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Summary

Single-channel source separation problems occur when a number of sources emit
signals that are mixed and recorded by a single sensor, and we are interested
in estimating the original source signals based on the recorded mixture. This
problem, which occurs in many sciences, is inherently underdetermined and its
solution relies on making appropriate assumptions concerning the sources.

This dissertation is concerned with model-based probabilitic single-channel
source separation based on non-negative matrix factorization, and consists of
two parts: i) three introductory chapters and ii) five published papers. The
first part introduces the single-channel source separation problem as well as
non-negative matrix factorization and provides a comprehensive review of ex-
isting approaches, applications, and practical algorithms. This serves to provide
context for the second part, the published papers, in which a number of methods
for single-channel source separation based on non-negative matrix factorization
are presented. In the papers, the methods are applied to separating audio sig-
nals such as speech and musical instruments and separating different types of
tissue in chemical shift imaging.
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Resumé

Kildeseparationsproblemer i én kanal opst̊ar n̊ar et antal kilder udsender sig-
naler som blandes og optages med én enkelt sensor, og vi er interesseret i at
estimere de originale kildesignaler baseret p̊a det optagne mikstursignal. Dette
problem, som opst̊ar indenfor mange grene af videnskaberne, har en iboende
underbestemthed og dets løsning beror p̊a at indføre passende antagelser om
signalkilderne.

Denne afhandling omhandler modelbaseret probabilistisk kildeseparation i én
kanal, baseret p̊a ikke-negativ matrix-faktorisering, og best̊ar af to dele: i) tre
introducerende kapitler og ii) fem publicerede artikler. Den første del intro-
ducerer enkeltkanals-kildeseparationsproblemet s̊avel som ikke-negativ matrix-
faktorisering og giver en omfattende redegørelse for eksisterende tilgange, an-
vendelser og praktiske algoritmer. Dette har til formål at give kontekst til
den anden del, de publicerede artikler, hvori et antal metoder til enkeltkanals-
kildeseparation baseret p̊a ikke-negativ matrix-faktorisering præsenteres. I ar-
tiklerne anvendes metoderne blandt andet til separation af lydsignaler s̊asom
tale og musikinstrumenter samt til separation af forskellige vævstyper i billed-
dannende spektroskopi.
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Preface

This thesis was prepared at Informatics and Mathematical Modelling (IMM),
the Technical University of Denmark (DTU) in partial fulfillment of the require-
ments for acquiring the Ph.D. degree in engineering.
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Resumé iii

Preface v

Papers included in the thesis vii

Acknowledgements ix

Abbreviations xi

Contents xii

1 Introduction 1
1.1 Thesis outline and contributions . . . . . . . . . . . . . . . . . . 2

2 Single-channel source separation 5
2.1 Model-based probabilistic source separation . . . . . . . . . . . . 7

2.1.1 Signal representation . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Mixing and source models . . . . . . . . . . . . . . . . . . 10
2.1.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Approaches to single-channel source separation . . . . . . . . . . 13
2.2.1 Fully factorized univariate models . . . . . . . . . . . . . 13
2.2.2 Auto-regressive models . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Factorial vector quantization . . . . . . . . . . . . . . . . 14
2.2.4 Gaussian mixture models . . . . . . . . . . . . . . . . . . 15
2.2.5 Factorial hidden Markov models . . . . . . . . . . . . . . 16
2.2.6 Matrix factorization models . . . . . . . . . . . . . . . . . 18



xiv Contents

3 Non-negative matrix factorization 21
3.1 Applications of NMF . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Environmetrics and chemometrics . . . . . . . . . . . . . 24
3.1.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Text processing . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Audio processing . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.5 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.6 Other applications . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Generalizations and extensions of NMF . . . . . . . . . . . . . . 29
3.2.1 Divergence measures . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Distribution of the factors . . . . . . . . . . . . . . . . . . 31
3.2.3 Structured factors . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Tensor extensions . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.5 Other extensions and relations . . . . . . . . . . . . . . . 40

3.3 Computing the NMF . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Optimization strategies . . . . . . . . . . . . . . . . . . . 45
3.3.2 NMF algorithms . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Initialization methods . . . . . . . . . . . . . . . . . . . . 51

A Non-negative Matrix Factor 2-D Deconvolution for Blind Single
Channel Source Separation 53

B Single-Channel Speech Separation using Sparse Non-Negative
Matrix Factorization 63

C Wind Noise Reduction using Non-negative Sparse Coding 75

D Linear Regression on Sparse Features for Single-Channel
Speech Separation 91

E Non-negative Matrix Factorization with Gaussian Process Pri-
ors 103

Bibliography 142



Chapter 1

Introduction

Source separation problems arise when a number of sources emit signals that
mix and propagate to one or more sensors. The objective is to identify the
underlying source signals based on measurements of the mixed sources. This
thesis deals with the underdetermined problem of source separation when the
mixed signals are recorded using only a single sensor.

Source separation methods can be divided into blind and non-blind methods.
Blind source separation (BSS) denotes the separation of completely unknown
sources without using additional information. BSS methods typically rely on
the assumption that the sources are non-redundant, and the methods are based
on, for example, decorrelation, statistical independence, or the minimum de-
scription length principle. Non-blind source separation denotes the separation
of sources for which further information is available, for example in terms of a
prior distribution. The single-channel source separation problem is underdeter-
mined and cannot in general be solved using completely blind methods.

