single chan-
nel source separation problem, and discusses several approaches to solving
the problem. A general framework for model-based separation is pre-
sented, and aspects that distinguish different methods are discussed. Fo-
cused on model-based probabilistic methods, a comprehensive review of
existing approaches to single channel source separation is presented.

Chapter 3, Non-negative matrix factorization, gives an introduction to
non-negative matrix factorization (NMF) and presents a probabilistic
framework for NMF. A comprehensive review of applications, general-
izations and extensions for NMF is provided, and number of computation
strategies as well as practical algorithms for NMF are discussed.
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Paper A, Non-negative Matrix Factor 2-D Deconvolution for Blind
Single Channel Source Separation, presents a novel method for blind
separation of music instruments in a single channel audio recording. The
paper introduces a 2-D convolutive extension of NMF, where each instru-
ment is modeled by one basis that is convolutive in time and in frequency
to model temporal structure as well as pitch changes. The method is
based on a non-negative factorization of a log-frequency spectrogram and
exploits that a pitch change corresponds to a displacement on the loga-
rithmic frequency axis. Where previous methods needed one component
to model each note for each instrument, the proposed model represents
each instrument compactly by a single time-frequency profile convolved
in both time and frequency by a time-pitch weight matrix. This model
effectively solves the blind single channel source separation problem for
certain classes of musical signals.

Paper B, Single-Channel Speech Separation using Sparse Non-
Negative Matrix Factorization, deals with the separation of multi-
ple speech sources from a single microphone recording. The approach is
based on a sparse non-negative matrix factorization, that is used to learn
speaker models from a speech corpus. These models are then used to sep-
arate the audio stream into its components. We show that considerable
computational savings can be achieved by segmenting the training data
into phoneme-level subproblems using a speech recognizer.

Paper C, Wind Noise Reduction using Non-negative Sparse Coding,
introduces a speaker independent method for reducing wind noise in single-
channel recordings of noisy speech. The method is based on sparse non-
negative matrix factorization and relies on a noise model that is estimated
from isolated noise recordings. The paper compares the proposed method
with the classical spectral subtraction method and a state-of-the-art noise
reduction method, and shows that the proposed method achieves a con-
siderably improved signal-to-noise ratio.

Paper D, Linear Regression on Sparse Features for Single-Channel
Speech Separation, addresses the problem of separating multiple speak-
ers from a single microphone recording by the formulation of a linear
regression model, that estimates each speaker based on features derived
from the mixture. In the paper, two feature representations are compared:
short-time Fourier transform features, and sparse non-negative encoding
of the speech mixture computed using sparse NMF. Results show that
combining sparse non-negative features with a regression model leads to
a significantly improved performance in terms of signal-to-noise ratio.

Paper E, Non-negative Matrix Factorization with Gaussian Process
Priors, presents a general method for including prior knowledge in a
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non-negative matrix factorization, based on Gaussian process priors. The
method is derived in a probabilistic setting, based on specifying prior prob-
ability distributions of the factors in the NMF model. It is assumed that
that the factors are linked by a strictly increasing function to an under-
lying Gaussian process, specified by its covariance function, which makes
it possible to find NMF decompositions that agree with prior knowledge,
such as sparseness, smoothness, and symmetries. Results on a dataset
from chemical shift brain imaging show that better spatial separation be-
tween spectra corresponding to muscle and brain tissue can be achieved.



CHAPTER 2

Single-channel source
separation

The single-channel source separation problem can be defined as the estimation
K original source signals, s1(n),...,sx(n), given only an observed mixture,
z(n). In a general formulation we may write

z(n) = g(s1(n),...,sx(n)), (2.1)

where ¢ is some possibly non-linear and stochastic mixing process. Often, the
mixing process is taken as the sum of the sources plus additive independent
noise, such that

K
x(n) = Z skp(n) + e(n), (2.2)

k=1

where e(n) is a noise term. The variable n usually denotes time, and will
be referred to as such in the following, but depending on the application n
could also represent space, frequency, wavenumber, etc. When the signal can
be represented by a discrete sample, we may write (2.1) in vector notation as

x=g(s1,...,8x), where s = [sx(1),...,5x(N)]" and g is taken element-wise.

Single-channel source separation is an underdetermined problem and its solution
requires additional information about the sources. For example, it is evident
that in the case of linear noise-free mixing with two sources s; = s and sy = £—3s



6 Single-channel source separation

is a solution for any s, and it is necessary to use additional information about
the sources to constrain the problem. For this reason, the single-channel source
separation problem lends itself well to be treated by machine learning methods
in a probabilistic framework, where source specific knowledge can be formulated
in terms of prior probability distributions, and statistical inference methods can
be used to infer the most probable solution to the separation problem.

Several different approaches to single-channel source separation have been pro-
posed in the literature, most of which can be seen as i) filtering, ii) decomposition
and grouping, or iii) source modeling approaches.

In the filtering approach, a set of functions (filters) are found that trans-
form the mixture to estimates of the sources. For example, one could use
matched linear filters that are optimized to extract a single source and
maximize signal-to-noise ratio (SNR). More generally, the transformation
functions can be chosen from some parameterized family of functions, and
the parameters can be learned from training data.

In the decomposition and grouping approach, the signal mixture is first
decomposed into components that are known to scatter the sources. These
components are subsequently grouped together to form source estimates.
The decomposition into components can for example be achieved through
a fixed transformation such as the short-time Fourier transform [11], a
physically inspired signal representation as in the computational auditory
scene analysis (CASA) literature [63, 100, 101, 182], a general parameter-
ized signal model such as a sinusoidal model [215, 218, 219, 224], or matrix
factorization methods such as NMF [226]. The grouping of components
into source estimates can be done manually [225], using knowledge-based
grouping rules, or by machine learning clustering techniques [90]. In some
approaches, parameters of a clustering procedure are learned from training
data [9-11].

In the source modeling approach, a statistical model is formulated for
each of the sources as well as for the mixing process. Model parame-
ters are often learned for the source models using training data, and the
sources are separated by statistical inference in the joint model.

The focus of this thesis is on source modeling approaches. Section 2.1 gives a
general introduction to model-based probabilistic source separation, and section
2.2 reviews a number of different approaches presented in the literature.
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2.1 Model-based probabilistic source separation

In model-based probabilistic source separation, probabilistic models are defined
for the sources as well as for the mixing process. The unknown sources are
treated as stochastic variables, and the source separation problem is solved by
making inference in the joint model.

A general framework for model-based statistical single-channel source separation
is illustrated in Figure 2.1. The input to the source separation system is the
mixed signal, z(n), and for supervised methods also training data for some or
all of the source signals. The mixture is first transformed into an appropriate
representation, in which the signal separation is performed. The source models
are either constructed directly based on knowledge of the signal sources, or by
learning from training data. In the inference stage, the models and data are
combined to yield estimates of the sources, either directly or through a signal
reconstruction step.

Differences between various model-based single-channel source separation meth-
ods can be seen as different choices of signal representation, mixing and source
models, method of inference, and signal reconstruction technique, which is is
discussed in the following sections.

2.1.1 Signal representation

Source separation is often not computed directly in the original representation
of the recorded signal; rather, the signal is transformed to some other represen-
tation that is, e.g., chosen to accomplish the following:

Emphasize desired characteristics. Signal representations can be chosen in
order to accentuate important characteristics in the signal that helps dis-
criminate between sources. For example, transformations such as the
Fourier transform, discrete cosine transform, and wavelet transforms are
useful when the source signals are sparse in the transformed domain, and
this can lead to simpler separation algorithms: When sources are disjoint!
in the transformed domain, perfect separation can be achieved by a binary
mask. Another example is perceptually weighted time-frequency represen-
tations, that are often used in audio separation, where the perceptually
most important characteristics are emphasized.

IThis is related to the concept of W-disjoint orthogonality [107, 194, 195], i.e., sources with
disjoint support in the STFT domain.
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Figure 2.1: A general framework for model-based statistical single-channel
source separation. Input to the separation system is the signal mixture and
possible training data for the source models. The mixture is transformed into a
suitable representation and combined with the source models and mixing model
in the inference stage, that either directly or through a signal reconstruction
method computes estimates of the separated sources.
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feature
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Introduce invariances. In addition to accentuating important characteris-
tics, the signal representation can also be chosen to diminish adverse char-
acteristics, that are known to be unimportant for separating the signals.
For example, many source separation methods (for example [A,D]) use
a power or amplitude spectral representation that disregards the phase,
which leads to an invariance to phase shift. Some speech separation meth-
ods (for example [223]) are based on Mel-frequency cepstral coefficient
(MFCC) features, and when only low-quefrency features are retained an
invariance to pitch is introduced. Introducing invariances in the represen-
tation can be very helpful for source separation methods based on gener-
ative models, since there may be no point in modeling characteristics of
the sources that are known to be unimportant for separation.

Allow assumptions of independence or exchangeability. It is often use-
ful to model parts of data as independent or exchangeable. The signal
can, for example, be divided into (possibly overlapping) blocks, that are
treated as independent, exchangeable, or as loosely coupled sub-problems.
The assumption that the signal blocks are independent, exchangeable, or
perhaps dependent only on the previous block can lead to more efficient
methods of inference.

Reduce dimensionality. With the main purpose of reducing computational
cost, it can be of interest to reduce the dimension of the data prior to
modeling. This can be done, for example, using principal component
analysis (PCA) which is the least-squares best linear technique, or using
more advanced non-linear techniques?.

Allow signal reconstruction. An important distinction is between reversible
(lossless) and non-reversible (lossy) signal representations. In the former
case, the signals may be separated in the representation domain and the
representation inverted to yield separated signals in the original signal
domain. In the latter case, however, after the signals are separated in
the representation domain, separated signals must be reconstructed in
the original signal domain. This can be achieved, e.g., using a filtering
approach where the source estimate is used to construct a filter that is
applied to the signal mixture. This filter can be a time varying Wiener
filter [95], binary [101, 197, 212] or soft [189] masking in a transform
domain, etc. It is important that the signal representation is chosen such
that adequate signal reconstruction is attainable.

2For a review of dimension reduction techniques, see [68].
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2.1.2 Mixing and source models

The mixing and source models are used to define what we know, and quantify
what we do not know, about the mixing process and the signal sources. The
mixing and source models are chosen to i) capture properties of the sources and
mixing process to effectively allow the sources to be separated, and ii) have a
convenient parametric form to allow efficient inference.

Mixing model

The mixing process, denoted by g in (2.1), is specified in terms of a likelihood
function, p(x|si,..., sk), that expresses the probability of observing the mix-
ture when the sources are given.

A simple and often used approach is based on linear mixing with additive noise,
x =), s, + e, which gives rise to the likelihood function

p(x]S1,...,8K) =De (T — D\ k), (2.3)

where pe(-) is the density of the noise. The noise density can be used to model
observation noise; in addition to this, when the linear mixing model is used as
an approximation to a more involved true mixing process, the noise density can
be used as an approximation to non-linearities and cross-terms etc.

Many different mixing models suited for different problems have been proposed
in the literature. The mixing model is often chosen in order to trade off the
following two objectives:

Accurately model the mixing process. When detailed knowledge about
the mixing process is available, a specialized likelihood function can be
constructed. Consider, for example, the separation of amplitude spectra.
The amplitude spectrum of a mixture is not generally equal to the sum of
amplitude spectra of the sources because there may be a phase difference
between the sources. If the phase difference is taken into account, e.g.,
by modeling it as a uniform random variable [163, 164], this gives rise
to a likelihood function that is specialized to the separation of amplitude
spectra.

Enable efficient inference. Another important consideration for choosing a
suitable mixing model is the complexity of making inference in the model.
For example, when the sources are modeled by discrete-state models, such
as hidden Markov models or vector quantization, inference in the joint
model is expensive because of the exponential number of combined states.
When the mixing model, however, is chosen as the element-wise maximum
of the sources, efficient inference algorithms can be constructed [173, 197,
198], because this effectively decouples the sources in each observation.



2.1 Model-based probabilistic source separation 11

Source model

The available a priori knowledge about the sources is specified in terms of a
prior distribution, p(si,...,sk), that factorizes as [[, p(sx) when the source
signals are assumed statistically independent.

The priors can be seen as generative models for the sources; however, it is not
necessary for the priors to capture all properties of the source distributions for
the separation system to be effective. Priors can often be chosen to capture
only key characteristics that are sufficient to separate the sources. Similar to
the choice of mixing model, the sources models must be chosen to adequately
model the sources while allowing efficient inference in the joint model.

The source priors can be chosen by using or combining three levels of source
modeling:

Model building. Source models can be chosen based on prior knowledge about
the nature of the sources. For example, if the source signals are generated
by a physical system, models of the sources can be constructed based on
knowledge of the physics.

Model training. When training data is available for the sources, this can be
used to create or estimate parameters of the source models. In model
training, a suitable flexible parameterized family of models is chosen and
parameters of the model are learned from the training data. There are
several challenges with respect to model training, such as: i) Awailability
of training data, i.e., are representative isolated recordings available for
each source? ii) Mismatch with training conditions, i.e., are there external
variabilities, for example in the channel or sensors, that cannot be captured
in a training set? iii) Issues of selectivity, i.e., it may be that the a priori
distributions of the sources are wide and overlapping, whereas sources in
any observed mixture lie within a small subrange; in this case, training
accurate source models may not lead to effective source separation.

Model adaptation. It is possible to adjust the source models with respect
to the observed mixed signal, which can be used to overcome some of
the challenges with model training. Using this model adaption approach
[157, 158], signal models are no longer a priori models of the sources, but
adapted to the observed mixture; thus, model adaptation can be seen as
part of the inference in the joint model.
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2.1.3 Inference

The mixing model, specified by the likelihood function, and the source models,
specified by the prior densities, can be combined using Bayes’ theorem to yield
the posterior distribution of the sources,

p(sl,...,sK|w)ocp(w|sl,...,sK)Hp(sk). (2.4)
k

Inference in the joint model corresponds to estimating the sources based on this
posterior density. The marginal posterior of the kth source, that describes the
distribution of a single source of interest given the data, is found by integrating
the posterior density over the K — 1 other “nuisance” sources,

p(sk|x) = / . -/p(sl, .oy Sklx)dsy -+ - dsp_1dsky1 - dsk. (2.5)

To compute a point estimate of the source, several different estimators can
be constructed, each of which has different properties and leads to different
inference algorithms. One approach is to compute the posterior mean (PM) or
minimum mean square error (MMSE) estimator,

5 = / skp(silz)dsy. (2.6)

which requires integrating the posterior density. If this integral cannot be com-
puted analytically, it may be computed numerically, e.g., using Markov chain
Monte Carlo (MCMC) methods [148]. The PM is often the preferred estimate;
however, in some situations it might not be appropriate: For example, if the
marginal posterior is multimodal the PM lies in the region between the modes,
possibly at a point with low posterior density.

Another approach is to compute the joint maximum a posteriori (MAP) esti-
mate,

{51,..., éK}(MAP) = argmax p(si,...,Sk|T), (2.7)

{s1,....s1}

that maximizes the posterior density over the sources. This approach avoids the
sometimes difficult integral required for the PM estimate. Although the MAP
estimate by definition lies a high posterior density point, the MAP estimate
might not be a good solution—it depends on whether a substantial part of the
probability mass lies close to the point of maximum density.

Between these two “extremes” are approaches such as the marginal maximum
a posteriori (MMAP) estimator,

ééMMAP) = argmax p(sy|x), (2.8)

Sk
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where the nuisance sources are integrated out, and the marginal MAP estimate
is computed for the source of interest. Again, if the integral cannot be computed
analytically, MCMC methods can be used [5, 60, 196].

The choice of which of these or possibly other methods of inference to use in a
particular problem depends on the data and the model, that are sometimes cho-
sen to make a certain efficient method of inference feasible. Practical inference
algorithms often employ (combinations of) analytical and numerical integration,
Monte Carlo methods, and constrained optimization methods.

2.2 Approaches to single-channel source separa-
tion

Many different model-based probabilistic single-channel source separation meth-
ods have been proposed in the literature. In this section, which is organized ac-
cording to the different types of models, a range of these methods are reviewed.

2.2.1 Fully factorized univariate models

The perhaps most simple source model is based on the assumption that each
source, s(n), is independent and identically distributed (i.i.d.) with univariate
distribution p(s(n)), i.e., the prior is fully factorized,

p(s) = [[p(s(n)). (2.9)

Based on this model, Hansen and Petersen [84] discuss the separation of linear
single-channel mixtures of white sources, and show that for general unimodal
distributions the problem is ill-posed and the sources cannot be determined.
In some specific situations, however, multi-modal distributions can be effec-
tively separated: For example, a noise-free linear mixture of two binary sources,
s1(n) € {0,a}, sa(n) € {0,b}, a # b, can be perfectly separated because the ob-
servation can take only four values, z(n) = s1(n) + s2(n) € {0,a,b,a+ b}, each
of which uniquely identifies the values of the underlying sources. In general,
however, single channel source separation techniques requires models of more
advanced statistics of the sources such as temporal or spectral correlations.
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2.2.2 Auto-regressive models

A simple model that can capture temporal correlations in the sources is the auto-
regressive (AR) model, s(n) = Zﬁle a(m)s(n—m)+v(n), where {a(m)}M_, is
a set of coefficients, M is the order of the AR process, and v(n) is a white noise
process. Balan et al. [13, 14] demonstrate that for a single-channel mixture of
stationary AR sources, the parameters of the AR processes can generically be
uniquely identified and the sources separated. With respect to non-stationary
sources, however, the identification problem is more difficult. For separating
slowly changing non-stationary AR sources, the authors propose to first identify
the constituent AR processes for the initial N samples in the signal, and use an
on-line adaptive sliding-window method to update the AR processes for each
new sample.