Sometimes separating a single-channel mixture of sources is easy, because some
simple natural characteristic can be used to distinguish the sources. This is
the case, for example, when the sources lie in known disjoint frequency bands.
When no such simple natural characteristic separates the sources, the problem
can be extremely difficult.
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The single-channel source separation problem is ubiquitous in many different
application areas including:

Audio processing, for example to separate instruments in music recordings
[A, 208, 224, 225], to separate the voices of multiple simultaneous speakers
[B, D, 122, 223], or to reduce background noise [C];

Bioinformatics, for example to identify and discriminate between different
types of tissue in chemical shift imaging [E, 151, 199, 200];

Chemometrics, for example to determine the spectra and concentration pro-
files of chemical components in an unresolved mixture [73];

Environmetrics, for example to identify the sources of pollutant particles in
spectroscopic measurements of air quality [129]; and

Image processing, for example to extract meaningful image features or sep-
arate mixed images [140].

1.1 Thesis outline and contributions

The focus of this thesis is model-based probabilistic separation of single channel
recordings of mixed sources using non-negative matrix factorization. The thesis
consists of two introductory chapters and five published papers that constitute
the main contribution of the thesis. The introductory chapters review exist-
ing methods for probabilistic single channel source separation and non-negative
matrix factorization respectively, and the aim is to give an overview of the field
and place the published papers into context.

Chapter 2, Single-channel source separation, introduces the single chan-
nel source separation problem, and discusses several approaches to solving
the problem. A general framework for model-based separation is pre-
sented, and aspects that distinguish different methods are discussed. Fo-
cused on model-based probabilistic methods, a comprehensive review of
existing approaches to single channel source separation is presented.

Chapter 3, Non-negative matrix factorization, gives an introduction to
non-negative matrix factorization (NMF) and presents a probabilistic
framework for NMF. A comprehensive review of applications, general-
izations and extensions for NMF is provided, and number of computation
strategies as well as practical algorithms for NMF are discussed.
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Paper A, Non-negative Matrix Factor 2-D Deconvolution for Blind
Single Channel Source Separation, presents a novel method for blind
separation of music instruments in a single channel audio recording. The
paper introduces a 2-D convolutive extension of NMF, where each instru-
ment is modeled by one basis that is convolutive in time and in frequency
to model temporal structure as well as pitch changes. The method is
based on a non-negative factorization of a log-frequency spectrogram and
exploits that a pitch change corresponds to a displacement on the loga-
rithmic frequency axis. Where previous methods needed one component
to model each note for each instrument, the proposed model represents
each instrument compactly by a single time-frequency profile convolved
in both time and frequency by a time-pitch weight matrix. This model
effectively solves the blind single channel source separation problem for
certain classes of musical signals.

Paper B, Single-Channel Speech Separation using Sparse Non-
Negative Matrix Factorization, deals with the separation of multi-
ple speech sources from a single microphone recording. The approach is
based on a sparse non-negative matrix factorization, that is used to learn
speaker models from a speech corpus. These models are then used to sep-
arate the audio stream into its components. We show that considerable
computational savings can be achieved by segmenting the training data
into phoneme-level subproblems using a speech recognizer.

Paper C, Wind Noise Reduction using Non-negative Sparse Coding,
introduces a speaker independent method for reducing wind noise in single-
channel recordings of noisy speech. The method is based on sparse non-
negative matrix factorization and relies on a noise model that is estimated
from isolated noise recordings. The paper compares the proposed method
with the classical spectral subtraction method and a state-of-the-art noise
reduction method, and shows that the proposed method achieves a con-
siderably improved signal-to-noise ratio.

Paper D, Linear Regression on Sparse Features for Single-Channel
Speech Separation, addresses the problem of separating multiple speak-
ers from a single microphone recording by the formulation of a linear
regression model, that estimates each speaker based on features derived
from the mixture. In the paper, two feature representations are compared:
short-time Fourier transform features, and sparse non-negative encoding
of the speech mixture computed using sparse NMF. Results show that
combining sparse non-negative features with a regression model leads to
a significantly improved performance in terms of signal-to-noise ratio.

Paper E, Non-negative Matrix Factorization with Gaussian Process
Priors, presents a general method for including prior knowledge in a
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non-negative matrix factorization, based on Gaussian process priors. The
method is derived in a probabilistic setting, based on specifying prior prob-
ability distributions of the factors in the NMF model. It is assumed that
that the factors are linked by a strictly increasing function to an under-
lying Gaussian process, specified by its covariance function, which makes
it possible to find NMF decompositions that agree with prior knowledge,
such as sparseness, smoothness, and symmetries. Results on a dataset
from chemical shift brain imaging show that better spatial separation be-
tween spectra corresponding to muscle and brain tissue can be achieved.



Chapter 2

Single-channel source

separation

The single-channel source separation problem can be defined as the estimation
K original source signals, s1(n), . . . , sK(n), given only an observed mixture,
x(n). In a general formulation we may write

x(n) = g
(
s1(n), . . . , sK(n)

)
, (2.1)

where g is some possibly non-linear and stochastic mixing process. Often, the
mixing process is taken as the sum of the sources plus additive independent
noise, such that

x(n) =

K∑

k=1

sk(n) + e(n), (2.2)

where e(n) is a noise term. The variable n usually denotes time, and will
be referred to as such in the following, but depending on the application n
could also represent space, frequency, wavenumber, etc. When the signal can
be represented by a discrete sample, we may write (2.1) in vector notation as

x = g(s1, . . . , sK), where sk = [sk(1), . . . , sk(N)]⊤ and g is taken element-wise.