2.2.3 Factorial vector quantization

In factorial vector quantization (VQ) the mixed signal is represented as a se-
quence of vectors, {:1:(1), e :l:(Mw)}, and isolated training data is required for
each source in the mixture. The first step in the factorial VQ procedure is for
each source to learn a codebook that consists of Ny code vectors,

Sp={c",... Ny, (2.10)

The codebook is learned using k-means or another clustering technique to op-
timally represent each source vector by a single code vector. Inference in a
factorial VQ amounts to finding the combination of codebook vectors for each
source that optimally accounts for the data. The maximum likelihood estimate,
for example, can be computed as

{27,..., 2%} = arg max p(m‘c(zl) ..,c(I?K)) , (2.11)
where p(-) is the likelihood function and z1,..., zx index the codebooks.

Roweis [197] presents a factorial VQ method for separating audio sources in a
log-magnitude spectral representation. A naive implementation would require
a search over all combinations of codebook vectors for each source; however,
Roweis presents an efficient branch and bound algorithm for an element-wise
maximum observation model. In the same spirit, Pontoppidan and Dyrholm
[173] propose a fast hierarchical VQ procedure to search for combinations of
codebook vectors.

Ellis and Weiss [64] presents a similar approach, where only one VQ is learned
for a single source in the mixture. The mixture is then projected onto the
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VQ model, effectively treating the separation as a denoising problem. They
further extend the approach using a hidden Markov model to capture temporal
constraints in terms of transition probabilities between different subsets of the

VQ.

Radfar et al. [179, 180] compare different signal representations for VQ based
single-channel speech separation: log magnitude spectral vectors; the modulated
lapped transform; and pitch and envelope features. They demonstrate that the
spectral representation is superior for speaker dependent separation, whereas the
pitch and envelope representation is best for speaker independent separation. In
[181] they discuss the selection of window size, which in a spectral representation
is a trade-off between the assumption of stationarity, that favors short windows,
and spectral resolution, that favors long windows. The authors conclude, that
slightly longer windows are useful for the task of speech separation as opposed
to the window sizes typically used in, e.g., speech coding.

Srinivasan et al. [210, 211] train codebooks for speech and noise in a linear
predictive coefficients (LPC) representation. They present an iterative search
method, that finds the most likely combination of codebook vectors by alternat-
ing search in the speech and noise codebook. As an alternative to having one,
possibly huge, codebook to represent many different types of noise, they propose
to learn a set of small codebooks for each type of noise and use a classifier to
determine which codebook to use. The authors further propose to first estimate
the most likely combination of codebook vectors for the speech and noise, and
then improve this estimate by estimating the signal and noise as interpolations
between the maximum likelihood vectors and their nearest neighbors. Since
interpolation in linear predictive coefficients may be unstable, this is performed
in another representation, such as line spectral frequencies.

Blouet et al. [26] compare three codebook based approaches, based on Gaussian
scaled mixture models [20], amplitude factor models [19] (non-negative sparse
coding), and autoregressive models [210, 211]. The authors conclude, that the
autoregressive models effectively captures speech features, whereas the ampli-
tude factor model is better suited for separating music signals.

2.2.4 Gaussian mixture models

A very useful and flexible source model is the Gaussian mixture model (GMM).
Here, each source is modeled as a mixture of I (multivariate) Gaussian densities,

1
p(S) = Z,ﬂiN(s; 1223 21) ) (212)
i=1
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where NV(z; p, ) = (2m) " N2|Z|~Y2exp (—1(z — p) TS 7! (2 — p)) is the nor-
mal density and 7; are mixture coefficients.

In the approach of Beierholm et al. [17], the signal is first partitioned into
blocks, and the discrete cosine transform (DCT) is computed for each block.
In this representation, the sources are modeled by univariate GMMs that are
fully factorized over both time and DCT bands which makes the posterior mean
estimator analytically tractable. The parameters of the GMMs are learned from
training data for each source, and the method is demonstrated on a mixture of
two speech signals. The authors comment, that the method might be improved
by explicitly modeling temporal and spectral correlations.

In a related approach, Reddy and Raj [190] use a log-magnitude spectral rep-
resentation and model each source by a multivariate GMM that captures de-
pendencies across frequency bands. The authors consider an element-wise maxi-
mum observation model that makes it possible to derive an analytical expression
for the posterior mean estimator. The authors demonstrate the algorithm on
a speech separation task, and compare with the factorial VQ approach [197].
Radfar et al. [176, 178] present a similar approach and discuss the use of binary
mask signal reconstruction technique as well as a joint source identification and
separation procedure. Benaroya et al. [20] (see also [26]) extend the framework
to scaled Gaussian mixtures and present a maximum a posteriori (MAP) as well
as a posterior mean (PM) estimation technique.

2.2.5 Factorial hidden Markov models

The discrete-state and mixture models discussed in the previous sections rep-
resent the mixed signal as a sequence of vectors that are treated as indepen-
dent problems. The factorial hidden Markov model (HMM) framework [75]
extends this by taking into account the dependencies between consecutive vec-
tors. Here, the sources are modeled by independently evolving HMMs, specified
by a state transition probability, p(z,(ﬁm)|z,(€m71)) and an emission probability,
p(x|z1,...,2K), that depends on the state of all HMMs. A graphical model of
a two-source factorial HMM is shown in Figure 2.2.

Roweis [198] discusses the use of a factorial HMM with a GMM observation
model. In this approach a HMM/GMM is learned for each source on isolated
training data, and to separate sources the most likely joint state sequence is
inferred. Naive inference in a factorial HMM is exponential in the number of
states of each source-HMM (since the likelihood of all combinations of states
must be evaluated) and is only feasible for models with a small number of states;
however, Roweis shows that by using an element-wise max observation model,
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Figure 2.2: Factorial hidden Markov model for two sources. The model consists
of two independent hidden Markov models with a combined observation model:
x are observed mixtures, g is the observation model, § are source estimates, and
z are hidden states.

efficient search algorithms exist that makes efficient inference possible even in
models with a large number of states. To estimate the separated sources Roweis
[198] proposes a re-filtering technique based on a binary mask. Benaroya and
Bimbot [18] present a more advanced technique for estimating the sources based
on an adaptive Wiener filtering scheme, and Radfar and Dansereau [177] discuss
using the MAP estimator.

Kristjansson et al. [122, 229] achieve impressive results on a speech separation
problem using an extended HMM/GMM approach in a log power spectral rep-
resentation. The authors discuss the use of the element-wise max observation
model as well as a more advanced model in which exact inference is intractable,
and for which an approximation based on Laplace’s method is used. For the
same problem, Virtanen [223] presents a similar approach that operates in a
mel-frequency cepstral coefficient (MFCC) representation and uses a log-normal
approximation to make inference in the model tractable.

To accurately model complex sources such as speech in the factorial HMM
framework, a very large number of states may be required. Reyes-Gomez et al.
[193] present a multiband approach where each source is divided into a number
of frequency bands, each of which is modeled by a separate small HMM that is
coupled to adjacent bands. Exact inference is intractable in this model because
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of the grid-like dependency structure across observations and bands, and the
authors present a variational approximation method.

2.2.6 Matrix factorization models

In the matrix factorization approach (also known as latent variable decomposi-
tion), sources are modeled by a linear combination of a set of basis vectors,

I
s(n) ~ Y _abi(n). (2.13)
i=1

The basis vectors, a;, that capture the characteristics of the sources, can be
learned from isolated training data for each source. The generative model for
the sources can be compactly written as a matrix product, S ~ AB, where S =
[s(1),...,s(V)] is a matrix of N consecutive source vectors, A = [a1,...,a;] is
a matrix of basis vectors and B = [b(1),...,b(N)], b(n) = [b1(n),...,br(n)]"

is a matrix of coefficients.

Several different matrix factorization approaches to single-channel source sep-
aration have been proposed in the literature. These methods differ by using
different matrix factorization techniques for learning the basis, by operating in
different signal representation domains, and by relying on different methods of
inference.

One of the earliest matrix factorization approaches to single-channel source sep-
aration was proposed by Jang et al. [103-106] (see also [102]). In their approach
independent component analysis (ICA) is used to learn a set of time-domain
basis functions (and coefficient densities). The authors apply the method to
different problems in audio source separation and report near-perfect separa-
tion when adequate training data is available.

The ICA approach is closely related to the field of sparse coding [134, 154,
155], because the coefficients that are found when the method is applied to, for
example, audio signals are sparse, i.e., most of the elements in the coefficient
matrix B are zero. When the sources can be represented by a sparse code,
it is possible to learn an over-complete [121, 135, 136] basis representation,
which is discussed by Pearlmutter and Olsson [169]. In their approach an over-
complete basis is learned in a spectral representation using a linear programming
technique.

Several authors have proposed using non-negative matrix factorization (NMF)
and extensions thereof for learning source bases, based on the assumption that
the sources can be meaningfully expressed [8] in a non-negative representation



2.2 Approaches to single-channel source separation 19

such as amplitude spectral vectors. NMF can be combined with the idea of
sparse coding to form sparse NMF [61, 96-98]. Schmidt and Olsson [B, D]
propose to use sparse NMF for source separation by learning an over-complete
set of non-negative basis vectors for each source. They show that having a large
over-complete basis for representing each source leads to better separation on a
speech separation task.

For separating audio sources in a time-frequency representation Smaragdis [208]
present a convolutive version of NMF where the bases are time-frequency ma-
trices. This allows the model to capture temporal as well as spectral structure
in the sources. In a related approach Schmidt and Mgrup [A] propose a 2-D
convolutive NMF where convolution in time captures temporal structure and
convolution in frequency (on a logarithmic scale) captures pitch change. A
similar idea is employed by [114, 115].

Virtanen [220, 224] presents a non-negative sparse coding method that is ex-
tended by a continuity objective that allows the model to capture dependencies
between source vectors. Schmidt and Laurberg propose to model dependencies
between and within source vectors in NMF using a Gaussian process prior [E].

Raj and Smaragdis [183] present a probabilistic latent variable decomposition
method that is close in spirit to NMF based source separation. In their approch
sources are modeled by a mixture of multinomial distributions. A sparse exten-
sion of the approach, proposed by Shashanka et al. [203], allows the computation
of an over-complete decomposition. Rennie et al. [192] present a probabilistic
framework that includes sparse NMF and mixture-model based source separa-
tion as special cases.
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CHAPTER 3

Non-negative matrix
factorization

Non-negative matrix factorization (NMF) is a method for approximating a ma-
trix, X, as the product of two matrices, A and B, under the constraint that all
elements in the factorizing matrices be non-negative,

X~AB st A,B>0, (3.1)

where X € R/ A ¢ RiXN, and B € fo‘]. In the expression, A, B > 0
means that all elements of A and B are non-negative and R4 = [0, 0c0) denotes
the non-negative real numbers.

Relation to other matrix factorizations techniques

NMEF is related to many other techniques, such as vector quantization (VQ),
principal component analysis (PCA), and independent component analysis
(ICA), that can all be written as matrix factorizations on the form X ~ AB.
The differences between these methods and NMF are due to different constraints
placed on the factorizing matrices, A and B: in VQ the columns of B are con-
strained to be unary vectors (all zero except one element equal to unity); in PCA
columns of A and rows of B are constrained to be orthogonal; in ICA rows of B
are maximally statistically independent; and in NMF all elements of A and B
are non-negative. Several hybrid methods that combine these constraints have
also been proposed, such as non-negative PCA [153, 172] and non-negative ICA
[170, 171, 233)].
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Why non-negativity?

NMF is distinguished from other matrix factorization methods by the constraint
that all elements in the factorizing matrices be non-negative. Many natural sig-
nals, such as pixel intensities, amplitude spectra, occurrence counts, and discrete
probabilities, are naturally represented by non-negative numbers; thus, in the
analysis of mixtures of such data, non-negativity of the individual components
is a reasonable constraint. Also, non-negativity ensures that data is modeled as
a purely additive combination of features, such that no cancellations can occur.
This agrees with the intuitive idea of building the whole as the sum of its parts.

A brief note on history

Non-negative matrix factorization (NMF') was initially proposed by Paatero and
Tapper [162]'. Lee and Seung [128] later independently introduced NMF? as an
unsupervised learning method used to model hand written digits. Subsequently
they developed a simple multiplicative algorithm [126, 127] for computing the
NMEF based on two different divergence measures, and argued that NMF learns
a “parts based” representation of data.

Review papers

There exist a few review papers on NMF that provide an overview of the re-
lated theory, algorithms, and applications. Berry et al. [22] describe the most
fundamental NMF algorithms and discuss the use of auxiliary constraints used
to impose prior knowledge on the problem. They illustrate applications of NMF
with examples from text mining and spectral data analysis. Sra and Dhillon
[209] provide a survey on NMF algorithms and applications with special focus
on Bregman divergences. The survey includes an overview of application areas
for NMF as well as a brief section on exact NMF. In a concise lecture note,
Cichocki and Zdunek [46] present NMF and discuss cost functions, algorithms,
and tensor extensions.

Basic computation
In its basic form, NMF can be computed as

{A,B} =arg min D(X;A.B), (3.2)
where D is a cost function or divergence that measures the quality of approx-
imation. That is, we find A and B that minimize the divergence between the

data, X, and the approximation, AB. In general, NMF is not unique, and
NMF algorithms thus usually find a local minimum of the divergence.

1Paatero and Tapper refer to the problem as positive matriz factorization.
2In their fist paper [128] on the subject, Lee and Seung refer to the problem as conic coding.
In subsequent papers they use the term non-negative matriz factorization.



3.1 Applications of NMF 23

Maximum likelihood

NMEF can be computed as a maximum likelihood estimate of A and B based on
an assumption on the distributions of data. This assumption can be expressed
in the likelihood function p(X|A, B). When we the choose the cost function,
D, to be the negative logarithm of the likelihood function,

Du = £(X,AB) = — log[p(X|A, B)] (3.3)

we can compute the maximum likelihood (ML) estimate of A and B using (3.2).

Maximum a posteriori

In addition to the assumption on the distribution of data, we can also make
assumptions on the distribution of the factors, expressed in terms of a prior
distribution p(A, B). Using Bayes rule, the posterior is given by p(A, B|X)
p(X|A, B)p(A, B), and by choosing the cost function

Duap = —log[p(A, B|X)] (3.4)

= —log[p(X|A, B)|]—log[p(A, B)] +c (3.5)
log—likelihood log—prior

= L(X,AB)+P(A,B)+c, (3.6)

where ¢ is a constant, the maximum a posteriori (MAP) estimate of A and B
can be computed using (3.2).

Ambiguities

Inherent to the NMF problem is a scale and permutation ambiguity; any solution
is invariant to a permutation and scaling of the columns of A when the rows of
B are permuted and inverse scaled correspondingly,

AB = (APD)(D"'P'B)= A*B", (3.7)

where P is a permutation matrix and D is any non-negative diagonal matrix.
This means that in general we can only expect to recover A and B up to an
arbitrary scaling and permutation; however, when computing a MAP estimate,
the prior distribution of the factors may be used to resolve these ambiguities.

3.1 Applications of NMF

NMF has found widespread application in many different areas and has been
used for both unsupervised and supervised learning. NMF and its generaliza-
tions and extensions has been used for such different purposes as dimensionality
reduction, feature extraction, clustering, source separation and classification.
In this section, a wide selection of the applications of NMF are reviewed. The
review is organized according to application area.
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Figure 3.1: Illustration of NMF decomposition of environmetric data. Data is
typically a series of measurements of concentrations of chemical substances, and
the decomposition finds underlying explanatory sources.

Concentration ~

Source
|. | .| |

Substance
Substance

3.1.1 Environmetrics and chemometrics

In environmetrics, NMF is often used to analyze series of chemical concentra-
tion measurements, to find underlying explanatory sources, as illustrated in
Figure 3.1.

Anttila et al. [6] outline the use of NMF on environmental data, and analyze
bulk wet deposition concentrations of chemical compounds. Lee et al. [129]
apply NMF to the analysis of particle pollutants. Their data set consists of a
series of measurements of concentrations of chemical species, and the factors
found in the analysis correspond to different pollutant sources. Ramadan et al.
[185] compare two NMF algorithms (PMF [162] and the multilinear engine [161])
for a similar problem. Kim et al. [111] show that the resolution of the method
can be improved by incorporating auxiliary meteorological measurements.

NMF, and related methods, have been applied to a large number of curve reso-
lution problems in chemometrics, where the purpose is to determine the spectra
and concentration profiles of components in an unresolved mixture. NMF meth-
ods have been applied to data from liquid chromatography [73], reflectance spec-
troscopy [83], and Raman spectroscopy [137, 199]. Xie et al. [234] decompose
pulsed gradient spin echo nuclear magnetic resonance data, using a three-way
tensor extension to NMF, to resolve mixed chemical concentration-spectra in a
solution.

3.1.2 Image processing

NMF has found several applications in image recognition and classification. In
most applications images in a database are vectorized and the NMF is com-
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Figure 3.2: Illustration of NMF decomposition of images. Data is typically a
set of vectorized images, and the decomposition finds a set of feature images.
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puted on a matrix in which each column is an individual image as illustrated in
Figure 3.2.

Lee and Seung [126] illustrates the use of NMF on a database of facial images
and argue that the non-negative decomposition results in features that are “part
based”, i.e., the whole image is represented as the sum of its components. Mgrup
et al. [147] propose a 2-D shift invariant NMF method for extracting image
features that are invariant to shifts in the plane.