Single-channel source separation is an underdetermined problem and its solution
requires additional information about the sources. For example, it is evident
that in the case of linear noise-free mixing with two sources s1 = s̄ and s2 = x−s̄
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is a solution for any s̄, and it is necessary to use additional information about
the sources to constrain the problem. For this reason, the single-channel source
separation problem lends itself well to be treated by machine learning methods
in a probabilistic framework, where source specific knowledge can be formulated
in terms of prior probability distributions, and statistical inference methods can
be used to infer the most probable solution to the separation problem.

Several different approaches to single-channel source separation have been pro-
posed in the literature, most of which can be seen as i) filtering, ii) decomposition
and grouping, or iii) source modeling approaches.

In the filtering approach, a set of functions (filters) are found that trans-
form the mixture to estimates of the sources. For example, one could use
matched linear filters that are optimized to extract a single source and
maximize signal-to-noise ratio (SNR). More generally, the transformation
functions can be chosen from some parameterized family of functions, and
the parameters can be learned from training data.

In the decomposition and grouping approach, the signal mixture is first
decomposed into components that are known to scatter the sources. These
components are subsequently grouped together to form source estimates.
The decomposition into components can for example be achieved through
a fixed transformation such as the short-time Fourier transform [11], a
physically inspired signal representation as in the computational auditory
scene analysis (CASA) literature [63, 100, 101, 182], a general parameter-
ized signal model such as a sinusoidal model [215, 218, 219, 224], or matrix
factorization methods such as NMF [226]. The grouping of components
into source estimates can be done manually [225], using knowledge-based
grouping rules, or by machine learning clustering techniques [90]. In some
approaches, parameters of a clustering procedure are learned from training
data [9–11].

In the source modeling approach, a statistical model is formulated for
each of the sources as well as for the mixing process. Model parame-
ters are often learned for the source models using training data, and the
sources are separated by statistical inference in the joint model.

The focus of this thesis is on source modeling approaches. Section 2.1 gives a
general introduction to model-based probabilistic source separation, and section
2.2 reviews a number of different approaches presented in the literature.
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2.1 Model-based probabilistic source separation

In model-based probabilistic source separation, probabilistic models are defined
for the sources as well as for the mixing process. The unknown sources are
treated as stochastic variables, and the source separation problem is solved by
making inference in the joint model.

A general framework for model-based statistical single-channel source separation
is illustrated in Figure 2.1. The input to the source separation system is the
mixed signal, x(n), and for supervised methods also training data for some or
all of the source signals. The mixture is first transformed into an appropriate
representation, in which the signal separation is performed. The source models
are either constructed directly based on knowledge of the signal sources, or by
learning from training data. In the inference stage, the models and data are
combined to yield estimates of the sources, either directly or through a signal
reconstruction step.

Differences between various model-based single-channel source separation meth-
ods can be seen as different choices of signal representation, mixing and source
models, method of inference, and signal reconstruction technique, which is is
discussed in the following sections.

2.1.1 Signal representation

Source separation is often not computed directly in the original representation
of the recorded signal; rather, the signal is transformed to some other represen-
tation that is, e.g., chosen to accomplish the following:

Emphasize desired characteristics. Signal representations can be chosen in
order to accentuate important characteristics in the signal that helps dis-
criminate between sources. For example, transformations such as the
Fourier transform, discrete cosine transform, and wavelet transforms are
useful when the source signals are sparse in the transformed domain, and
this can lead to simpler separation algorithms: When sources are disjoint1

in the transformed domain, perfect separation can be achieved by a binary
mask. Another example is perceptually weighted time-frequency represen-
tations, that are often used in audio separation, where the perceptually
most important characteristics are emphasized.

1This is related to the concept of W-disjoint orthogonality [107, 194, 195], i.e., sources with
disjoint support in the STFT domain.
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Figure 2.1: A general framework for model-based statistical single-channel
source separation. Input to the separation system is the signal mixture and
possible training data for the source models. The mixture is transformed into a
suitable representation and combined with the source models and mixing model
in the inference stage, that either directly or through a signal reconstruction
method computes estimates of the separated sources.
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Introduce invariances. In addition to accentuating important characteris-
tics, the signal representation can also be chosen to diminish adverse char-
acteristics, that are known to be unimportant for separating the signals.
For example, many source separation methods (for example [A,D]) use
a power or amplitude spectral representation that disregards the phase,
which leads to an invariance to phase shift. Some speech separation meth-
ods (for example [223]) are based on Mel-frequency cepstral coefficient
(MFCC) features, and when only low-quefrency features are retained an
invariance to pitch is introduced. Introducing invariances in the represen-
tation can be very helpful for source separation methods based on gener-
ative models, since there may be no point in modeling characteristics of
the sources that are known to be unimportant for separation.

Allow assumptions of independence or exchangeability. It is often use-
ful to model parts of data as independent or exchangeable. The signal
can, for example, be divided into (possibly overlapping) blocks, that are
treated as independent, exchangeable, or as loosely coupled sub-problems.
The assumption that the signal blocks are independent, exchangeable, or
perhaps dependent only on the previous block can lead to more efficient
methods of inference.

Reduce dimensionality. With the main purpose of reducing computational
cost, it can be of interest to reduce the dimension of the data prior to
modeling. This can be done, for example, using principal component
analysis (PCA) which is the least-squares best linear technique, or using
more advanced non-linear techniques2.

Allow signal reconstruction. An important distinction is between reversible
(lossless) and non-reversible (lossy) signal representations. In the former
case, the signals may be separated in the representation domain and the
representation inverted to yield separated signals in the original signal
domain. In the latter case, however, after the signals are separated in
the representation domain, separated signals must be reconstructed in
the original signal domain. This can be achieved, e.g., using a filtering
approach where the source estimate is used to construct a filter that is
applied to the signal mixture. This filter can be a time varying Wiener
filter [95], binary [101, 197, 212] or soft [189] masking in a transform
domain, etc. It is important that the signal representation is chosen such
that adequate signal reconstruction is attainable.