Guillamet et al. [78, 82] use a weighted NMF [81] to classify patches of natural
images. In later work, Guillamet and Vitria [79, 80] apply NMF to the problem
of recognizing faces under different conditions (expression, illumination, and
occlusions.) Buciu and Pitas [32] compare PCA, NMF, and an extension called
local NMF [138] for facial expression recognition. Liu and Zheng [143] show that
image classification results can be improved by using a Riemannian distance
metric or by orthogonalizing the bases learned by the NMF.

Hazan et al. [87] discuss the use of a tensor extension to NMF for sparse image
coding. The method avoids vectorizing each image by representing a set of
images as a three-dimensional tensor.

Cooper and Foote [52] apply NMF to generate video summaries, i.e., to find
short passages of a video recording that are representative for the whole record-
ing. Other applications of NMF to image data include image matting [109],
i.e., to extract foreground objects and blend them into another scene; image
unmixing [140]; and image fusion [243].

3.1.3 Text processing

NMF and probabilistic latent semantic analysis (PLSA) [93, 94] have found
numerous applications in text analysis. The two methods are closely related, as
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Figure 3.3: Hlustration of NMF decomposition of text data. Data is typically a
term-by-document matrix that contains the number of occurrences of each term
in each document. The matrix if often sparse, since most terms only occur in
few documents. The decomposition finds sets of related terms, corresponding
to topics in the set of documents.

it has been shown [74], that the PLSA algorithm solves the NMF problem with
a Kullback-Leibler divergence. Most often NMF is used to analyze a term-by-
document occurrence matrix to find topics as illustrated in Figure 3.3.

Lee and Seung [126] analyze a corpus of documents summarized by a term-by-
document occurrence matrix, and show that the factors found by NMF cor-
respond to semantic features (topics). Novak and Mammone [149, 150] use
NMF to construct a language model for automated speech recognition. They
show that this leads to better results in terms of perplexity, in comparison with
latent semantic analysis (LSA). Tsuge et al. [216] show that the precision in
a document query task is significantly improved when the dimensionality of a
term-by-document matrix is reduced using NMF, and distances between queries
and documents are measured in the reduced-dimensional space.

For the problem of clustering a corpus of documents in groups of semantically
related documents, Xu et al. [235] show that NMF outperforms LSA and spectral
clustering. Shahnaz et al. [202] propose a regularized NMF method [167] that
further improve results. Berry and Brown [21] apply this method to the Enron
email data set, and suggest that the method could be used for automatic email
surveillance.

3.1.4 Audio processing

NMF has a multitude of applications in audio processing, including feature ex-
traction, music transcription, sound classification, and source separation. Most
NMF decompositions of audio data are computed in a time-by-frequency repre-
sentation as illustrated in Figure 3.4.
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Figure 3.4: Illustration of NMF decomposition of audio. Data is typically a
time-by-frequency matrix, such as the magnitude short time Fourier transform.
The decomposition finds a set of time-varying sources with constant spectrum.

Sha and Saul [201] use NMF to estimate multiple fundamental frequencies of
simultaneous acoustic sources, based on an instantaneous frequency estima-
tion [2, 27, 71] preprocessing step. They report that the method successfully
estimates the fundamental frequency of two overlapping speech sources. On
a similar problem, Raczynski et al. [174] propose a harmonically constrained
NMF method that is reported to give improved results on a note detection task
compared with traditional NMF.

Smaragdis and Brown [204] use a sparse NMF approach for transcription of
polyphonic music, by learning spectral profiles for each note. A similar system is
proposed by Abdallah and Plumbley [1] who also provide a rigorous probabilistic
foundation.

Cho et al. [39, 40] use NMF for learning spectral features for an audio classifi-
cation task and demonstrate an improvement in recognition accuracy compared
with features based on independent component analysis.

Several authors propose to use NMF for audio source separation. Wang and
Plumbley [225] use NMF to decompose an audio signal into components, that
are manually grouped to form individual audio sources. Similarly, Helén and
Virtanen [90] use NMF to separate polyphonic music into components, and for
each component they extract a set of features and use a support vector machine
(SVM) to classify the component as either harmonic or drum.

Smaragdis [208] and Virtanen [222] independently introduce convolutive ex-
tensions of NMF, in which each component is allowed to have a time-varying
spectrum. This enables the NMF basis functions to capture transients. Schmidt
and Mgrup [A] propose a 2-D convolutive NMF method for blind separation of
music instruments, that extends the convolutive NMF by introducing an invari-
ance to shifts on a logarithmic frequency axis, corresponding to a change of
pitch.
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For the problem of separating multiple simultaneous speakers, Raj et al. [183,
184] introduce a probabilistically motivated NMF model-based on a mixture of
multinomial distributions over frequency bins. Schmidt and Olsson [B] propose
a method where an over-complete basis is computed for a set of speakers using
sparse NMF. In later work [D] they improve results using linear regression in
the sparse NMF feature space.

3.1.5 Bioinformatics

Bioinformatics is another large application area for NMF. Several authors use
NMF to analyze micro-array gene-expression data, in many papers with the
purpose of distinguishing between different types of cancer [30, 69, 70, 72, 113,
187]. Wang et al. [227] present an NMF method that utilizes the uncertainty
estimates for each data point that are often available in micro-array data.

NMEF is applied to electroencephalogram (EEG) signal classification by several
authors [130, 236]. Chen et al. [38] introduce a constrained NMF method with
temporal smoothness and spatial decorrelation for detection of Alzheimer’s dis-
ease using EEG recordings. A tensor extension to NMF, that directly model
multichannel EEG recordings, is proposed by Lee et al. [131].

Sajda et al. [199, 200] analyze chemical shift imaging data of the human brain,
and use NMF to distinguish between brain and muscle tissue. For the same
data set, Schmidt and Laurberg [E] introduce an NMF method Gaussian process
priors and show that this leads to better separation.

Lee et al. [132, 133] apply NMF to myocardial positron emission tomography
(PET) images and find a basis that corresponds to major cardiac components.
They report that results are similar to those obtained using factor analysis. On
a similar data set, Ahn et al. [3] use a multilayer NMF method to obtain a
hierarchical decomposition.

Hoyer [98] suggests modeling the processing in the the early visual system (V1)
using a sparse NMF method. He shows that an analysis of a database of natural
images results in features that resemble the simple cell receptive fields in V1.

3.1.6 Other applications

NMF has also been used in a number of other applications, a few of which are
mentioned here. Several authors use NMF for analyzing astronometric data,
including molecular emission spectra [108] and spectral reflectance [166, 168].
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Buchsbaum and Bloch [31] analyze color spectra and observe that the com-
ponents in the NMF correspond to established color naming categories. Ra-
manath et al. [186] compare perceptual color spaces with color spaced obtained
using dimensionality reduction techniques such as PCA, ICA, and NMF. Young
et al. [237] use NMF to find characteristic flavor profiles in Scotch single malt
whiskeys. Hu et al. [99] propose to use NMF to find ratio rules, i.e., events that
occur at characteristic fixed ratios, in a basketball statistics data set.

3.2 Generalizations and extensions of NMF

Many different generalizations and extensions to NMF have been proposed in
the literature. Some generalizations fit directly in the NMF framework, and
deal with finding non-negative factorization with specific properties. This in-
cludes different NMF cost functions, some of which arise from assumptions of
the distribution of the data, and different methods for finding factors with de-
sired characteristics such as sparsity, orthogonality, smoothness, symmetries,
and invariances. Other methods extend the NMF framework, for example non-
negative factorization of tensors (multidimensional arrays); convolutive models,
hierarchical /multilayer models, and models which relax the non-negativity con-
straints. In this section, a selection of generalizations and extensions of NMF
are reviewed.

3.2.1 Divergence measures

A wide range of different cost functions have been proposed for NMF in the lit-
erature, most often expressed in terms of a divergence measure, £(X, AB). In
general, these divergences are not symmetric, and for some of these asymmetric
divergence measures there also exists a useful dual divergence, L(AB, X). Com-
puting the NMF by minimizing a divergence measure in many cases corresponds
to computing the maximum likelihood estimate under certain assumptions on
the distribution of the data.

The arguably most simple and most widely used cost function for the NMF
problem is the least squares (LS) cost

Lis=)» (X - AB);,, (3.8)
,J

that corresponds to the assumption that the residual is i.i.d. Gaussian dis-
tributed.
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Lee and Seung [126] introduce a cost function

EP = Z(AB)“] — X'L',j 10g(AB)i7j, (39)

.3

that can be derived on the assumption that X; ; follows a Poisson distribution
with mean (AB); ;.

The Poisson cost function can also be seen as a special case of the generalized
Kullback-Leibler (KL) divergence

Xij
LK1, :;Xi’j logm —Xi’j-l-(AB)i’j, (310)
that measures the relative entropy between the data and the approximate fac-
torization, if X can be considered as an unnormalized discrete probability dis-
tribution.

Dhillon and Sra [54] propose to use the Bregman divergence for NMF. The
Bregman divergence generalizes the least squares and the generalized Kullback-
Leibler divergences. For any continuously-differentiable strictly convex function,
1, there exists a Bregman divergence defined as

Ly = Zw(xi,n —((AB);;) — V¢ ((AB); ;) (X — AB);;,  (3.11)

which corresponds to (3.8) for 1(z) = 22 and to (3.10) for ¢(z) = zlogz — z.
It can be shown [15] that there exists a bijection between Bregman divergences
and exponential family distributions. This means that if we assume the residual
follows some specific exponential family distribution, there is a corresponding
Bregman divergence that can be used to compute the maximum likelihood NMF.

Another divergence measure that generalizes the least squares and the Kullback-
Leibler divergences is proposed by Kompass [120]

(4B):,
o —(AB);(AB - X)), (3.12)

X¢.
'CK = Z X,“] tJ
,J
and corresponds to least squares for @« = 1 and generalized KL in the limit

a — 0.

Cichocki et al. [49] discuss the use of the Csiszar divergence in NMF

Lo=) Xije ((AX'&) : (3.13)

ij b
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where ¢ is a strictly convex function with ¢(1) = 0. This family of divergences
generalizes a large number of other known divergences, including the KL, p(z) =
log x + % —1; the dual KL divergence, p(z) = xlogx — x+ 1; and Amari’s alpha

|

divergence, ¢(z) = 5D T %1

Weighted NMF
NMF was initially introduced [162] as a weighted least squares estimate, i.e.,
with the cost function

Lwis =Y W;;(X — AB)?

50 (3.14)
1,

where W is a matrix of weights. When the standard deviations, o ;, of the
data points are known, the weights can be selected as W; ; = 1/0'%. This
corresponds to the assumption that the elements of the residual are independent
Gaussian distributed with zero mean and variance o j-
Guillamet et al. [81, 82] introduce a column-wise weighted version of the Poisson
cost function in (3.9)

Lwp =Y wj(AB)i; —w; X, log (w;(AB)i;), (3.15)
0,J
where w is a vector of weights. When columns of X are considered as training
vectors, the authors suggest giving more weight to vector that have a low prob-
ability of appearing in the training set, but a high probability of occurring in
the assumed underlying distribution, to counter sample selection bias.

3.2.2 Distribution of the factors

In standard NMF methods, the only assumptions made about the factors in the
model is that they are non-negative. In probabilistic terms, we can think of
this as an non-informative improper prior over the non-negative real numbers.
In the literature, several methods have been proposed for finding NMF decom-
positions where the factors have other properties of interest, such as sparseness
or smoothness. Often, the decompositions are computed by minimizing a cost
function augmented by penalty or regularization terms that account for these
constraints on the factors. Many of these methods can also be interpreted as
maximum a posteriori estimates of the factorization with specific prior distri-
butions over the factors.

Sparsity

Arguably the most important extension of NMF in terms of alternative distribu-
tions of the factors is sparse NMF, where the objective is to find a factorization,
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X ~ AB, where B is sparse, i.e., most of its elements are zero. Denoted
non-negative sparse coding (NNSC), a method for sparse NMF is introduced
by Hoyer [96] based on minimizing a penalized least squares cost function. The
proposed penalty term is

PnNsc = ﬁz f(Bn,j)7 (3'16)

where ( is a parameter that controls the trade-off between sparseness and recon-
struction error and f is a function that measures sparseness. A typical choice
[96] is f(z) = |x|, which is also known as an L; norm regularization. This
corresponds to the assumption that the elements in B are i.i.d. one-sided ex-
ponential. Hoyer [96] points out an important problem with this cost function
when f is an increasing function: because of the scale ambiguity inherent to
the NMF problem, the second term in the cost function can be trivially min-
imized by letting A increase and B decrease correspondingly. This is easily
remedied, however, by imposing a hard constraint on the scale of either A or
B, for example by forcing the norm of the columns of A to unity.

In a later paper [97], Hoyer introduces another sparsity measure, defined for a
vector x,

Jn— 2wl
s(@) = —=YE= (3.17)
Vn—1

where n is the dimensionality of . Based on the relation between the L; and
Lo norm, the measure is equal to zero when all elements of x are equal and it
is equal to one when only a single element of x is non-zero. Hoyer proposes
to minimize the least squares cost function under the constraints, s(A,) = Sa,
Vn, and s(B,) = Sp, Vn, where A,, is the nth column of A, B,, is the nth row
of B, and S, Sp are the desired sparsity of the factors.

Stadlthanner et al. [213] extend the sparse NMF to allow different sparsity
constraints for each feature (columns of A and rows of B), which is non-trivial
because of the permutation ambiguity in the NMF problem. The authors present
an algorithm in which the factors are adaptively permuted according to their
sparsity measure.

A different approach, denoted non-smooth NMF, is taken by Pascual-Montano
et al. [165], who propose to solve a modified NMF problem

X ~ ASB, (3.18)
where S € R}*" is a smoothing matrix

S=(1-6)I+061. (3.19)
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Here, I is the identity matrix, 1 is a matrix with all elements equal to one,
and 0 € [0,1] is used to control the degree of sparsity. Since the introduction
of S smooths the factorization, the resulting factors will be more sparse or
non-smooth to oppose the smoothing.

Orthogonality
Ding et al. [58] discuss NMF with orthogonality constraints
X~AB, st. A B>0, BB' =1, (3.20)

and show that it is equivalent to k-means clustering. Intuitively, since B is non-
negative, the orthogonality constraint implies that only one element in each
column of B can be non-zero and this leads to a clustering of the data. The
authors further discuss a bi-orthogonal tri-factorization

X ~ASB, st.A,S,B>0, A'TA=BB' =1, (3.21)
and show its relation to kernel k-means clustering for a specific kernel function.

As a part of their local NMF method, Li et al. [65, 138] propose a method for
finding factors that are not strictly orthogonal but are optimized for maximum
orthogonality. In addition to orthogonality, the local NMF method also maxi-
mizes sparseness and expressiveness; however, here we only discuss the proposed
approach to orthogonalization. The authors propose a cost function penalized
by

Po=a) (ATA)i,, (3.22)

i#n

where a is a parameter that makes a trade-off between orthogonality and re-
construction error. Similar to the non-negative sparse coding penalty term in
(3.16), this can be trivially minimized by decreasing A and increasing B corre-
spondingly, so a constraint on the scale of either A or B must be enforced.

Because of the permutation ambiguity, the factors computed by most NMF
methods occur in arbitrary order. Li et al. [137] propose a NMF method where
an orthogonality constraint is enforced between A and a fixed reference. This
approach does not lead to factors that are orthogonal to each other, but it
provides a means for steering the solution of the NMF problem away from a
specified reference.

Smoothness

In many applications the data matrix, X, consists of consecutive samples from
some slowly varying process and thus X is smooth in one or possibly both direc-
tions. When this is the case, it is natural to enforce a continuity or smoothness
constraint in the NMF decomposition.
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For this aim, Virtanen [220] proposes to minimize the absolute value of the
difference between the elements in the rows of B

Psi=ay |Bn,-1—Bnjl. (3.23)
n!j

Again, this penalty term requires a constraint on the scale of A or B to avoid
trivial minimization. In later work [221], Virtanen proposes a penalty based on
the squared difference

B, 1— B, )?
P =y Bra = Bual” (3.21)
n,j N n,j

where the penalty for each row of B is normalized by its mean square, which
makes the expression invariant to the scale of B. Virtanen argues [220] that
measuring smoothness using the absolute value of differences preserves rapid
changes better than using the squared differences. For example, for a change
from zero to a constant level any sequence of non-decreasing steps will have an
equal sum of absolute value differences, whereas the squared difference penalty
favors many small steps of equal size. Both Pg; and Psy reach a (trivial) global
minimum when the rows of B are constant, and the parameter « is used to
make a trade-off between smoothness and data fit.

Chen and Cichocki [37] propose a different measure of smoothness based on the
squared difference between B and a matrix B, in which each row is a low-pass
filtered version of the corresponding row of B

Pir=a) (B-B)?,. (3.25)
n,J

For the low-pass filter, the authors use an exponentially weighted moving aver-
age, and show that this can be implemented efficiently.

Discriminative factors

Often, NMF is used to transform a data matrix into a set of features that are
used to perform some desired task. In its basic form, NMF finds the set of
non-negative features that best fit the data, according to some cost function.
When the features are to be used subsequently in a classification task, however,
the objective is to find features that discriminate well between different classes.

For this means, Wang et al. [228] present a supervised discriminative NMF
method that is based on a penalized KL cost function. They propose a penalty
term inspired by Fisher discriminant analysis, that minimize within-class scatter
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while maximizing between-class scatter,

ot (S ) - ) o

J€&e c

where C' is the number of classes, £, denotes the set of indices j that belong to
class ¢, and

o 1
ble) — o S B., (3.27)
.765(‘

is the mean of the columns of B that belong to class c. Wang et al. demonstrate
that the discriminative NMF improves the performance compared to regular
NMF on a face recognition task.