2For a review of dimension reduction techniques, see [68].
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2.1.2 Mixing and source models

The mixing and source models are used to define what we know, and quantify
what we do not know, about the mixing process and the signal sources. The
mixing and source models are chosen to i) capture properties of the sources and
mixing process to effectively allow the sources to be separated, and ii) have a
convenient parametric form to allow efficient inference.

Mixing model

The mixing process, denoted by g in (2.1), is specified in terms of a likelihood
function, p(x|s1, . . . , sK), that expresses the probability of observing the mix-
ture when the sources are given.

A simple and often used approach is based on linear mixing with additive noise,
x =

∑

k sk + e, which gives rise to the likelihood function

p(x|s1, . . . , sK) = pe (x−∑

k sk) , (2.3)

where pe(·) is the density of the noise. The noise density can be used to model
observation noise; in addition to this, when the linear mixing model is used as
an approximation to a more involved true mixing process, the noise density can
be used as an approximation to non-linearities and cross-terms etc.

Many different mixing models suited for different problems have been proposed
in the literature. The mixing model is often chosen in order to trade off the
following two objectives:

Accurately model the mixing process. When detailed knowledge about
the mixing process is available, a specialized likelihood function can be
constructed. Consider, for example, the separation of amplitude spectra.
The amplitude spectrum of a mixture is not generally equal to the sum of
amplitude spectra of the sources because there may be a phase difference
between the sources. If the phase difference is taken into account, e.g.,
by modeling it as a uniform random variable [163, 164], this gives rise
to a likelihood function that is specialized to the separation of amplitude
spectra.

Enable efficient inference. Another important consideration for choosing a
suitable mixing model is the complexity of making inference in the model.
For example, when the sources are modeled by discrete-state models, such
as hidden Markov models or vector quantization, inference in the joint
model is expensive because of the exponential number of combined states.
When the mixing model, however, is chosen as the element-wise maximum
of the sources, efficient inference algorithms can be constructed [173, 197,
198], because this effectively decouples the sources in each observation.
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Source model

The available a priori knowledge about the sources is specified in terms of a
prior distribution, p(s1, . . . , sK), that factorizes as

∏

k p(sk) when the source
signals are assumed statistically independent.

The priors can be seen as generative models for the sources; however, it is not
necessary for the priors to capture all properties of the source distributions for
the separation system to be effective. Priors can often be chosen to capture
only key characteristics that are sufficient to separate the sources. Similar to
the choice of mixing model, the sources models must be chosen to adequately
model the sources while allowing efficient inference in the joint model.

The source priors can be chosen by using or combining three levels of source
modeling:

Model building. Source models can be chosen based on prior knowledge about
the nature of the sources. For example, if the source signals are generated
by a physical system, models of the sources can be constructed based on
knowledge of the physics.

Model training. When training data is available for the sources, this can be
used to create or estimate parameters of the source models. In model
training, a suitable flexible parameterized family of models is chosen and
parameters of the model are learned from the training data. There are
several challenges with respect to model training, such as: i) Availability
of training data, i.e., are representative isolated recordings available for
each source? ii) Mismatch with training conditions, i.e., are there external
variabilities, for example in the channel or sensors, that cannot be captured
in a training set? iii) Issues of selectivity, i.e., it may be that the a priori
distributions of the sources are wide and overlapping, whereas sources in
any observed mixture lie within a small subrange; in this case, training
accurate source models may not lead to effective source separation.

Model adaptation. It is possible to adjust the source models with respect
to the observed mixed signal, which can be used to overcome some of
the challenges with model training. Using this model adaption approach
[157, 158], signal models are no longer a priori models of the sources, but
adapted to the observed mixture; thus, model adaptation can be seen as
part of the inference in the joint model.
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2.1.3 Inference

The mixing model, specified by the likelihood function, and the source models,
specified by the prior densities, can be combined using Bayes’ theorem to yield
the posterior distribution of the sources,

p(s1, . . . , sK |x) ∝ p(x|s1, . . . , sK)
∏

k

p(sk). (2.4)

Inference in the joint model corresponds to estimating the sources based on this
posterior density. The marginal posterior of the kth source, that describes the
distribution of a single source of interest given the data, is found by integrating
the posterior density over the K − 1 other “nuisance” sources,

p(sk|x) =

∫

· · ·
∫

p(s1, . . . , sK |x)ds1 · · ·dsk−1dsk+1 · · · dsK . (2.5)

To compute a point estimate of the source, several different estimators can
be constructed, each of which has different properties and leads to different
inference algorithms. One approach is to compute the posterior mean (PM) or
minimum mean square error (MMSE) estimator,

ŝ
(PM)
k =

∫

skp(sk|x)dsk, (2.6)

which requires integrating the posterior density. If this integral cannot be com-
puted analytically, it may be computed numerically, e.g., using Markov chain
Monte Carlo (MCMC) methods [148]. The PM is often the preferred estimate;
however, in some situations it might not be appropriate: For example, if the
marginal posterior is multimodal the PM lies in the region between the modes,
possibly at a point with low posterior density.

Another approach is to compute the joint maximum a posteriori (MAP) esti-
mate,

{ŝ1, . . . , ŝK}(MAP)
= argmax

{s1,...,sK}

p(s1, . . . , sK |x), (2.7)

that maximizes the posterior density over the sources. This approach avoids the
sometimes difficult integral required for the PM estimate. Although the MAP
estimate by definition lies a high posterior density point, the MAP estimate
might not be a good solution—it depends on whether a substantial part of the
probability mass lies close to the point of maximum density.