Another approach to discriminative NMF is taken by Kim and Park [112], who
propose a method where a NMF is computed separately on each class. The
combined set of basis functions is then used to compute features. The authors
demonstrate improved performance on several classification tasks, compared
with a nearest neighbor classifier based on a NMF of data from all classes
combined.

Gaussian process priors

Schmidt and Laurberg [E] present a general method for including prior knowl-
edge in NMF based on Gaussian process priors. In this approach, the non-
negative factors A and B are linked by strictly increasing functions, f4 and [z,
to underlying Gaussian processes, a and b,

a = fa[vec(A)], b= fp[vec(B)]. (3.28)

The Gaussian processes, a and b, are fully specified by their covariance func-
tions, and the link and covariance functions are used to control the properties
of the factors in the NMF, such as sparsity, smoothness, and symmetries.

3.2.3 Structured factors

Convolutive NMF

Smaragdis [208] and Virtanen [222] independently propose an extension of the
NMF model where the matrix product AB is extended to a discrete convolution

Xij~Y ApniBuj (3.29)
n,k
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Smaragdis applies [205, 207, 208] the method to decomposition of audio spectro-
grams, where X is a time-by-frequency matrix, and argues that each component
in the NMF corresponds to an auditory object. The convolutive extension allows
these objects to have a temporal structure.

The convolutive NMF can formulated as a matrix product like the usual NMF
problem, X ~ AB, where A € RerN K is a general non-negative matrix, and

Be Rf E>J has the following structure

B
BJ

_ 2
B=| BJ" | (3.30)

BJk_l

where J is a square matrix with ones on the first lower sub-diagonal and ze-
ros elsewhere, such that post-multiplication by J corresponds to “shifting” the
columns of B one position to the left. This formulation makes it clear that the
convolutive NMF model is a specific structured NMF in which some elements
of the B matrix are constrained to be equal, analogous to weight-sharing in
artificial neural networks. Virtanen [222] and O’Grady and Pearlmutter [152]
further extend the convolutive NMF by adding sparsity constraints.

Schmidt and Mgrup [A] extend the convolutive NMF model to a two-dimensional
convolution
Xij & Z AictnkBnj—ki, (3.31)
n,k,l

which can also be formulated as a structured NMF, X =~ AB, where both
A e RIXNKL and B € RYFE*7 are structured matrices

A {A(l),,,A(K),..JL*1—£4(1)...JL71—E4(K)} : (3.32)
i BW T
B(1):]K71
B : (3.33)
BW
B(L):]K—l

All the parameters in the model are compactly represented by the two sets of
matrices {A®"), ..., AT e RV and {BW, ..., BP)} € RY*/. The authors
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apply the two-dimensional convolutive NMF to single-channel separation of mu-
sical instruments, where X is a time-by-frequency matrix. The convolutions in
time and frequency correspond to models of temporal dynamics and pitch-shift.
Mgrup et al. [147] and FitzGerald et al. [66] further extend the 2-D convolutive
NMF to decompositions of tensors, and FitzGerald et al. [67] extend the model
by harmonicity constraints. NMF and its convolutive variants are illustrated in
Figure 3.5.

Transformation invariant NMF

Wersing et al. [62, 231] propose a (sparse) transformation invariant NMF model

X ~S A, [T(’“) B } , 3.34
5= A [TOB)] (3.34)
where T(k), ke {l,...,K}, is a fixed set of transformations. Comparison with

(3.29) shows that convolutive NMF is a special case of (3.34) where the set of
transformations correspond to shifting columns in the B matrix, T (B) =
BJ*. The authors apply the transformation invariant NMF to the problem
of finding a translation invariant basis for a set of images, and discuss the
possibility of extending the set of transformations to include scaling, rotation,
and other more advanced transformations.

Similar to the convolutive models, transformation invariant NMF can formu-
lated as a matrix product X ~ AB, where A € RiXN K is a general non-

negative matrix, and B € ]Rf KxJ has the following structure

T(l)(B)

(2)
B= T ,(B) . (3.35)

T(K;(B)

Generalized structured factors

The convolutive and transformation invariant NMF models can more generally
be written as
X ~ A(a)B(b), (3.36)

where the non-negative matrices A € RiXN and B € Rf *7 are determined by
two vectors of parameters, a and b. These parameters, in general, need not
be non-negative; however, A(a) and B(b) must be non-negative for any valid
choice of @ and b. The Gaussian process prior framework proposed by Schmidt
and Laurberg [E] can be seen as as a special case of (3.36) where a and b are
modeled as Gaussian processes.
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Non-negative matrix factorization (NMF)
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Figure 3.5: Illustration of non-negative matrix factorization (NMF), Non-
negative matrix factor deconvolution (NMFD), and non-negative matrix factor
2-D deconvolution (NMF2D), each with two components. In each figure, X is
shown at the bottom right, the two components of A are to the left, and the
two components of B are at the top.
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Figure 3.6: Hlustration of the three-dimensional PARAFAC model.

3.2.4 Tensor extensions

NMF is in its basic formulation a non-negative bilinear decomposition of a
two-dimensional array, but it can be extended to factorization of tensors (mul-
tidimensional arrays) with any number of modes, for example tri-linear decom-
positions of three-dimensional arrays. The idea of factorizing multidimensional
arrays dates back to Hitchcock [91, 92] (for a review, see e.g. Kolda and Bader
[119]), and several approaches to non-negative tensor factorization have been
proposed in the literature. In this section, the discussion is limited to three-way
factorizations, but non-negative factorizations of higher order can be formulated
as well.

PARAFAC model

Paatero [159, 160, 161] extends NMF to a three-way factorization based on the
parallel factor analysis (PARAFAC) [35, 85] model, which is also known as the
canonical decomposition (candecomb) model. For three-dimensional data, the
non-negative PARAFAC model can be written as

Xijk & Z AinBjnCln, (3.37)

where X € RI*/*K ig a three-dimensional tensor. This decomposition can be
seen as a sum of outer products of the columns of the factor matrices, A € RiXN ,
B e RiXN ,and C € Rf *N “and is as such arguably the most straightforward
tensor extension of NMF. Welling and Weber [230] generalize the model to ten-
sors of arbitrary dimensionality. The non-negative tree-way PARAFAC model
is illustrated in Figure 3.6.

Another non-negative three-way factorization, based on the PARAFAC23 [86]
model, is discussed by Cichocki et al. [50, 51]. The three-way PARAFAC2

3Cichocki et al. denote this non-negative tensor factorization 2 (NTF2)
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N
Figure 3.7: Hlustration of the three-dimensional PARAFAC2 model.

decomposition can be written as

Xijk ~ Z AinBjinClns (3.38)

and differs from the PARAFAC model in that the factor B € R7*E*N g itself a
three-way tensor. The non-negative three-way PARAFAC2 model is illustrated
in Figure 3.7.

Tucker model

Kim et al. [116, 118] discuss a non-negative tensor decomposition based on the
the Tucker [217] model

Xijk = Z Ai1BjmCrnGimn- (3.39)

l,m,n

Here, the tensor X € R/*/*K is decomposed into three non-negative matrices
of different dimensionality, A € RI** B € R[*M and C € RE*Y that are
coupled together by a non-negative core matrix, G € R{;XMXN . The non-
negative three-way Tucker model is illustrated in Figure 3.8.

3.2.5 Other extensions and relations

Symmetric NMF and clustering

When the data matrix X is symmetric, the NMF may posses certain interesting
properties. Catral et al. [36] discuss the conditions i) under which the approxi-
mating factors are equal, A = B, and ii) under which the NMF of a symmetric
X yields a symmetric approximation, AB = (AB)'.

Ding et al. [55] presents an algorithm for computing a symmetric NMF decom-
position, X ~ AA", and shows that this corresponds to special cases of both
kernel k-means clustering and spectral clustering.
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Figure 3.8: Hlustration of the three-dimensional Tucker model.

Probabilistic latent semantic analysis (PLSA) [93, 94] is an unsupervised learn-
ing method based on a statistical latent variable model for co-occurrence data
that has been applied to text analysis tasks such as document clustering. Xu
et al. [235] presents a least squares NMF clustering method for document clus-
tering, that is closely related to the PLSA method. Gaussier and Goutte [74] and
Ding et al. [57] show that PLSA is equivalent to NMF with the KL-divergence,
in the sense that the two methods minimize the same cost function.

Several matrix factorization methods can be used for clustering. Li and Ding
[139] provide an overview over different matrix factorizations including NMF
and several NMF variants, and compare the methods in a clustering context.

Many unsupervised clustering algorithms, including most methods based on
NMF, are sensitive to initial conditions, and the resulting clusters obtained
on a dataset may vary between runs of the algorithm. Badea [12] presents a
meta-clustering algorithm based on NMF in which a dataset is clustered several
times resulting in a set of clusters that are subsequently clustered to yield meta-
clusters. The authors show that the meta-clustering method is substantially
improved when using a soft NMF clustering method compared with a hard
k-means clustering.

Hierarchical models

Cichocki and Zdunek [43, 44] present a hierarchical approach to NMF where
the data is first modeled by a standard NMF, X = A(I)B(l), where A €
RN In a subsequent step, the matrix BW e RN*/ is modeled by NMF
as BY A(Q)B(Q), where A® € RV¥*N and the process is continued by
computing BW ~ AUFDBUHY for [ jterations, yielding a hierarchical NMF
model

X~ AV A .. oD gL, (3.40)

Because we may define A = AW A® .. AT this hierarchical NMF is equal
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to a standard NMF decomposition, X =~ AB(L), and the simple hierarchical
approach is thus not a different model but a specific procedure for computing
a standard NMF. Cichocki and Zdunek report that each stage in the hierar-
chical procedure refines the solution, improves performance with respect to ill-
conditioned or badly scaled data, and provides a mechanism for escaping local
minima.

Another hierarchical NMF is presented by Ahn et al. [3] who introduce a transfer
function between each layer of the hierarchical decomposition, such that B NN
g(A(H'l)B(l‘H)), where ¢ is an element-wise non-negative non-linear function.
Ahn et al. discuss the similarities of this approach to a multilayer neural network.
Hierarchical extensions to transformation invariant [16] and convolutive [188]
NMF have also been proposed in the literature.

Relaxation of non-negativity

Ding et al. [56] propose a method denoted Semi-NMF in which the non-
negativity constraint on A is relaxed

X ~CB, st.B>0. (3.41)

Here C' (as well as the data matrix, X, as usual) is allowed to take both positive
and negative values.

Ding et al. [56] further propose an NMF model denoted Convex NMF where
the columns of the C' matrix are constrained to be convex combinations of the
columns of the data matrix, X

X ~ XAB, (3.42)
~~
C

where A € RiXN . This model can be seen as a structured Semi-NMF method,
where C' = X A restricts the columns of C to lie inside the convex cone formed
by the data. The method is closely related to the archetypal analysis algorithm
of Cutler and Breiman [53].

Nonlinear and kernel NMF
Sra and Dhillon [209] discuss an NMF model where there is a non-linear rela-
tionship between the data X and the non-negative factorization, AB, modeled
by a link function, h, such that

X ~ h(AB), (3.43)

where h is an element-wise function of its matrix argument.
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Zhang et al. [242] introduce a kernel NMF method: Let ¢(x) denote a non-linear
function that maps a data vector into a high-dimensional (possibly infinite) fea-
ture space, and let k(x,y) = é(x) " #(y) denote the inner product in the feature
space which is also referred to as the kernel function. Then, the kernelized NMF
method computes the non-negative decomposition in feature space

o(X)~ AP B, (3.44)

where A® is a non-negative possibly infinite-dimensional feature matrix.
Zhang et al. rewrite this expression as

¢(X) 9(X) ~ 9(X) A B, (3.45)

K Y

where K ;i = k(X;,X;) and Y;,, = ¢(X;)TA'®) where X, denotes the
jth column of X. The authors proceed by solving K ~ Y B as a Semi-NMF
problem.

Similarly, Ding et al. [56] kernelize the Convex NMF problem
6(X) ~ 6(X)AB, (3.46)

and show that computation of the least squares cost function depends only on
the kernel matrix K.

3.3 Computing the NMF

NMF can be computed as a constrained optimization problem

{A,B} = argA%goD(X;A,B), (3.47)

based on the cost function D. In principle, any constrained optimization al-
gorithm can be used to compute A and B. In the literature, many different
algorithms have been proposed for NMF, many of which take advantage of the
special structure of the NMF problem as well as properties of specific cost func-
tions. Albright et al. [4], Berry et al. [22], and Sra and Dhillon [209] review a
broad range of different algorithms.

Uniqueness

In general, NMF is not unique. Since cost functions are not jointly convex in
the parameters A and B, optimization algorithms can only at best guarantee
convergence to a local minimum of the cost function. This means that several
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runs of an algorithm on an NMF problem with different (random) initializations
can result in different solutions. In practice, it can be useful to run an NMF
algorithm several times and study the different solutions obtained. The unique-
ness of NMF is further discussed by Donoho and Stodden [59] and Laurberg
[123], and Theis et al. [214] discuss the uniqueness of sparse NMF.

Convergence

Iterative optimization algorithms compute a sequence of estimates, {A, B}2°_,
and for the algorithm to be convergent it must be guaranteed that the limit of
the sequence is a local minimum of the cost function, i.e., it satisfies the Karush-
Kuhn-Tucker (KKT) conditions.

If we denote the gradient of the cost function with respect to A and B by

0D(A, B) 0D(A, B)
VA- = i S e VB ;= 7 348
,Mn aA%n Y n,j aBn’j ’ ( )
the KKT necessary conditions for a solution to be locally optimal are
Va,Vp > 0 (3.49)
AB > 0 (3.50)
VA A,VB®B = 0, (3.51)

where ® denotes the Hadamard (element-wise) matrix product. The KKT con-
ditions state that at an optimal solution, the gradients as well as A and B are
non-negative, and for each element in A and B either the gradient or the ele-
ment’s value is zero. The KKT conditions for the NMF problem can be written
compactly as

min (A, V4) = min (B, Vg) = 0, (3.52)

where the minimum is taken element-wise. Gonzalez and Zhang [77] state that if
a sequence converges to a local minimum, the residual norm of the KKT equation
must go to zero, and propose to use the L; vector norm of the residual,

1 . 1 .
C(KKT = m zzn: ‘ mln(A; VA)’L',YL‘ + N_J nzj: | mln(Ba VB)"J|) (353)

to monitor the convergence. Another option is to use the maximum deviance
from the KKT conditions which corresponds to the infinity norm. A detailed
discussion of the optimality conditions for the least squares NMF is provided
by Chu et al. [42].
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3.3.1 Optimization strategies

Several optimization algorithms have been proposed in the literature, and these
can be divided into three categories: direct optimization methods, alternating
optimization methods, and alternating descent methods.

Direct optimization methods solve the NMF problem,
A, B in D(X;A,B .54
{A B} —arg min D(X; A, B), (3.54)

directly using some (general-purpose) bound constrained optimization al-
gorithm. In general, this is a non-negativity constrained non-linear op-
timization problem, for which many efficient algorithms exist. Since the
number of parameters, (I+J)N, in the full standard NMF problem can be
very high, it may be infeasible to use optimization methods that require
the explicit computation of a Hessian matrix. An important and very
useful method is the limited-memory Broyden-Fletcher-Goldfarb-Shanno
method for bound constrained problems (L-BFGS-B) introduced by Byrd
et al. [33, 34].

Alternating optimization methods partition the NMF problems into two
subproblems for the matrices A and B, that are solved in alternating
turns until convergence,

repeat
A —argmin D(X; A, B)
A>0

B «— arg gl_i% D(X;A,B) (3.55)

until convergence.

In each iteration, the NMF problem is solved for A while B is kept fixed
and vice versa, and this is repeated until A and B converge to a solution
of the full NMF problem. Bezdek et al. [25] analyze the convergence
of alternating optimization® and show that under certain conditions the
method will converge linearly to a local solution.

In general, alternating optimization may have several advantages [24] over
direct optimization: when the parameters can be naturally partitioned
into subsets for which efficient optimization algorithms exist, it can be
faster than direct optimization; furthermore, alternating optimization can
be better at avoiding local minima. Furthermore, if there are important
differences between A and B, such as one is sparse and the other is dense,
or one is small and the other is large, it may be beneficial to solve the two
subproblems with different tailored optimization algorithms.

4The authors refer to the method as grouped variable coordinate descent.
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While the full NMF problem is not jointly convex in A and B, some cost
functions have the desirable property that the subproblems are convex in
their respective parameters, which allows the computation of the globally
optimal solution of each subproblem in each step. Also, for some cost
functions, the rows of A (columns of B) are decoupled when B (A) is fixed
which means that each subproblem consists of I (J) independent problems.
As an example, for the least squares cost function the subproblems are sets
of non-negativity constrained least squares problems that can be solved
efficiently [29, 125].

Alternating descent methods relax the previously described approach by not
computing an optimal solution for each subproblem in each step. Instead,
an approximate solution is computed that reduces, but does not necessar-
ily minimize, the cost function

repeat
A — A" where D(X; A", B) < D(
B — B* where D(X;A,B*) < D(
until convergence.

; A, B)
A B) (3.56)

Y

olle

This approach can be advantageous when an optimal solution of each sub-
problem can be computed by an iterative procedure where each iteration is
fast and guaranteed to reduce the cost function. In this case, the method
proceeds in turns by computing a single iteration on each subproblem. Al-
though algorithms of this type reduce the cost function in each iteration,
there is not in general any guarantee that the algorithm will converge to a
local minimum of the NMF cost function. The multiplicative algorithms
proposed by Lee and Seung [127] are examples of alternating descent NMF
methods.

3.3.2 NMF algorithms

In this section a wide range of algorithms for the NMF problem are reviewed.
A simplified vector notation,

min f (), (3.57)
is used to describe either the full NMF problem (3.54) or a sub-problem in an
alternating optimization strategy (3.55-3.56).

Projected gradient descent

Lin [141] discusses the use of projected gradient descent methods for NMF,
used for either direct or alternating optimization. Gradient descent is a simple
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optimization strategy that searches for a local minimum of the cost function by
iteratively taking steps in the direction of the negative gradient,

x—x—aVi(x), (3.58)

where « is a step size parameter and V() is the gradient. Projected gradient
methods extend the basic gradient descent by taking steps that are projected
onto the feasible region (the non-negative orthant),

x — max [z — aVj(z), 0]. (3.59)

The step size, « can, e.g., be chosen as a constant, by an adaptive procedure,
or by line search. The step size can for example be chosen to yield the smallest
value of the cost function that can be found in the gradient search direction,

o = arg min f(max [z — o*Vi(z),0]), (3.60)

a*>0
which is a minimization of function that is piecewise in a*.

Liu et al. [145] presents a projected gradient descent algorithm for NMF that is
based on the relative (natural) gradient. The algorithms for sparse NMF pre-
sented by Hoyer [96, 97] alternate between a projected gradient descent update
for the sparse factor and a multiplicative update for the dense factor.

As an example, a simple projected gradient descent algorithm with fixed step
size for the least squares NMF problem is given as Algorithm 1, where

z, x>0
R(z) { 0, otherwise, (3.61)

denotes projection onto the non-negative orthant.

Algorithm 1 Alternating least-squares projected gradient descent

Input: Step-size «, initial A € RiXN and B € fo‘]
1: repeat
2 A« R(A-—a(ABB' - XB"))
3 B« R(B-a(A"AB-A"X))
4: until convergence
Output: A, B

Multiplicative updates

Lee and Seung [127] present an iterative NMF algorithm with multiplicative
updates, that can be seen as a rescaled gradient descent algorithm with a spe-
cific choice of step size. When the gradient can be expressed as the subtraction
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of two non-negative terms, V;(x) = V;(x)* — V;(z)~, a step size can be cho-
sen individually for each element of x as a; = x;/ Vf(a:):r, which leads to a
multiplicative gradient descent update

Vi (®);
Vi (z)

r; < &;

(3.62)

Since this algorithm is formulated as a multiplication by a non-negative quan-
tity, it is ensured that @ remains non-negative, if it is initialized with positive
elements. The initial value of & must be strictly positive, since any elements
that are zero will remain zero in the following iterations. Lee and Seung [127]
prove for the least squares and Kullback-Leibler divergences that the multiplica-
tive updates are guaranteed to reduce the cost function in each step, and that
the update rules are unity only at stationary points of the cost function. This
does not imply, however, that the algorithm will converge to a stationary point
within any reasonable number of iterations, as discussed by Gonzalez and Zhang
[77] and Lin [142].

An accelerated Lee and Seung-type algorithm is proposed by Gonzalez and
Zhang [77], who extend (3.62) by a step size scale parameter, [,

x; — wzﬂLw)i, (3.63)
Vi (),

that is chosen to minimize the cost function in the rescaled gradient direction
while ensuring that each step does not reduce any variable by more that a fixed
fraction toward zero to avoid locking variables at the boundary of the feasible
region. For the least squares cost function the authors derive a closed form
expression for 3, and for other cost functions the authors note that a line search
may be required.

Multiplicative algorithms for sparse least squares NMF are proposed indepen-
dently by Liu et al. [144] and Eggert and Korner [61]. The former algorithm
includes an explicit normalization step, whereas the latter is based on a cost
function that is invariant to normalization. Cichocki et al. [48, 49] present mul-
tiplicative algorithms for NMF with sparseness and smoothness constraints for
a wide range of different cost functions.

As an example, the least squares multiplicative update algorithm is given as
Algorithm 2.

Newton and quasi-Newton methods

Newton-type methods are based on approximating the cost function by a
quadratic function, for which the optimum can be computed in closed form
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Algorithm 2 Alternating least-squares multiplicative updates
Input: Initial A € RiXN and B € fo‘]
1: repeat

2: Ai,n — Ai,n

(XB")i.
(ABBT)'L',n
(A'X)n;
(A'AB), ;
4: until convergence
Output: A, B

3: Bn’j — Bn’j

using the gradient and the Hessian, and leads to updates of the form
T —x— Hf_l(a:) Vi(z), (3.64)

where Hy(x) is the Hessian. In quasi-Newton methods, the Hessian is not
computed explicitly but approximated, for example, using symmetric rank-1
updates or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

When applying Newton-type methods to the NMF problem, special care must
be taken to handle the non-negativity constraints, for example using a barrier
function approach or an active set procedure: Simply projecting a Newton step
onto the feasible region does not lead to a convergent algorithm, as discussed
by Bertsekas [23] and Kim et al. [110].

Positive matrix factorization (PMF) is a weighted projected least squares al-
gorithm proposed by Paatero and Tapper [159, 162]. The method is based on
projected Newton updates, either in turns or simultaneously on A and B, and
the authors describe how to incorporate intermediate rotation steps to help
eliminate negative elements in A or B. As an alternative to the projection for
handling the non-negativity constraints, the authors also discuss the use of a
barrier function: A penalty term proportional to the squared value of negative
elements. Lu and Wu [146] provide a detailed implementation guide for the
PMF algorithm with a logarithmic barrier function.

Albright et al. [4] and Berry et al. [22] discuss the use of projected least squares,
and argue that although the method is not theoretically well justified in terms of
convergence, it is very useful in practice due to its speed and simplicity. Cichocki
and Zdunek [45] present a weighted and regularized projected least squares al-
gorithm for non-negative tensor factorization, and argue that the regularization
and weighting terms can be utilized to improve the convergence properties of
the algorithm.

As an example, a basic alternating projected least squares NMF algorithm is
given as Algorithm 3.
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Algorithm 3 Alternating projected least-squares Newton-update

Input: Initial B € RV*/
1: repeat
22 A< R(XB'(BB")™)
3 B« R((A'A)'A'X)
4: until stop criterion
Output: A, B

Berry et al. [22] suggests that the least squares NMF problem can be solved
in an alternating optimization approach using a least squares algorithm that
properly handles the non-negativity constraints, such as the NNLS algorithm of
Lawson and Hanson [125] or the fast NNLS proposed by Lawson and Hanson
[125]. This approach leads to a convergent algorithm at the expense of a greatly
increased computational cost [22].

Zdunek and Cichocki [239] present a projected quasi-Newton algorithm for NMF
problems based on the Amari alpha family of divergence measures. The algo-
rithm uses a Levenberg-Marquardt damped Newton update, and approximates
the inverse Hessian using the Q-less QR factorization.

Another quasi-Newton approach is presented by Kim et al. [110] for the least
squares NMF based on the BFGS approximation to the Hessian. The algorithm
uses an active set procedure to handle the non-negativity constraints, and the
authors demonstrate its use in an alternating optimization as well as an alter-
nating descent strategy. A similar active set quasi-Newton method is proposed
by Zdunek and Cichocki [238]. This algorithm alternates between a projected
gradient step and a quasi-Newton step on the active set.

As an example of the active set approach, a simple least squares algorithm
that in each iteration takes a Newton step on the active set is presented as
Algorithm 4.

Other NMF algorithms

A simple method for enforcing non-negativity constraints is to re-parameterize
the problem, A = f(A), B = f(B), using an element-wise function f that
has the real numbers as its domain and the non-negative reals as its range.
Thus, in the new set of parameters, A and B, the NMF problem is an uncon-
strained optimization problem. Cichocki et al. [47] derive an algorithm based
on multiplicative updates using the exponentiated gradient. They show that
this algorithm corresponds to a gradient descent method in the space of the
logarithm of the parameters A and B.
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Algorithm 4 Alternating least-squares active-set Newton-update

Input: Initial A € RiXN and B € RV*J
1: repeat
2. Va=ABB' - XB'
3: fori=1toI do
4: v={n:A;,#0or Vy,, >0}

A, —R <(XBT)@V((BBT)V’V)71)

5
6: end for

7 Vs=A'AB-A'X

8 for j=1toJ do

9: v={n:B,; #0or Vg, ; >0}

10: BVJ — R (((ATA)wy)il(ATX)i,u)
11:  end for

12: until convergence
Output: A, B

Heiler and Schnorr [88, 89] present an algorithm for the sparse least squares
NMF problem and its tensor extension. The methods is based on alternating
second order cone programming (SOCP), for which efficient large scale solvers
exist, and the authors demonstrate that enforcing sparsity constraints fits nicely
in this framework.

Chu and Lin [41] take a geometric approach to NMF: They view the problem
as that of approximating the convex hull of a set of data points by a convex
polytope on the probability simplex, and this leads to a geometrically inspired
algorithm.

3.3.3 Initialization methods

Most algorithms for NMF are iterative and require initial values of A and B,
and many authors prescribe initializing A and B with random non-negative
numbers. A suitably chosen initialization, however, can lead to faster conver-
gence, and since the solution of most NMF problems is not unique, different
initializations can lead to different solutions.

Because of the relation between NMF and clustering methods, and because of
the notion that NMF finds a parts-based representation, it has been suggested to
use simple clustering algorithms to compute a starting point for iterative NMF
algorithms. Wild et al. [232] proposes to use the centroids from a spherical
k-means clustering as initial values, and the method is reported to increase
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the rate of convergence in the subsequent NMF. In the same spirit, Kim and
Choi [117] present a greedy hierarchical clustering method based on a simple
similarity measure.

Albright et al. [4] propose and compare several initialization strategies. A sim-
ple yet efficient method consists of computing the average of a random selection
of data vectors. Another approach is based on projecting the N leading sin-
gular vectors onto the non-negative orthant, and the authors describe how fast
initialization algorithms can be obtained using two well known approximations
to the SVD.

Boutsidis and Gallopoulos [28] extends the idea of using the SVD as an ini-
tialization. They compute the first N singular vectors, which corresponds to
approximating the data matrix by a sum of N rank-1 matrices. The authors
proceed by approximating the non-negative elements of these N rank-1 matrices
as N non-negative rank-1 matrices, and use these to initialize the non-negative
matrix factorization. The method is reported to outperform random as well as
spherical k-means initialization on several datasets.
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Abstract. We present a novel method for blind separation of instru-
ments in polyphonic music based on a non-negative matrix factor 2-D
deconvolution algorithm. Using a model which is convolutive in both
time and frequency we factorize a spectrogram representation of mu-
sic into components corresponding to individual instruments. Based on
this factorization we separate the instruments using spectrogram mask-
ing. The proposed algorithm has applications in computational auditory
scene analysis, music information retrieval, and automatic music tran-
scription.

1 Introduction

The separation of multiple sound sources from a single channel recording is a
difficult problem which has been extensively addressed in the literature. Many
of the proposed methods are based on matrix decompositions of a spectrogram
representation of the sound. The basic idea is to represent the sources by different
frequency signatures which vary in intensity over time.

Non-negative matrix factorization (NMF) [1, 2] has been proven a very useful
tool in a variety of signal processing fields. NMF gives a sparse (or parts-based)
decomposition [2] and under certain conditions the decomposition is unique [3]
making it unnecessary to impose constraints in the form of orthogonality or in-
dependence. Efficient algorithms for computing the NMF have been introduced
by Lee and Seung [4]. NMF has a variety of applications in music signal process-
ing; recently, Helén and Virtanen [5] described a method for separating drums
from polyphonic music using NMF and Smaragdis and Brown [6] used NMF for
automatic transcription of polyphonic music.

When polyphonic music is modelled by factorizing the magnitude spectro-
gram with NMF, each instrument is modelled by an instantaneous frequency
signature which can vary over time. Smaragdis [7] introduced an extension to
NMF, namely the non-negative matrix factor deconvolution (NMFD) algorithm
in which each instrument is modelled by a time-frequency signature which varies
in intensity over time. Thus, the model can represent components with temporal
structure. Smaragdis showed how this can be used to separate individual drums
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from a real recording of drum sounds. This approach was further pursued by
Wang and Plumley [8] who separated mixtures of different musical instruments.
Virtanen [9] presented an algorithm based on similar ideas and evaluated its
performance by separating mixtures of harmonic sounds.

In this paper, we propose a new method to factorize a log-frequency spec-
trogram using a model which can represent both temporal structure and the
pitch change which occurs when an instrument plays different notes. We use a
log-frequency spectrogram such that a pitch change corresponds to a displace-
ment on the frequency axis. We denote this the non-negative matrix factor 2-D
deconvolution (NMF2D). Where previous methods needed one component to
model each note for each instrument, the proposed model represents each in-
strument compactly by a single time-frequency profile convolved in both time
and frequency by a time-pitch weight matrix. This model dramatically decreases
the number of components needed to model various instruments and effectively
solves the blind single channel source separation problem for certain classes of
musical signals. In section 2 we introduce the NMF2D model and derive the up-
date equations for recursively computing the factorization based on two different
cost functions. In section 3 we show how the algorithm can be used to analyze
and separate polyphonic music and we compare the algorithm to the NMFD
method of Smaragdis [7]. This is followed by a discussion of the results.

2 Method

Consider the non-negative matrix factorization problem:
V ~ WH, (1)

where V,W, and H are non-negative matrices. Lee and Seung [4] devise two
algorithms to find W and H: For the least square error and the KL divergence
they show that the following recursive updates converge to a local minimum:

vHT wiv
S . «— o — «— [ ]
Least square error: W «— We ==, H — He oo,
-~ g7 w7l
KL divergence: W « W e 2ee H«— He —5%, (2)

where A e B denotes element-wise multiplication and % denotes element-wise

division. These algorithms can be derived by minimizing the cost function using
gradient descent and choosing the stepsize appropriately to yield simple multi-
plicative updates.

We now extend the NMF model to be a 2-dimensional convolution of W7
which depends on time, 7, and H? which depends on pitch, ¢. This forms the
non-negative factor 2-D deconvolution (NMF2D) model:

V%A:ZZ#T;I;’, (3)
T 9
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where | ¢ denotes the downward shift operator which moves each element in the
matrix ¢ rows down, and — 7 denotes the right shift operator which moves each
element in the matrix 7 columns to the right, i.e.:

123 a [000\ . (012
A=[456|, A=[o000], A=[045
789 123 078

We note that the NMFD model introduced by Smaragdis [7] is a special case of
the NMF2D model where ¢ = {0}.
Each element in A is given by

Aij = Z Z Z Wz—qﬁ,ng,jf‘r' (4)
T 1] d

In the following derivation of the update steps required to compute W7 and
H? we will need the derivative of a given element A; ; with respect to a given
element WE ;:

8A1 7 8 1]
J W7, H?. )
oW, oW, Z%:Zd: T ®)
0
= W, HY (6)
8W7€-,d ; ? ¢7d dvj
- HZ)J—T p=i—k (7)
N 0 otherwise.

2.1 NMF2D Least Squares

Now, we consider the least squares cost function which corresponds to maximiz-
ing the likelihood of a gaussian noise model:

Crs =|[V=AlF =) > (Vij - Aiy)*. (8)
i

Differentiating Cr,¢ with respect to a given element in W7 gives:

001 ) ,
- SN (Vi — Aug
TWha  IWE, 2 2V 7 ) o
A,
=-2 E E (Viy — Ai’j)GW{d (10)
i j s

=23 > (Voiny — Aprny)HY ;. (11)
6 J
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The recursive update steps for the gradient descent are given by:

. 12
nﬁWZd (12)

Similar to the approach of Lee and Seung [4], we choose the step size 7 so that
the first term in (12) is canceled:

'WT
)= L I (13)
—2 Z¢> Zj A¢+k,de,j—r

which gives us the following simple multiplicative updates:

¢ To %, VorkdHi, .
S A Hy
By noticing that transposing equation (3) interchanges the order of W™ and H?

in the model, the updates of H? can easily be found. In matrix notation the
updates can be written as:

Z,d — (14)

T T
1627 16T,
>y VH? S.WT OV
W W o — H> — H o —/— (15)
1ot 1o T s
qu AHd’ Z‘r W™ A

2.2 NMF2D by KL Divergence
Consider the Kullbach-Leibler (KL) divergence given by:

CKL _ZZVZ]

Minimizing the KL divergence corresponds to assuming multinomial noise model.
Differentiating this cost function with respect to a given element in W7 gives:
Vi

0CK 1, i)

oW, OW], ;zj:v” Ai;
Vi;\ 0Ai,

= 1— J) _ vJ 18

Zz:zj: ( Aij) OWEa (18)

= ZZ( ol b T (19)

k+¢,

- Vi +A (16)

—Vij+Ai (17)

Again, the recursive gradient descent update steps are given by:

0Ckr,
Towr

Wiac Wia— (20)
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and the step size 7 is chosen so that the first term in equation (20) is canceled:

k.d
AL (21)
Z¢ ZJ Hd,j—T
which gives the following simple multiplicative updates:
Voik, tréd
DIFDIFRLIZES S I
Wi, — W S Aok 40T (22)

S, HY

Again, the updates for H? can easily be found by symmetry, and the updates
can be written in matrix notation as:

Vyme v
V) H W (X
WT(_WT.M H¢(_H¢.ZT—T(A)_ (23)
7 19
Z¢1'H¢ S, WT o1

3 Experimental Results

In order to demonstrate our NMF2D algorithm, we have analyzed a 4 second
piece of computer generated polyphonic music containing a trumpet and a piano.
For comparison we have also analyzed the same piece of music by the NMFD
algorithm [7]. For both algorithms we used the least squares cost function. The
score of the piece of music is shown in Fig. 1. The trumpet and the piano play
a different short melodic passage each consisting of three distinct notes. We
generated the music at a sample rate of 16 kHz and analyzed it by the short
time Fourier transform with a 2048 point Hanning windowed FFT and 50%
overlap. This gave us 63 FFT slices. We grouped the spectrogram bins into 175
logarithmically spaced frequency bins in the range of 50 Hz to 8 kHz with 24
bins per octave, which correponds to twice the resolution of the equal tempered
musical scale. Then, we performed the NMF2D and NMFD factorization of the
log-frequency magnitude spectrogram.