Between these two “extremes” are approaches such as the marginal maximum
a posteriori (MMAP) estimator,

ŝ
(MMAP)
k = argmax

sk

p(sk|x), (2.8)
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where the nuisance sources are integrated out, and the marginal MAP estimate
is computed for the source of interest. Again, if the integral cannot be computed
analytically, MCMC methods can be used [5, 60, 196].

The choice of which of these or possibly other methods of inference to use in a
particular problem depends on the data and the model, that are sometimes cho-
sen to make a certain efficient method of inference feasible. Practical inference
algorithms often employ (combinations of) analytical and numerical integration,
Monte Carlo methods, and constrained optimization methods.

2.2 Approaches to single-channel source separa-

tion

Many different model-based probabilistic single-channel source separation meth-
ods have been proposed in the literature. In this section, which is organized ac-
cording to the different types of models, a range of these methods are reviewed.

2.2.1 Fully factorized univariate models

The perhaps most simple source model is based on the assumption that each
source, s(n), is independent and identically distributed (i.i.d.) with univariate
distribution p

(
s(n)

)
, i.e., the prior is fully factorized,

p(s) =
∏

n

p
(
s(n)

)
. (2.9)

Based on this model, Hansen and Petersen [84] discuss the separation of linear
single-channel mixtures of white sources, and show that for general unimodal
distributions the problem is ill-posed and the sources cannot be determined.
In some specific situations, however, multi-modal distributions can be effec-
tively separated: For example, a noise-free linear mixture of two binary sources,
s1(n) ∈ {0, a}, s2(n) ∈ {0, b}, a 6= b, can be perfectly separated because the ob-
servation can take only four values, x(n) = s1(n) + s2(n) ∈ {0, a, b, a+ b}, each
of which uniquely identifies the values of the underlying sources. In general,
however, single channel source separation techniques requires models of more
advanced statistics of the sources such as temporal or spectral correlations.
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2.2.2 Auto-regressive models

A simple model that can capture temporal correlations in the sources is the auto-
regressive (AR) model, s(n) =

∑M
m=1 α(m)s(n−m)+ν(n), where {α(m)}Mm=1 is

a set of coefficients, M is the order of the AR process, and ν(n) is a white noise
process. Balan et al. [13, 14] demonstrate that for a single-channel mixture of
stationary AR sources, the parameters of the AR processes can generically be
uniquely identified and the sources separated. With respect to non-stationary
sources, however, the identification problem is more difficult. For separating
slowly changing non-stationary AR sources, the authors propose to first identify
the constituent AR processes for the initial N samples in the signal, and use an
on-line adaptive sliding-window method to update the AR processes for each
new sample.

2.2.3 Factorial vector quantization

In factorial vector quantization (VQ) the mixed signal is represented as a se-
quence of vectors, {x(1), . . .x(Mx)}, and isolated training data is required for
each source in the mixture. The first step in the factorial VQ procedure is for
each source to learn a codebook that consists of Nk code vectors,

Sk = {c(1)
k , . . . , c

(Nk)
k }. (2.10)

The codebook is learned using k-means or another clustering technique to op-
timally represent each source vector by a single code vector. Inference in a
factorial VQ amounts to finding the combination of codebook vectors for each
source that optimally accounts for the data. The maximum likelihood estimate,
for example, can be computed as

{z∗1 , . . . , z∗K} = arg max
z1,...,zK

p
(

x
∣
∣c

(z1)
1 , . . . , c

(zK)
K

)

, (2.11)

where p(·) is the likelihood function and z1, . . . , zK index the codebooks.

Roweis [197] presents a factorial VQ method for separating audio sources in a
log-magnitude spectral representation. A näıve implementation would require
a search over all combinations of codebook vectors for each source; however,
Roweis presents an efficient branch and bound algorithm for an element-wise
maximum observation model. In the same spirit, Pontoppidan and Dyrholm
[173] propose a fast hierarchical VQ procedure to search for combinations of
codebook vectors.

Ellis and Weiss [64] presents a similar approach, where only one VQ is learned
for a single source in the mixture. The mixture is then projected onto the
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VQ model, effectively treating the separation as a denoising problem. They
further extend the approach using a hidden Markov model to capture temporal
constraints in terms of transition probabilities between different subsets of the
VQ.

Radfar et al. [179, 180] compare different signal representations for VQ based
single-channel speech separation: log magnitude spectral vectors; the modulated
lapped transform; and pitch and envelope features. They demonstrate that the
spectral representation is superior for speaker dependent separation, whereas the
pitch and envelope representation is best for speaker independent separation. In
[181] they discuss the selection of window size, which in a spectral representation
is a trade-off between the assumption of stationarity, that favors short windows,
and spectral resolution, that favors long windows. The authors conclude, that
slightly longer windows are useful for the task of speech separation as opposed
to the window sizes typically used in, e.g., speech coding.

Srinivasan et al. [210, 211] train codebooks for speech and noise in a linear
predictive coefficients (LPC) representation. They present an iterative search
method, that finds the most likely combination of codebook vectors by alternat-
ing search in the speech and noise codebook. As an alternative to having one,
possibly huge, codebook to represent many different types of noise, they propose
to learn a set of small codebooks for each type of noise and use a classifier to
determine which codebook to use. The authors further propose to first estimate
the most likely combination of codebook vectors for the speech and noise, and
then improve this estimate by estimating the signal and noise as interpolations
between the maximum likelihood vectors and their nearest neighbors. Since
interpolation in linear predictive coefficients may be unstable, this is performed
in another representation, such as line spectral frequencies.

Blouet et al. [26] compare three codebook based approaches, based on Gaussian
scaled mixture models [20], amplitude factor models [19] (non-negative sparse
coding), and autoregressive models [210, 211]. The authors conclude, that the
autoregressive models effectively captures speech features, whereas the ampli-
tude factor model is better suited for separating music signals.

2.2.4 Gaussian mixture models

A very useful and flexible source model is the Gaussian mixture model (GMM).
Here, each source is modeled as a mixture of I (multivariate) Gaussian densities,

p(s) =
I∑

i=1

πiN (s; µi,Σi) , (2.12)
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where N (z; µ,Σ) = (2π)−N/2|Σ|−1/2 exp
(
− 1

2 (z − µ)⊤Σ−1(z − µ)
)

is the nor-
mal density and πi are mixture coefficients.

In the approach of Beierholm et al. [17], the signal is first partitioned into
blocks, and the discrete cosine transform (DCT) is computed for each block.
In this representation, the sources are modeled by univariate GMMs that are
fully factorized over both time and DCT bands which makes the posterior mean
estimator analytically tractable. The parameters of the GMMs are learned from
training data for each source, and the method is demonstrated on a mixture of
two speech signals. The authors comment, that the method might be improved
by explicitly modeling temporal and spectral correlations.

In a related approach, Reddy and Raj [190] use a log-magnitude spectral rep-
resentation and model each source by a multivariate GMM that captures de-
pendencies across frequency bands. The authors consider an element-wise maxi-
mum observation model that makes it possible to derive an analytical expression
for the posterior mean estimator. The authors demonstrate the algorithm on
a speech separation task, and compare with the factorial VQ approach [197].
Radfar et al. [176, 178] present a similar approach and discuss the use of binary
mask signal reconstruction technique as well as a joint source identification and
separation procedure. Benaroya et al. [20] (see also [26]) extend the framework
to scaled Gaussian mixtures and present a maximum a posteriori (MAP) as well
as a posterior mean (PM) estimation technique.

2.2.5 Factorial hidden Markov models

The discrete-state and mixture models discussed in the previous sections rep-
resent the mixed signal as a sequence of vectors that are treated as indepen-
dent problems. The factorial hidden Markov model (HMM) framework [75]
extends this by taking into account the dependencies between consecutive vec-
tors. Here, the sources are modeled by independently evolving HMMs, specified

by a state transition probability, p(z
(m)
k |z(m−1)

k ) and an emission probability,
p(x|z1, . . . , zK), that depends on the state of all HMMs. A graphical model of
a two-source factorial HMM is shown in Figure 2.2.

Roweis [198] discusses the use of a factorial HMM with a GMM observation
model. In this approach a HMM/GMM is learned for each source on isolated
training data, and to separate sources the most likely joint state sequence is
inferred. Näıve inference in a factorial HMM is exponential in the number of
states of each source-HMM (since the likelihood of all combinations of states
must be evaluated) and is only feasible for models with a small number of states;
however, Roweis shows that by using an element-wise max observation model,
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ŝ
(1)
2 ŝ
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Figure 2.2: Factorial hidden Markov model for two sources. The model consists
of two independent hidden Markov models with a combined observation model:
x are observed mixtures, g is the observation model, ŝ are source estimates, and
z are hidden states.

efficient search algorithms exist that makes efficient inference possible even in
models with a large number of states. To estimate the separated sources Roweis
[198] proposes a re-filtering technique based on a binary mask. Benaroya and
Bimbot [18] present a more advanced technique for estimating the sources based
on an adaptive Wiener filtering scheme, and Radfar and Dansereau [177] discuss
using the MAP estimator.

Kristjansson et al. [122, 229] achieve impressive results on a speech separation
problem using an extended HMM/GMM approach in a log power spectral rep-
resentation. The authors discuss the use of the element-wise max observation
model as well as a more advanced model in which exact inference is intractable,
and for which an approximation based on Laplace’s method is used. For the
same problem, Virtanen [223] presents a similar approach that operates in a
mel-frequency cepstral coefficient (MFCC) representation and uses a log-normal
approximation to make inference in the model tractable.

To accurately model complex sources such as speech in the factorial HMM
framework, a very large number of states may be required. Reyes-Gomez et al.
[193] present a multiband approach where each source is divided into a number
of frequency bands, each of which is modeled by a separate small HMM that is
coupled to adjacent bands. Exact inference is intractable in this model because
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of the grid-like dependency structure across observations and bands, and the
authors present a variational approximation method.

2.2.6 Matrix factorization models

In the matrix factorization approach (also known as latent variable decomposi-
tion), sources are modeled by a linear combination of a set of basis vectors,

s(n) ≈
I∑

i=1

aibi(n). (2.13)

The basis vectors, ai, that capture the characteristics of the sources, can be
learned from isolated training data for each source. The generative model for
the sources can be compactly written as a matrix product, S ≈ AB, where S =
[s(1), . . . , s(N)] is a matrix of N consecutive source vectors, A = [a1, . . . ,aI ] is
a matrix of basis vectors and B = [b(1), . . . , b(N)], b(n) = [b1(n), . . . , bI(n)]⊤

is a matrix of coefficients.

Several different matrix factorization approaches to single-channel source sep-
aration have been proposed in the literature. These methods differ by using
different matrix factorization techniques for learning the basis, by operating in
different signal representation domains, and by relying on different methods of
inference.

One of the earliest matrix factorization approaches to single-channel source sep-
aration was proposed by Jang et al. [103–106] (see also [102]). In their approach
independent component analysis (ICA) is used to learn a set of time-domain
basis functions (and coefficient densities). The authors apply the method to
different problems in audio source separation and report near-perfect separa-
tion when adequate training data is available.