For the NMF2D we used two factors, d = 2, since we seek to separate two
instruments. We empirically chose to use seven convolutive components in
time, 7 = {0,..., 6}, corresponding to approximatly 45 ms. The pitch of the
notes played in the music span three whole notes. Consequently, we chose to
use 12 convolutive components in pitch, i.e. ¢ = {0,...,11}.

For the NMFD we used six factors, d = 6, corresponding to the total number
of different tones played by the two instruments. Similar to the experiment
with NMF2D we used seven convolutive components in time. For the exper-
iment with NMFD we used our formulation of the NMF2D algorithm with
¢ = {0}, since the NMFD is a special case of the NMF2D algorithm.
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The results of the experiments with NMFD and NMF2D are shown in Fig.
2 and Fig. 3 respectively. The NMFD algorithm factorized each individual note
from each instrument into a separate component, whereas the NMF2D algorithm
factorized each instrument into a separate component.

We used the NMF2D factorization of the music to reconstruct the individ-
ual instruments separately by spectrogram masking. First, we reconstructed the
spectrum of each individual instrument by computing equation (4) for each spe-
cific value of d. Based on these reconstructed individual instrument spectra we
constructed a spectrogram mask for each instrument, so that each spectrogram
bin is assigned to the instrument with the highest power at that bin. We mapped
these spectrogram masks back into the linear-frequency spectrogram domain, fil-
tered the complex spectrogram based on the masks, and computed the inverse
filtered spectrogram using the original phase. The separation of the two instru-
ments in the music is shown in Fig. 4. Informal listening test indicated, that the
NMEF2D algorithm was able to separate the two instruments very well.
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Fig. 1. Score of the piece of music used in the experiments. The music consists of a
trumpet and a piano which play different short melodic passages each consisting of
three distinct notes.

4 Discussion

In the previous section we compared the proposed NMF2D algorithm with
NMFD. Both the NMF2D and the NMFD representation can be used to sepa-
rate the instruments. However, since the notes of the individual instruments are
spread over a number of factors in the NMFD, these must first be grouped man-
ually or by other means. The NMF2D algorithm implicitly solves the problem
of grouping notes.

If the assumption holds, that all notes for an instrument is an identical pitch
shifted time-frequency signature, the NMF2D model will give better estimates of
these signatures, because more examples (different notes) are used to compute
each time-frequency signature. Even when this assumption does not hold, it
migth still hold in a region of notes for an instrument. Furthermore, the NMF2D
algorithm might be able to explain the spectral differences between two notes of
different pitch by the 2-D convolution of the time-frequency signature.

Both the NMFD and NMF2D models perfectly explained the variation in the
spectrogram. However, the number of free parameters in the two models are quite
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Fig. 2. Factorization of the piece of music using NMFD. The six time-frequency plots
on the left are W7 for each factor, i.e. the time-frequency signature of the distincts tone
played by the two instruments. The six plots on the top are the rows of H showing how
the individual instrument notes are placed in time. The factors have been manually
sorted so that the first three corresponds to the trumpet and the last three correspond
to the piano.
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Fig. 3. Factorization of the piece of music using NMF2D. The two time-frequency
plots on the left are W7 for each factor, i.e. the time-frequency signature of the two
instruments. The two time-pitch plots on the top are H? for each factor showing how
the two instrument notes are placed in time and pitch.
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Fig. 4. Single channel source separation using NMF2D. The plots show the log-
frequency spectrogram and the waveform of the music and the separated instruments.
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different. If the dimensionality of the spectrogram is I x J, and n,, ng denote
the number of convolutive lags in time and pitch, NMFD has (n,I 4+ J)-d =
(7-175 4 63) - 6 = 7728 parameters whereas NMF2D has (n.I + ngJ) - d =
(7-1754+12-63) - 2 = 3962 parameters. Consequently, the NMF2D was more
restricted making the NMF2D the best model from an Occam’s razor point of
view.

Admittedly, the simple computer generated piece of music analyzed in this
paper favors the NMF2D algorithm since each instrument key is a simple spectral
shift of the same time-frequency signature. However, even when we analyze real
music signals the NMF2D also gives very good results. Demonstrations of the
algorithm for different music signals can be found at www.intelligentsound.org.

It is worth noting, that while we had problems making the NMFD algorithm
converge in some situations when using the updates given by Smaragdis [7], the
updates deviced in this paper to our knowledge always converge.

In the experiments above we used the NMF2D based on least squares. How-
ever, using the algorithm based on minimizing the KL divergence gave similar
results. It is also worth mentioning that the NMF2D analysis is computationally
inexpensive; the results in the previous section took approximatly 20 seconds to
compute on a 2 GHz Pentium 4 computer.

It is our belief that the NMF2D algorithm can be useful in a wide range of ar-
eas including computational auditory scene analysis, music information retrieval,
audio coding, automatic music transcription, and image analysis.
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Abstract

We apply machine learning techniques to the problem of separating
multiple speech sources from a single microphone recording. The method
of choice is a sparse non-negative matrix factorization algorithm, which in
an unsupervised manner can learn sparse representations of the data. This
is applied to the learning of personalized dictionaries from a speech corpus,
which in turn are used to separate the audio stream into its components.
We show that computational savings can be achieved by segmenting the
training data on a phoneme level. To split the data, a conventional speech
recognizer is used. The performance of the unsupervised and supervised
adaptation schemes result in significant improvements in terms of the
target-to-masker ratio.

Index Terms: Single-channel source separation, sparse non-negative matrix
factorization.

1 Introduction

A general problem in many applications is that of extracting the underlying
sources from a mixture. A classical example is the so-called cocktail-party
problem in which the problem is to recognize or isolate what is being said by an
individual speaker in a mixture of speech from various speakers. A particular
difficult version of the cocktail-party problem occurs when only a single-channel
recording is available, yet the human auditory system solves this problem for
us. Despite its obvious possible applications in, e.g., hearing aids or as a prepro-
cessor to a speech recognition system, no machine has been built, which solves
this problem in general.

Within the signal processing and machine learning communities, the single
channel separation problem has been studied extensively, and different para-
metric and non-parametric signal models have been proposed.

Hidden Markov models (HMM) are quite powerful for modelling a single
speaker. It has been suggested by Roweis [1] to use a factorial HMM to sepa-
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rate mixed speech. Another suggestion by Roweis is to use a factorial-max vec-
tor quantizer [2]. Jang and Lee [3] use independent component analysis (ICA)
to learn a dictionary for sparse encoding [4], which optimizes an independence
measure across the encoding of the different sources. Pearlmutter and Olsson
[5] generalize these results to overcomplete dictionaries, where the number of
dictionary elements is allowed to exceed the dimensionality of the data. Other
methods learn spectral dictionaries based on different types of non-negative ma-
trix factorization (NMF) [6]. One idea is to assume a convolutive sum mixture,
allowing the basis functions to capture time-frequency structures [7, 8].

A number researchers have taken ideas from the computational auditory
scene analysis (CASA) literature, trying to incorporate various grouping cues of
the human auditory system in speech separation algorithms [9, 10]. In the work
by Ellis and Weiss [11] careful consideration is given to the representation of
the audio signals so that the perceived quality of the separation is maximized.

In this work we propose to use the sparse non-negative matrix factoriza-
tion (SNMF) [12] as a computationally attractive approach to sparse encoding
separation. As a first step, overcomplete dictionaries are estimated for differ-
ent speakers to give sparse representations of the signals. Separation of the
source signals is achieved by merging the dictionaries pertaining to the sources
in the mixture and then computing the sparse decomposition. We explore the
significance of the degree of sparseness and the number of dictionary elements.
We then compare the basic unsupervised SNMF with a supervised application
of the same algorithm in which the training data is split into phoneme-level
subproblems, leading to considerable computational savings.

2 Method

In the following, we consider modelling a magnitude spectrogram representation
of a mixed speech signal. We represent the speech signal in the non-negative
Mel spectrum magnitude domain, as suggested by Ellis and Weiss [11]. Here
we posit that the spectrogram can be sparsely represented in an overcomplete
basis,

Y = DH (1)

that is, each data point held in the columns of Y is a linear combination of few
columns of D. The dictionary, D, can hold arbitrarily many columns, and the
code matrix, H, is sparse. Furthermore, we assume that the mixture signal is a
sum of R source signals

R
Y=>Y,

The basis of the mixture signal is then the concatenation of the source dictionar-
ies, D =[D;...D;...Dg], and the complete code matrix is the concatenation

of the source-individual codes, H = [HI .. H;r . ..HHT By enforcing the
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sparsity of the code matrix, H, it is possible to separate Y into its sources if
the dictionaries are diverse enough.

As a consequence of the above, two connected tasks have to be solved: 1)
the learning of source-specific dictionaries that yield sparse codes, and, 2) the
computing of sparse decompositions for separation. We will use the sparse non-
negative matrix factorization method proposed by Eggert and Korner [12] for
both tasks.

2.1 Sparse Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) computes the decomposition in Equa-
tion (1) subject to the constraints that all matrices are non-negative, leading to
solutions that are parts-based or sparse [6]. However, the basic NMF does not
provide a well-defined solution in the case of overcomplete dictionaries, when
the non-negativity constraints are not sufficient to obtain a sparse solution. The
sparse non-negative matrix factorization (SNMF) optimizes the cost function

E = |[Y-DH|%+A> H;; st. DH>0 (2)

(]

where D is the column-wise normalized dictionary matrix. This cost function
is the basic NMF quadratic cost augmented by an L; norm penalty term on
the coefficients in the code matrix. The parameter, A, controls the degree of
sparsity. Any method that optimizes Equation (2) can be regarded as computing
a maximum posterior (MAP) estimate given a Gaussian likelihood function and
a one-sided exponential prior distribution over H. The SNMF can be computed
by alternating updates of D and H by the following rules [12]

Y/D;
Hij « Hijo ———
R/D; + A
> Hi; [Y: + (R/D;)D]

D; <« Dje —
> Hi; [R; + (V/D;)D;]

where R = DH, and the bold operators indicate pointwise multiplication and
division.

We first apply SNMF to learn dictionaries of individual speakers. To separate
speech mixtures we keep the dictionary fixed and update only the code matrix,
H. The speech is then separated by computing the reconstruction of the parts
of the sparse decomposition pertaining to each of the used dictionaries.

2.2 Two Ways to Learn Sparse Dictionaries

We study two approaches to learning sparse dictionaries, see Figure 1. The first
is a direct, unsupervised approach where the dictionary is learned by computing
the SNMF on a large training data set of a single speaker. The second approach
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Figure 1: Two approaches for learning sparse dictionaries of speech. The first
approach (a) is to learn the dictionary from a sparse non-negative matrix fac-
torization of the complete training data. The second approach (b) is to segment
the training data into individual phonemes, learn a sparse dictionary for each
phoneme, and compute the dictionary by concatenating the individual phoneme
dictionaries.

is to first segment the training data according to phoneme labels obtained by
speech recognition software based on a hidden Markov model. Then, a sparse
dictionary is learned for each phoneme and the final dictionary is constructed by
concatenating the individual phoneme dictionaries. As a consequence, a smaller
learning problem is addressed by the SNMF for each of the phonemes.

The computational savings associated with this divide-and-conquer approach
are significant. Since the running time of the SNMF scales with the size of the
training data and the number of elements in the dictionary, dividing the problem
into SNMF subproblems for each phoneme reduces the overall computational
burden by a factor corresponding to the number of phonemes. For example, if
the data is split into 40 phonemes, we need to solve 40 SNMF subproblems each
with a complexity of 1/40% compared to the full SNMF problem. In addition
to this, since the phoneme SNMF subproblems are much smaller than the total
SNMF problem, a faster convergence of the iterative SNMF algorithm can be
expected. These advantages makes it desirable to compare the quality of sparse
dictionaries estimated by the two methods.

3 Simulations

Part of the Grid Corpus [13] was used for evaluating the proposed method for
speech separation. The Grid Corpus consists of simple structured sentences
from a small vocabulary, and has 34 speakers and 1000 sentences per speaker.
Each utterance is a few seconds and word level transcriptions are available. We
used half of the corpus as a training set.
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Figure 2: The automatic phoneme transcription as computed by the trained
hidden Markov model (HMM) for an example sentence from the Grid Corpus.
A manual transcription is provided for comparison, confirming the conventional
hypothesis that the HMM is a useful tool in segmenting a speech signal into its
phonemes.

3.1 Phoneme Transcription

First, we used speech recognition software to generate phoneme transcriptions of
the sentences. For each speaker in the corpus a phoneme-based hidden Markov
model (HMM) was trained using the HTK toolkit!. The HMM’s were used to
compute an alignment of the phonemes in each sentence, taking the pronunci-
ations of each word from the British English Example Pronunciation (BEEP)
dictionary?. This procedure provided phoneme-level transcriptions of each sen-
tence. In order to evaluate the quality of the phoneme alignment, the automatic
phoneme transcription was compared to a manual transcription for a few sen-
tences. We found that the automatic phoneme alignment in general was quite
reasonable. An example is given in Figure 2.

3.2 Preprocessing and Learning Dictionaries

We preprocessed the speech data in a similar fashion to Ellis and Weiss [11]:
the speech was prefiltered with a high-pass filter, 1 — 0.9527!, and the STFT
was computed with an analysis window of 32ms at a sample rate of 25kHz. An
overlap of 50 percent was used between frames. This yielded a spectrogram
with 401 frequency bins which was then mapped into 80 frequency bins on
the Mel scale. The training set was re-weighted so that all frames containing
energy above a threshold were normalized by their standard deviation. The
resulting magnitude Mel-scale spectrogram representation was employed in the
experiments.

1 Avaiable from htk.eng.cam.ac.uk.
2 Available by anonymous ftp from
svr-ftp.eng.cam.ac.uk/pub/comp.speech /dictionaries/beep.tar.gz.
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Figure 3: A few samples of columns of phoneme dictionaries learned from fe-
male speech. The SNMF was applied to data, which had been phoneme-labelled
by a speech recognizer. Not surprisingly, the basis functions exhibit the some
general properties of the respective phonemes, and additional variation is cap-
tured by the algorithm, such as the fundamental frequency in the case of voiced
phonemes.

In order to assess the effects of the model hyper-parameters and the effect
of splitting the training data according the phoneme transcriptions, a subset
of four male and four female speakers were extracted from the Grid Corpus.
We constructed a set of 64 mixed sentences by mixing two randomly selected
sentences for all combinations of the eight selected test speakers.

Two different sets of dictionaries were estimated for each speaker. The first
set was computed by concatenating the spectrograms for each speaker and com-
puting the SNMF on the complete training data for that speaker. The second
set was computed by concatenating the parts of the training data correspond-
ing to each phoneme for each speaker, computing the SNMF for each phoneme
spectrogram individually, and finally concatenating the individual phoneme dic-
tionaries. To save computation, only 10 percent of the training set was used
to train the dictionaries. In a Matlab environment running on a 1.6GHz Intel
processor the computation of the SNMF for each speaker took approximately
30 minutes, whereas the SNMFs for individual phonemes were computed in a
few seconds. The algorithm was allowed to run for maximally 500 iterations or
until convergence as defined by the relative change in the cost function. Fig-
ure 3 shows samples from a dictionary which was learned using SNMF on the
phoneme-segmented training data for a female speaker. The dictionaries were
estimated for four different levels of sparsity, A = {0.0001,0.001,0.01,0.1}, and
four different dictionary sizes, N = {70,140, 280,560}. This was done for both
the complete and the phoneme-segmented training data.
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Figure 4: Average signal-to-noise ratio (SNR) of the separated signals for dictio-
naries trained on the complete speech spectrograms and on individual phonemes,
(a) as a function of the dictionary size, N, with sparsity A = 0.1, and (b) as a
function of the sparsity with NV = 560. We found that the SNMF algorithm did
not give useful results when A = 1.
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| | Complete | Segmented |

Same gender | 4.840.4 dB | 4.3+0.3 dB
Opp. gender | 6.6+0.3 dB | 6.44+0.3 dB

Table 1: Average signal-to-noise ratio (SNR) of the separated signals for dictio-
naries trained on the complete speech spectrograms and on individual phonemes.
Dictionaries were learned with N = 560 and A = 0.1.

3.3 Speech Separation

For each test sentence, we concatenated the dictionaries of the two speakers in
the mixture, and computed the code matrix using the SNMF updates. Then,
we reconstructed the individual magnitude spectra of the two speakers and
mapped them from the Mel-frequency domain into the linear frequency STFT
domain. Separated waveforms were computed by spectral masking and spec-
trogram inversion, using the original phase of the mixed signal. The separated
waveforms were then compared with the original clean signals, computing the
signal-to-noise ratio.