The ICA approach is closely related to the field of sparse coding [134, 154,
155], because the coefficients that are found when the method is applied to, for
example, audio signals are sparse, i.e., most of the elements in the coefficient
matrix B are zero. When the sources can be represented by a sparse code,
it is possible to learn an over-complete [121, 135, 136] basis representation,
which is discussed by Pearlmutter and Olsson [169]. In their approach an over-
complete basis is learned in a spectral representation using a linear programming
technique.

Several authors have proposed using non-negative matrix factorization (NMF)
and extensions thereof for learning source bases, based on the assumption that
the sources can be meaningfully expressed [8] in a non-negative representation
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such as amplitude spectral vectors. NMF can be combined with the idea of
sparse coding to form sparse NMF [61, 96–98]. Schmidt and Olsson [B, D]
propose to use sparse NMF for source separation by learning an over-complete
set of non-negative basis vectors for each source. They show that having a large
over-complete basis for representing each source leads to better separation on a
speech separation task.

For separating audio sources in a time-frequency representation Smaragdis [208]
present a convolutive version of NMF where the bases are time-frequency ma-
trices. This allows the model to capture temporal as well as spectral structure
in the sources. In a related approach Schmidt and Mørup [A] propose a 2-D
convolutive NMF where convolution in time captures temporal structure and
convolution in frequency (on a logarithmic scale) captures pitch change. A
similar idea is employed by [114, 115].

Virtanen [220, 224] presents a non-negative sparse coding method that is ex-
tended by a continuity objective that allows the model to capture dependencies
between source vectors. Schmidt and Laurberg propose to model dependencies
between and within source vectors in NMF using a Gaussian process prior [E].

Raj and Smaragdis [183] present a probabilistic latent variable decomposition
method that is close in spirit to NMF based source separation. In their approch
sources are modeled by a mixture of multinomial distributions. A sparse exten-
sion of the approach, proposed by Shashanka et al. [203], allows the computation
of an over-complete decomposition. Rennie et al. [192] present a probabilistic
framework that includes sparse NMF and mixture-model based source separa-
tion as special cases.
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Chapter 3

Non-negative matrix

factorization

Non-negative matrix factorization (NMF) is a method for approximating a ma-
trix, X, as the product of two matrices, A and B, under the constraint that all
elements in the factorizing matrices be non-negative,

X ≈ AB s.t. A,B ≥ 0 , (3.1)

where X ∈ R
I×J , A ∈ R

I×N
+ , and B ∈ R

N×J
+ . In the expression, A,B ≥ 0

means that all elements of A and B are non-negative and R+ = [0,∞) denotes
the non-negative real numbers.

Relation to other matrix factorizations techniques

NMF is related to many other techniques, such as vector quantization (VQ),
principal component analysis (PCA), and independent component analysis
(ICA), that can all be written as matrix factorizations on the form X ≈ AB.
The differences between these methods and NMF are due to different constraints
placed on the factorizing matrices, A and B: in VQ the columns of B are con-
strained to be unary vectors (all zero except one element equal to unity); in PCA
columns of A and rows of B are constrained to be orthogonal; in ICA rows of B

are maximally statistically independent; and in NMF all elements of A and B

are non-negative. Several hybrid methods that combine these constraints have
also been proposed, such as non-negative PCA [153, 172] and non-negative ICA
[170, 171, 233].
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Why non-negativity?

NMF is distinguished from other matrix factorization methods by the constraint
that all elements in the factorizing matrices be non-negative. Many natural sig-
nals, such as pixel intensities, amplitude spectra, occurrence counts, and discrete
probabilities, are naturally represented by non-negative numbers; thus, in the
analysis of mixtures of such data, non-negativity of the individual components
is a reasonable constraint. Also, non-negativity ensures that data is modeled as
a purely additive combination of features, such that no cancellations can occur.
This agrees with the intuitive idea of building the whole as the sum of its parts.

A brief note on history

Non-negative matrix factorization (NMF) was initially proposed by Paatero and
Tapper [162]1. Lee and Seung [128] later independently introduced NMF2 as an
unsupervised learning method used to model hand written digits. Subsequently
they developed a simple multiplicative algorithm [126, 127] for computing the
NMF based on two different divergence measures, and argued that NMF learns
a “parts based” representation of data.

Review papers

There exist a few review papers on NMF that provide an overview of the re-
lated theory, algorithms, and applications. Berry et al. [22] describe the most
fundamental NMF algorithms and discuss the use of auxiliary constraints used
to impose prior knowledge on the problem. They illustrate applications of NMF
with examples from text mining and spectral data analysis. Sra and Dhillon
[209] provide a survey on NMF algorithms and applications with special focus
on Bregman divergences. The survey includes an overview of application areas
for NMF as well as a brief section on exact NMF. In a concise lecture note,
Cichocki and Zdunek [46] present NMF and discuss cost functions, algorithms,
and tensor extensions.

Basic computation

In its basic form, NMF can be computed as

{A,B} = arg min
A,B≥0

D(X ; A,B), (3.2)

where D is a cost function or divergence that measures the quality of approx-
imation. That is, we find A and B that minimize the divergence between the
data, X, and the approximation, AB. In general, NMF is not unique, and
NMF algorithms thus usually find a local minimum of the divergence.

1Paatero and Tapper refer to the problem as positive matrix factorization.
2In their fist paper [128] on the subject, Lee and Seung refer to the problem as conic coding.