The results in Figure 4 show that the quality of separation increases with
N. This agrees well with the findings of Ellis and Weiss [11]. Furthermore, the
choice of sparsity, A, is important for the performance of the separation method,
especially in the case of unsegmented data. The individual phoneme-level dic-
tionaries are so small in terms of N that the gain from enforcing sparsity in the
NMEF is not as significant; the segmentation in itself sparsifies the dictionary to
some extend. Table 1 shows that the method works best for separating speak-
ers of opposite gender, as would be expected. Audio examples are available at
mikkelschmidt.dk /interspeech2006 .

3.4 Interspeech 2006: Speech Separation Challenge

We evaluated the algorithm on the Speech Separation test set, which was con-
structed by adding a target and a masking speaker at different target-to-masker
ratios (TMR)?. As an evaluation criterion, the word-recognition rate (WRR)
for the letter and number in the target speech signal was computed using the
HTK speech recognizer trained on data separated by the proposed method. A
part of the test was to blindly identify the target signal as the one separated
signal, which containing the word ‘white’. A total of 600 mixtures were eval-
uated for each TMR. The source signals were separated and reconstructed in
the time-domain as described previously. In Table 2, the performance of the
method is contrasted with the performance of human listeners [14]. A subtask
in obtaining these results was to estimate the identities of the speakers in the
mixtures. This was done by exhaustively applying the SNMF to the signals
with all pairs of two dictionaries, selecting the combination that gave the best

3This test set is due to Cooke and Lee. It is available at http://www.dcs.shef.ac.uk/ mar-
tin/SpeechSeparationChallenge.htm.
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| TMR | 6dB | 3dB | 0dB | —3dB | —6dB | —9dB |
Human Performance
ST 90% | 2% | 54% | 52% 60% 63%
SG 93% | 85% | 76% | 72% 7% 80%
DG | 94% | 91% | 86% | 88% 7% 83%
All 92% | 83% | 2% | 1% 75% 7%
Proposed Method
ST 56% | 53% | 45% | 38% 31% 28%
SG 60% | 57% | 52% | 44% 37% 32%
DG | 3% | 2% | 1% | 63% 54% 41%
All 64% | 62% | 58% | 51% 42% 35%

Table 2: Results from applying the SNMF to the Speech Separation Challenge:
the word-recognition rate (WRR) on separated mixtures of speech in varying
target-masker ratios (TMR) in same talker (ST), same gender (SG) different
gender (DG), and overall (All) conditions compared with human performance
on the mixtures. The WRR should be compared to that of other algorithms
applied to the same test set (see the conference proceedings).

fit. We are currently investigating methods to more efficiently determine the
active sources in a mixture.

4 Discussion and Outlook

We have successfully applied sparse non-negative matrix factorization (SNMF)
to the problem of monaural speech separation. The SNMF learns large over-
complete dictionaries, leading to a more sparse representations of individual
speakers than for example the basic NMF. Inspection of the dictionaries re-
veals that they capture fundamental properties of speech, in fact they learn
basis functions that resemble phonemes. This has lead us to adopt a work-
ing hypothesis that the learning of signal dictionaries on a phoneme level is a
computational shortcut to the goal, leading to similar performance. Our ex-
periments show that the practical performance of sparse dictionaries learned in
this way performs only slightly worse than dictionaries learned on the complete
dataset. In future work, we hope to benefit further from the phoneme labelling
of the dictionaries in formulating transitional models in the encoding space of
the SNMF, hopefully matching the dynamics of speech.
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Abstract

We introduce a new speaker independent method for reducing wind
noise in single-channel recordings of noisy speech. The method is based
on non-negative sparse coding and relies on a wind noise dictionary which
is estimated from an isolated noise recording. We estimate the parameters
of the model and discuss their sensitivity. We then compare the algorithm
with the classical spectral subtraction method and the Qualcomm-ICSI-
OGI noise reduction method. We optimize the sound quality in terms
of signal-to-noise ratio and provide results on a noisy speech recognition
task.

1 Introduction

Wind noise can be a major problem in outdoor recording and processing of au-
dio. A good solution can be to use a high quality microphone with a wind screen;
this is not possible, however, in applications such as hearing aids and mobile
telephones. Here, we typically have available only a single-channel recording
made using an unscreened microphone. To overcome the wind noise problem
in these situations, we can process the recorded signal to reduce the wind noise
and enhance the signal of interest. In this paper, we deal with the problem of
reducing wind noise in single-channel recordings of speech.

There exists a number of methods for noise reduction and source separation.
When the signal of interest and the noise have different frequency characteristics,
the Wiener filter is a good approach to noise reduction. The idea is to attenuate
the frequency regions where the noise is dominant. In the case of speech and
wind noise, however, this approach leads only to limited performance, since both
speech and wind noise are non-stationary broad-band signals with most of the
energy in the low frequency range as shown in Figure 1.

Another widely used approach is spectral subtraction [1]. Here, the idea is to
subtract an estimate of the noise spectrum from the spectrum of the mixed sig-
nal. Spectral subtraction takes advantage of the non-stationarity of the speech
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Figure 1: Average spectrum of speech and wind noise. Both speech and wind
noise are broad-band signals with most of the energy in the low frequency range.
The spectra are computed using the Burg method based on a few seconds of
recorded wind noise and a few seconds of speech from eight different speakers.

signal by reestimating the noise spectrum when there is no speech activity.
During speech activity, the noise is assumed stationary, and for this reason the
method is best suited for situations where the noise varies slowly compared to
the speech. This is not the case for wind noise. As illustrated in Figure 2, wind
noise changes rapidly and wind gusts can have very high energy.

A number of methods for separating non-stationary broad-band signals based
on source modeling have been proposed. The idea is to first model the sources
independently and then model the mixture using the combined source models.
Finally, the sources can be reconstructed individually for example by refiltering
the mixed signal. Different models for the sources have been proposed, such as
a hidden Markov model with a Gaussian mixture model [2], vector quantization
[3, 4], and non-negative sparse coding [5]. A limitation of these approaches is
that each source must be modeled prior to the separation. In the case of wind
noise reduction, this means that we must model both the speech and the wind
noise beforehand.

Binary spectral masking is a source separation method, where the main
assumption is that the sources can be separated by multiplying the spectrogram
by a binary mask. This is reasonable when each time-frequency bin is dominated
by only one source. Thus, the problem of separating signals is reduced to that of
estimating a binary time-frequency mask. One approach to estimating the mask
is to use a suitable classification technique such as the relevance vector machine
[6]. Similar to the source modeling approach, however, both the sources must
be known in advance in order to estimate the parameters of the classifier.
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Figure 2: Example spectrograms and the result of the algorithm. Spectrograms
of clean speech and wind noise: Both speech and wind noise are non-stationary
Speech has both harmonic and noise-like segments and
sometimes short pauses between words. Wind noise is characterized by a con-
stant broad-band background noise and high energy broad-band wind gusts.
There is a large overlap between the speech and noise in the noisy recording. In
the processed signal, a large part of the noise is removed.

broad-band signals.



Wind Noise Reduction using Non-negative Sparse Coding 79

A completely different approach to source separation is computational au-
ditory scene analysis (CASA). Here, the idea is to simulate the scene analysis
process performed by the human auditory system. We will not discuss this
further in this paper.

2 Method

In this work, we propose a new method for noise reduction, which is related to
the source modeling approach using non-negative sparse coding. The key idea
is to build a speaker independent system, by having a source model for the wind
noise but not for the speech.

We assume that the speech signal and the wind noise are additive in the time
domain, i.e., we assume that the noise is not so strong, that we have problems
with saturation. Then, the noisy signal, x(t), can be written as

a(t) = s(t) + n(t), (1)

where s(¢) is the speech signal, and n(t) is the wind noise. If we assume that
the speech and wind noise are uncorrelated, this linearity applies in the power
spectral domain as well.

In line with Berouti et al. [7], we represent the signal in the time-frequency
domain as an element wise exponentiated short time Fourier transform

X = [STFT{z(t)}|". (2)

When the exponent, v, is set to 2 the representation is the power spectrogram
and the above mentioned linearity holds on average. Although using v # 2
violates the linearity property, it often leads to better performance; in the sequel,
we estimate a suitable value for this parameter.

2.1 Non-negative sparse coding

The idea in non-negative sparse coding (NNSC) is to factorize the signal matrix
as
X ~DH, (3)

where D and H are non-negative matrices which we refer to as the dictionary
and the code. The columns of the dictionary matrix constitute a source specific
basis and the sparse code matrix contains weights that determine by which am-
plitude each element of the dictionary is used in each time frame. It has been
shown that imposing non-negativity constraints leads to a parts-based represen-
tation, because only additive and not subtractive combinations are allowed [8].
Enforcing sparsity of the code leads to solutions where only a few dictionary
elements are active simultaneously. This can lead to better solutions, because
it forces the dictionary elements to be more source specific.

There exists different algorithms for computing this factorization [9, 10, 11,
12]. In the following we use the method proposed by Eggert and Kérner [10],
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which is perhaps not the most efficient method, but it has a very simple for-
mulation and allows easy implementation. The NNSC algorithm starts with
randomly initialized matrices, D and H, and alternates the following updates
until convergence

D'x
H «— He—07m— (4)
D"DH+)
_ XH'+De(1(DHH D))
D «— De . (5)
DHH"+De(1(XH" D))

Here, D is the columnwise normalized dictionary matrix, 1 is a square matrix
of suitable size with all elements equal to 1, and the bold operators indicate
pointwise multiplication and division. The parameter A\ determines the degree
of sparsity in the code matrix.

2.2 Non-negative sparse coding of a noisy signal

When the sparse coding framework is applied to a noisy signal and we assume
that the sources are additive, we have

H,

X—Xs—i—Xnm[DsDn]{H
n

} =DH, (6)
where the subscripts, s and n, indicate speech and noise. Inherent in the sparse
coding approach, however, is a permutation ambiguity; the order of the columns
of D can be changed as long as the rows of H are changed correspondingly. Con-
sequently, we need a mechanism to fix or determine which components pertain
to which source. One method is to precompute the source dictionaries using
isolated recordings of the sources [5]. Another idea is to devise an automatic
grouping rule as argued by Wang and Plumbley [14]. We suggest to precom-
pute the source dictionary for only one of the sources, the wind noise, and to
learn the dictionary of the speech directly from the noisy data. This results in
a method which is independent of the speaker.

We modify the NNSC algorithm so that only D, H,, and H,, are updated.
This gives us the following update equations

D!l x D!x
H — Hie ——, H,— H,o ——, (7)
D] DH+¢, D] DH+¢,

_ XH]+D.e(1(DHH/eD,))
D, — Dge . (8)
DHH]+D.e(1(XH/]eD.))

We have introduced different sparsity parameters for the speech and noise be-
cause we hypothesize that having different sparsity for the speech and noise can
improve the performance of the algorithm.
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To reduce the wind noise in a recording we first compute the NNSC de-
composition of an isolated recording of the wind noise using Equation (4-5).
We discard the code matrix and use the noise dictionary matrix to compute
the NNSC decomposition of the noisy signal using Equation (7-8). Finally we
estimate the clean speech as

X,=D,H.. 9)

To compute the waveform of the processed signal, we invert the STFT using
the phase of the noisy signal.

3 Experimental results

To evaluate the algorithm we first used a test set consisting of eight phoneti-
cally diverse sentences from the Timit database. The sentences were spoken by
different speakers, half of each gender. The speech signals were normalized to
unit variance. We recorded wind noise outdoors using a setup emulating the
microphone and amplifier in a hearing aid. We used half a minute of wind noise
for estimating the noise dictionary. The signals were sampled at 16 kHz and
the STFT were computed with a 32 ms Hanning window and 75% overlap. We
mixed speech and wind noise at signal-to-noise ratios (SNR) of 0, 3, and 6 dB.
In all our experiments the stopping criterion for the algorithm was when the
relative change in the squared error was less than 10~ or at a maximum of 500
iterations. As for most non-negative matrix factorization methods, the NNSC
algorithm is prone to finding local minima and thus a suitable multi-start or
multi-layer approach could be used [13]. In practice, however, we obtained good
solutions using only a single run of the NNSC algorithm.

3.1 Initial setting of parameters

To find good initial values for the parameters of the algorithm, we evaluated
the results on an empirically chosen range of values for each of the parameters
shown below.

~v € {.5,.6,.7,.8} The exponent of the short time Fourier tranform.

An € {.2,.5} The sparsity parameter used for learning the wind noise dictio-
nary.

Ny € {32,64,128} The number of components in the speech dictionary.
N, € {4,16,64,128} The number of components in the wind noise dictionary.

ls € {.05,.1,.2} The sparsity parameter used for the speech code during
separation.

£, € {0,.1} The sparsity parameter used for the noise code during separation.
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For each of the 576 combinations of parameter settings, we computed the average
increase in SNR. In total, more than six hours of audio was processed. The
underlined parameter settings gave the highest increase in SNR. We used these
parameter settings as a starting point for our furhter experiments. An example
of the result of the algorithm is illustrated in Figure 2.

3.2 Importance and sensitivity of parameters

Next, we varied the parameters one by one while keeping the others fixed to
the value chosen above. In these experiments, the input SNR was fixed at 3
dB. Figure 3-8 show the results; the box plots shows the median, upper and
lower quartiles, and the range of the data. In the following we comment on each
parameter in detail.

v (See Figure 3) The exponent of the STFT appears to be quite important.
The best results in terms of SNR is achieved around v = 0.7, although
the algorithm is not particularly sensitive as long as v is chosen around
0.5-1. Noticably, results are significantly worse when using the power
spectrogram representation, v = 2. The estimated value of the exponent
corresponds to a cube root compression of the power spectrogram which
curiously is an often used approximation to account for the nonlinear
human perception of intensity.

An (See Figure 4) The sparsity parameter used in estimating the wind noise
dictionary does not significantly influence the SNR . Qualitatively, how-
ever, there is a difference between low and high sparsity. Listening to the
processed signals we found that with a less sparsified noise dictionary, the
noise was well removed, but the speech was slightly distorted. With a more
sparsified dictionary, there was more residual noise. Thus, this parameter
can be used to make a tradeoff between residual noise and distortion.

Ny (See Figure 5) The number of components in the speech dictionary is a
very important parameter. Naturally, a reasonable number of components
is needed in order to be able to model the speech adequately. Qualita-
tively, when using too few components, the result is a very clean signal
consisting only of the most dominant speech sounds, most often the vow-
els. Interestingly though, having too many components also reduces the
performance, since excess components can be used to model the noise. In
this study we found that Ny = 64 components gave the best results, but
we expect that it is dependent on the length of the recordings and the
setting of the sparsity parameters etc.

N, (See Figure 6) The number of components in the wind noise dictionary is
also important. Our results indicate that at least N,, = 32 components
must be used and that the performance does not decrease when more
components are used. Since the noise dictionary is estimated on an isolated
recording of wind noise, all the elements in the dictionary will be tailored
to fit the noise.
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Figure 3: Exponent of the short time Fourier transform versus SNR. The best
performance is achieved around v = 0.7. The algorithm is not very sensitive to
~ as long as it is chosen around 0.5-1.
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Figure 4: Sparsity parameter for the precomputation of the wind noise dictio-
nary versus SNR. The method is not particularly sensitive to the selection of
this parameter.
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Figure 5: Number of components in the speech dictionary versus SNR. The best

performance on the test set is achieved at Ny = 64. Using too few or too many
components reduces the performance.
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Figure 6: Number of components in the wind noise dictionary versus SNR. The
results indicate that there should be at least N,, = 32 noise components.
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Figure 7: Sparsity parameter for the speech versus SNR. The method is not
particularly sensitive to the selection of this parameter.
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Figure 8: Sparsity parameter for the noise versus SNR. The method is very

sensitive to the selection of this parameter, and it appears that no sparsity,
£y, =0, leads to the best performance.
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{5 (See Figure 7) The sparsity parameter used for the speech code does not
appear very important when we look at the SNR, although slightly better
results are obtained around /5 = 0.02. When we listen to the signals,
however, there is a huge difference. When the parameter is close to zero,
the noise in the processed signal is mainly residual wind noise. When the
parameter is chosen in the high end of the range, there is not much wind
noise left, but the speech is distorted. Thus, although not reflected in the
SNR, this parameter balances residual noise and distortion similar to the
sparsity parameter used for estimating the wind dictionary.

L, (See Figure 8) The sparsity parameter used for the wind noise during
separation should basically be set to zero. Both qualitatively and in terms
of SNR, imposing sparsity on the noise code only worsens performance.
This makes sense, since the sparsity constrains the modeling ability of the
noise dictionary, and consequently some of the noise is modeled by the
speech dictionary.

3.3 Comparison with other methods

We compared our proposed metod for wind noise reduction to two other noise
reduction methods. We used a test set consisting of 100 sentences from the
GRID corpus. The sentences were spoken by a single female speaker. We mixed
the speech with wind noise at different signal-to-noise ratios in the range 0-6 dB
to see how the algorithm works under different noise conditions. All parameter
settings were chosen as in the previous experiments.

We compared the results with the noise reduction in the Qualcomm-ICSI-
OGI frontend for automatic speech recognition [15], which is based on adaptive
Wiener filtering. We also compared to a simple spectral subtraction algorithm,
implemented with an “oracle” voice activity detector. During non-speech ac-
tivity we set the signal to zero and when speech was present we subtracted the
spectrum of the noise taken from the last non-speech frame.

We computed two quality measures: i) the signal to noise ratio averaged over
the 100 sentences and ii) the word recognition rate using an automatic speech
recognition (ASR) system. The features used in the ASR were 13 Mel frequency
cepstral coefficients plus A and AA coefficients, and the system was based on
a hidden Markov model with a 16 component Gaussian mixture model for each
phoneme. The results are given in Figure 9- 10.

In terms of SNR, our proposed algorithm performs well (see Figure 9). The
spectral subtraction algorithm also increases the SNR in all conditions, whereas
the Qualcomm-ICSI-OGI algorithm actually decreases the SNR. In terms of
word recognition rate the Qualcomm-ICSI-OGI algorithm gives the largest qual-
ity improvement (see Figure 10). This might not come as a surprise, since the
algorithm is specifically designed for preprocessing in an ASR system. At low
SNR, our proposed algorithm does increase the word recognition rate, but at
high SNR, it is better not to use any noise reduction at all. The spectral sub-
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Figure 9: Output SNR versus input SNR. In terms of SNR, the proposed algo-
rithm performs well.

traction algorithm performs much worse than using the original noisy speech in
all conditions.

4 Discussion

We have presented an algorithm for reducing wind noise in recordings of speech
based on estimating a source dictionary for the noise. The main idea was to make
a system based on non-negative sparse coding, using a pre-estimated source
model only for the noise. Our results show that the method is quite effective,
and informal listening test indicate that often the algorithm is able to reduce
sudden gusts of wind where other methods fail. In this work, we studied and
optimized the performance in terms of signal-to-noise ratio, which is a simple but
limited quality measure. Possibly, the algorithm will perform better in listening
test and in speech recognition tasks, if the parameters are carefully tuned for
these purposes, e.g., by optimizing a perceptual speech quality measure or word
recognition rate.
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Abstract

In this work we address the problem of separating multiple speakers
from a single microphone recording. We formulate a linear regression
model for estimating each speaker based on features derived from the
mixture. The employed feature representation is a sparse, non-negative
encoding of the speech mixture in terms of pre-learned speaker-dependent
dictionaries. Previous work has shown that this feature representation
by itself provides some degree of separation. We show that the perfor-
mance is significantly improved when regression analysis is performed on
the sparse, non-negative features, both compared to linear regression on
spectral features and compared to separation based directly on the non-
negative sparse features.

1 Introduction

The cocktail-party problem can be defined as that of isolating or recognizing
speech from an individual speaker in the presence of interfering speakers. The
ability of the human auditory system to solve this problem is impressive, even
when using only one ear, or equivalently, listening to a mono recording of a
mixture of different speakers. It is an interesting and currently unsolved research
problem to devise an algorithm which can mimic this ability.

Different approaches for constructing such a system have been proposed,
including methods based on computational auditory scene analysis (CASA) in-
spired by the mechanisms of the human auditory system; blind source separa-
tion (BSS) using little or no prior information about the signals; and machine
learning methods, where speech models are learned from training data and sub-
sequently used to separate the mixed speech. In this paper we focus on the
machine learning approach, where isolated recordings of the individual speakers
we wish to separate are available for training.
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A number of such methods have been propsed. One approach, which ar-
guably has been the most successful, is to use a hidden Markov model (HMM)
based on a Gaussian mixture model (GMM) for each speech source and combine
these in a factorial HMM to separate a mixture [1]. Direct inference in such
a model is not practical because of the dimensionality of the combined state
space of the factorial HMM. Roweis [1] shows how to obtain tractable inference
by exploiting the fact that in a log-magnitude time-frequency representation,
the sum of speech signals is well approximated by the maximum. Recently, im-
pressive results have been achieved by Kristjansson et al. [2] who have devised
an efficient method of inference that does not use the max-approximation. In
some situations, their system exceeds human performance in terms of the error
rate in a word recognition task.

Another class of algorithms, here denoted ‘dictionary methods’, generally
rely on learning a matrix factorization, in terms of a dictionary and its encod-
ing for each speaker, from training data. The dictionary is a source dependent
basis, and the method relies on the dictionaries of the sources in the mixture be-
ing sufficiently different. Separation of a mixture is obtained by computing the
combined encoding using the concatenation of the source dictionaries. As op-
posed to the HMM/GMM based methods, this does not require a combinatorial
search and leads to faster inference. Different matrix factorization methods can
be conceived based on various a priori assumptions. For instance, independent
component analysis and sparse decomposition, where the encoding is assumed
to be sparsely distributed, have been proposed for single-channel speech sepa-
ration [3, 4]. Another way to constrain the matrices is achieved through the
assumption of non-negativity [5, 6], which is especially relevant when modeling
speech in a magnitude spectrogram representation. Sparsity and non-negativity
priors have been combined in sparse, non-negative matrix factorization [7] and
applied to music and speech separation tasks [8, 9, 10].

In this work, we formulate a linear regression model for separating a mixture
of speech signals based on features derived from a time-frequency representation
of the speech. As a set of features, we use the encodings pertaining to dictio-
naries learned for each speaker using sparse, non-negative matrix factorization.
We evaluate the performance of the method on synthetic speech mixtures by
computing the signal-to-error ratio, which is the simplest, arguably sufficient,
quality measure [11].

2 Methodology

The problem is to estimate P speech sources from a single microphone recording,

P
y(t) = 3 wilo), 1)
=1

where y(t) and y;(t) are the time-domain mixture and source signals respectively.
We compute the separation in a time-frequency magnitude representation,
Y = TF{y(t)}, where Y is a non-negative real-valued matrix with spectral
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vectors as columns, i.e., we do not try to estimate the phase. Instead, to compute
the separated time-domain signals, we refilter the original mixture signal using
the estimated magnitude spectra.

2.1 Linear regression

To perform the separation we propose a simple method, namely linear regression.
We estimate the magnitude time-frequency representations of the sources in a
mixture as a linear regression on features derived from the mixture. The linear
model reads,

Y, =W/ (X —p1")+m;17T + N, (2)

where Y; = TF {y;(¢)} is the time-frequency representation of the i’th source,
W ; is a matrix of weights, X is a feature matrix derived from Y’; in the following
we discuss these features in detail. The vectors u and m; are the means of the
features and the sources respectively and are computed on training data. The
matrix N is an additive noise term.

We make two assumptions in order to obtain a particularly simple maximum
a posteriori (MAP) estimator based on this model: i) the noise is zero mean
normal i.i.d. with variance o2 and ii) the prior distribution of the weights is
zero mean normal i.i.d. with variance o2. For a detailed derivation of the MAP
estimator, see e.g. Rasmussen and Williams [12]. Under these assumptions, the
MAP estimator of the i’th source is given by

YV, =, Y X" —p1T) +m17, (3)

where X ™ is the feature matrix computed from the test mixture, Y*, and

T, = (Vi-mid)(X—p1")", (4)
= (X—ulT)(X—ulT)T+Z—§I. (5)

Here, X is a matrix with feature vectors computed on a training mixture and
Y, is the corresponding time-frequency representation of the source.

When an isolated recording, Y; is available as training data for each of
the speakers, it is necessary to construct the training feature matrix, X, from
synthetic mixtures. One way to exploit the available data would be to generate
mixtures, X, such that all possible combinations of time-indices are represented.
However, the number of sources and/or the number of available time-frames
would be prohibitively large. For example, the five minute training data used for
each speaker in this paper lead to matrices Y; with approximately 10* columns.
Creating all combinations of just two speakers would require computing a feature
matrix, X, having 108 columns.

A feasible approximation can be found in the limit of a large training set by
making two additional assumptions: i) the features are additive, X = ZZP X,
with mean vectors p;, which is reasonable for, e.g., sparse features, and ii)
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the features are uncorrelated between sources such that all cross-products are
negligible. Then, we can make the following approximation

I o~ (Y,-m1)(Xi-p1"), (6)

b))

%

.
> (X~ ud ") (X pl) (7)

(2

which allows us to use isolated recordings of each source as training data directly
without generating synthetic mixtures.

2.2 Features

In this work, we explore two sets of feature mappings. The first, and most
simple, is to use the mixture time-frequency representation itself as input to the
linear model, X; = Y,;, X" = Y™*. With these features, the spectra of each
speaker is modeled as a linear combination of the mixed speech spectra; this
allows the model to capture correlations between frequency bands specific to
each speaker.

The second feature set we explore is the encodings of a sparse, non-negative
matrix factorization algorithm (SNMF) [7]. Possibly, other dictionary meth-
ods provide equally viable features. In the SNMF method, the time-frequency
representation of the i’th source is modelled as Y; =~ D;H; where D); is a dic-
tionary matrix containing a set of spectral basis vectors, and H; is an encoding
which describes the amplitude of each basis vector at each time point. In or-
der to use the method to compute features for a mixture, a dictionary matrix
is first learned separately on a training set for each of the sources. Next, the
mixture and the training data is mapped onto the concatenated dictionaries of
the sources,

where D = [Dy,...,Dp]. The encoding matrices, H; and H™, are then the
features used as input to the linear model, X; = H;, X"=H".

In previous work, the sources were estimated directly from these features as
Y: = D;H?} [10]. For comparison, we include this method in our evaluations.
This method yields very good results when the sources, and thus the dictionaries,
are sufficiently different from each other. In practice, however, this will not
always be the case. In the factorization of the mixture, ID; may not only
encode Y'; but also Y5 etc. This suggests that the encodings should rather be
used as features in an estimator for each source.

3 Evaluation
The proposed speech separation method was evaluated on a subset of the GRID

speech corpus [13] consisting of the first 4 male and first 4 female speakers (no.
1, 2, 3,4, 5, 7, 11, and 15). The data was preprocessed by concatenating 5
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minutes of speech from each speaker and resampling to 8 kHz. As a measure
of performance, the signal-to-error ratio (SER) averaged across sources was
computed in the time-domain. The testing was performed on a total of 9 minutes
of synthetic 0 dB mixtures of two speakers, constructed using all combinations
of speakers in the test set.

The time-frequency representation of the sources and mixtures were com-
puted by normalizing the time-signals to unit power and computing the short-
time Fourier transform (STFT) using 64 ms Hamming windows with 50% over-
lap. The absolute value of the STFT was then mapped onto a mel frequency
scale using a publicly available toolbox [14] in order to reduce the dimensionality.
Finally, the mel-frequency magnitude spectrogram was amplitude-compressed
by exponentiating to the power p. By cross-validation we found that best re-
sults were obtained at p = 0.55 which gave significantly better results compared
with, e.g., operating in the amplitude (p = 1) or the power (p = 2) domains
(see Figure 4). Curiously, this is similar to the empirically determined p ~ 0.67
exponent used in power law modelling of perceived loudness in humans, known
as Stevens’ Law (see for example Hermansky [15]).

When learning the sparse dictionaries, the SNMF algorithm was allowed
250 iterations to converge from random initial conditions drawn from a uniform
distribution on the unit interval. The number of dictionary atoms was fixed at
200. The SNMF method has a sparsity parameter, A, which we chose by cross-
validation to A = 0.15. When computing the encodings on the test mixtures,
we did not enforce sparsity, as cross-validation showed that best results were
obtained at A = 0.

Since the methods separate speakers in the magnitude time-frequency do-
main and do not estimate the phase of the separated signals, we used a simple
refiltering method to compute separated time-domain signals. We computed
the STFT of the mixture signal and performed a binary masking and subse-
quent inversion as described by Wang and Brown [16]. Audio examples of the
reconstructed speech are available online [17].

In Figures 1 and 2, the performance is shown for the different methods. The
acronyms MAP-Mel and MAP-SNMF refer to using the mel spectrum or the
SNMF encoding as features in the linear regression, respectively. For reference,
results are provided for the basic SNMF approach as well [10].

We also experimented with using a stacked feature representation, where five
consecutive feature vectors spaced 32 ms apart were combined into one large
feature vector as a simple means to modeling temporal dynamics. In the figures,
this is denoted by the suffix “5”.

The best performance is achieved for MAP-SNMF-5, reaching an ~ 1.2 dB
average improvement over the SNMF algorithm. It is noteworthy that the
improvement is larger for the most difficult mixtures, those involving same-
gender speakers.

In order to verify that the method is robust to changes in the relative gain
of the signals in the mixtures, the performance was evaluated in a range of
different target-to-interference ratios (TIR) (see Figure 3). The results indicate
that the method works very well even when the TIR is not known a priori.



Linear Reg. on Sparse Features for Single-Channel Speech Sep. 97

Min.
Qs
Max.

MAP-Melf —m—mmMm8m8@————3——
MAP-Mel-5 -_—

MAP-SNMF —_—
MAP-SNMF-5 —_—r—
SNMF | —F——t————— |
2 3 4 5 6 7 8 9 10 11

SER(dB)

Figure 1: The distribution of the signal-to-error (SER) performance of the
method for all combinations of two speakers. The mel magnitude spectrogram
(MAP-Mel) and the SNMF encodings (MAP-SNMF) were used as features to
the linear model. The results of using basic SNMF are given as a reference. The
box plots indicate the extreme values along with the quartiles of the dB SER,
averaged across sources.

In Figure 5, the performance is measured as a function of the available
training data, indicating that the method is almost converged when using 5
minutes of training data.

4 Discussion

The main idea in this paper was to use sparse coding features in a linear esti-
mation scheme. We have shown that this approach leads to better performance
compared to linear regression on spectral features and compared to separation
using the sparse features directly. Our results warrant further studies of the
use of sparse features for speech separation, possibly using a more sophisticated
estimator than the linear regression model discussed here.

The computation in the linear model is fast, since the estimation of the
separation matrix is closed-form given the features. The SNMF for computing
the dictionaries and the sparse feature mapping of the mixture, however, is quite
expensive. A possible remedy for the latter computations could be to devise a
greedy approximation.

We experimented with concatenating features across time as a simple means
of modeling the temporal dynamics of speech. Doing this appears to improve
performance slightly, but the effect is relatively small, confirming previous re-
ports that the inclusion of an acoustical dynamical model yields only marginal
improvements [2], [18].
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Figure 2: The performance of the methods given as signal-to-error (SER) in dB,
depending on the gender of the speakers. Male and female are identified by ‘M’
and ‘F’, respectively. The improvement of MAP-SNMF-5 over MAP-Mel-5 and
SNMF is largest in the most difficult (same-gender) mixtures.
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Figure 3: The performance of the MAP-Mel-5 algorithm given as the signal-
to-error ratio (SER) of the target signal versus the target-to-interference ratio
(TIR) of the mixture. The solid and dashed curves represent training on 0dB or
the actual TIR of the test mixture, respectively. Clearly, the method is robust
to a mismatch of the TIR between the training and test sets.
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Figure 4: The effect of amplitude compression on the performance of the MAP-
Mel-5 algorithm as measured in the signal-to-error ratio (SER). The optimal
value of the exponent was found at p ~ 0.55, in approximate accordance with
Steven’s power law for hearing. The dashed curve indicates the standard devi-
ation of the mean.
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Figure 5: The learning curve of the method, measured in signal-to-error ratio
(SER), as a function of the size of the training set, depending on the complexity
of the method.
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Abstract

We present a general method for including prior knowledge in a non-
negative matrix factorization (NMF), based on Gaussian process priors.
We assume, that the non-negative factors in the NMF are linked by a
strictly increasing function to an underlying Gaussian process, specified
by its covariance function. This allows us to find NMF decompositions,
that agree with our prior knowledge of the distribution of the factors, such
as sparseness, smoothness, and symmetries. The method is demonstrated
with an example from chemical shift brain imaging.

Introduction

Non-negative matrix factorization (NMF) [1, 2] is a recent method for factorizing
a matrix as the product of two matrices, in which all elements are non-negative.
NMEF has found widespread application in many different areas including pattern
recognition [3], clustering [4], dimensionality reduction [5], and spectral analysis
[6, 7]. Many physical signals, such as pixel intensities, amplitude spectra, and
occurence counts, are naturally represented by non-negative numbers. In the
analysis of mixtures of such data, non-negativity of the individual components
is a reasonable constraint. Recently, a very simple algorithm [8] for computing
the NMF was introduced. This has initiated much research aimed at developing
more robust and efficient algorithms.
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Efforts have been made to enhance the quality of the NMF by adding fur-
ther constraints to the decomposition, such as sparsity [9], spatial localization
[10, 11], and smoothness [11, 12], or by extending the model to be convolu-
tive [13, 14]. Many extended NMF methods are derived by adding appropriate
constraints and penalty terms to a cost function. Alternatively, NMF meth-
ods can be derived in a probabilistic setting, based on the distribution of the
data [15, 16, 6, 17]. These approaches have the advantage that the underlying
assumptions in the model are made explicit.

In this paper we present a general method for using prior knowledge to
improve the quality of the solutions in NMF. The method is derived in a prob-
abilistic setting, and it is based on defining prior probability distributions of
the factors in the NMF model in a Gaussian process framework. We assume
that the non-negative factors in the NMF are linked by a strictly increasing
function to an underlying Gaussian process, specified by its covariance func-
tion. By specifying the covariance of the underlying process, we can compute
NMF decompositions that agree with our prior knowledge of the factors, such as
sparseness, smoothness, and symmetries. We refer to the proposed method as
non-negative matrix factorization with Gaussian process priors, or GPP-NMF
for short.

2 NMF with Gaussian Process Priors

In the following we derive a method for including prior information in an NMF
decomposition by assuming Gaussian process priors (for a general introduction
to Gaussian processes, see e.g. Rasmussen and Williams [18].) In our approach,
the Gaussian process priors are linked to the non-negative factors in the NMF
by a suitable link function. To set up the notation, we start by deriving the
standard NMF method as a maximum likelihood (ML) estimator and then move
on to the maximum a posteriori (MAP) estimator. Then we discuss Gaussian
process priors and introduce a change of variable that gives better optimization
properties. Finally, we discuss the selection of the link function.

2.1 Maximum Likelihood NMF
The NMF problem can be stated as

X = DH + N, (1)

where X € RE*L i