In subsequent papers they use the term non-negative matrix factorization.
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Maximum likelihood

NMF can be computed as a maximum likelihood estimate of A and B based on
an assumption on the distributions of data. This assumption can be expressed
in the likelihood function p(X|A,B). When we the choose the cost function,
D, to be the negative logarithm of the likelihood function,

DML = L(X ,AB) = − log [p(X|A,B)] , (3.3)

we can compute the maximum likelihood (ML) estimate of A and B using (3.2).

Maximum a posteriori

In addition to the assumption on the distribution of data, we can also make
assumptions on the distribution of the factors, expressed in terms of a prior
distribution p(A,B). Using Bayes rule, the posterior is given by p(A,B|X) ∝
p(X|A,B)p(A,B), and by choosing the cost function

DMAP = − log [p(A,B|X)] (3.4)

= − log [p(X|A,B)]
︸ ︷︷ ︸

log−likelihood

− log [p(A,B)]
︸ ︷︷ ︸

log−prior

+c (3.5)

= L(X ,AB) + P(A,B) + c, (3.6)

where c is a constant, the maximum a posteriori (MAP) estimate of A and B

can be computed using (3.2).

Ambiguities

Inherent to the NMF problem is a scale and permutation ambiguity; any solution
is invariant to a permutation and scaling of the columns of A when the rows of
B are permuted and inverse scaled correspondingly,

AB = (APD)(D−1P⊤B) = A∗B∗, (3.7)

where P is a permutation matrix and D is any non-negative diagonal matrix.
This means that in general we can only expect to recover A and B up to an
arbitrary scaling and permutation; however, when computing a MAP estimate,
the prior distribution of the factors may be used to resolve these ambiguities.

3.1 Applications of NMF

NMF has found widespread application in many different areas and has been
used for both unsupervised and supervised learning. NMF and its generaliza-
tions and extensions has been used for such different purposes as dimensionality
reduction, feature extraction, clustering, source separation and classification.
In this section, a wide selection of the applications of NMF are reviewed. The
review is organized according to application area.
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Figure 3.1: Illustration of NMF decomposition of environmetric data. Data is
typically a series of measurements of concentrations of chemical substances, and
the decomposition finds underlying explanatory sources.

3.1.1 Environmetrics and chemometrics

In environmetrics, NMF is often used to analyze series of chemical concentra-
tion measurements, to find underlying explanatory sources, as illustrated in
Figure 3.1.

Anttila et al. [6] outline the use of NMF on environmental data, and analyze
bulk wet deposition concentrations of chemical compounds. Lee et al. [129]
apply NMF to the analysis of particle pollutants. Their data set consists of a
series of measurements of concentrations of chemical species, and the factors
found in the analysis correspond to different pollutant sources. Ramadan et al.
[185] compare two NMF algorithms (PMF [162] and the multilinear engine [161])
for a similar problem. Kim et al. [111] show that the resolution of the method
can be improved by incorporating auxiliary meteorological measurements.

NMF, and related methods, have been applied to a large number of curve reso-
lution problems in chemometrics, where the purpose is to determine the spectra
and concentration profiles of components in an unresolved mixture. NMF meth-
ods have been applied to data from liquid chromatography [73], reflectance spec-
troscopy [83], and Raman spectroscopy [137, 199]. Xie et al. [234] decompose
pulsed gradient spin echo nuclear magnetic resonance data, using a three-way
tensor extension to NMF, to resolve mixed chemical concentration-spectra in a
solution.

3.1.2 Image processing

NMF has found several applications in image recognition and classification. In
most applications images in a database are vectorized and the NMF is com-
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Figure 3.2: Illustration of NMF decomposition of images. Data is typically a
set of vectorized images, and the decomposition finds a set of feature images.

puted on a matrix in which each column is an individual image as illustrated in
Figure 3.2.

Lee and Seung [126] illustrates the use of NMF on a database of facial images
and argue that the non-negative decomposition results in features that are “part
based”, i.e., the whole image is represented as the sum of its components. Mørup
et al. [147] propose a 2-D shift invariant NMF method for extracting image
features that are invariant to shifts in the plane.

Guillamet et al. [78, 82] use a weighted NMF [81] to classify patches of natural
images. In later work, Guillamet and Vitrià [79, 80] apply NMF to the problem
of recognizing faces under different conditions (expression, illumination, and
occlusions.) Buciu and Pitas [32] compare PCA, NMF, and an extension called
local NMF [138] for facial expression recognition. Liu and Zheng [143] show that
image classification results can be improved by using a Riemannian distance
metric or by orthogonalizing the bases learned by the NMF.

Hazan et al. [87] discuss the use of a tensor extension to NMF for sparse image
coding. The method avoids vectorizing each image by representing a set of
images as a three-dimensional tensor.

Cooper and Foote [52] apply NMF to generate video summaries, i.e., to find
short passages of a video recording that are representative for the whole record-
ing. Other applications of NMF to image data include image matting [109],
i.e., to extract foreground objects and blend them into another scene; image
unmixing [140]; and image fusion [243].

3.1.3 Text processing

NMF and probabilistic latent semantic analysis (PLSA) [93, 94] have found
numerous applications in text analysis. The two methods are closely related, as
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Figure 3.3: Illustration of NMF decomposition of text data. Data is typically a
term-by-document matrix that contains the number of occurrences of each term
in each document. The matrix if often sparse, since most terms only occur in
few documents. The decomposition finds sets of related terms, corresponding
to topics in the set of documents.

it has been shown [74], that the PLSA algorithm solves the NMF problem with
a Kullback-Leibler divergence. Most often NMF is used to analyze a term-by-
document occurrence matrix to find topics as illustrated in Figure 3.3.

Lee and Seung [126] analyze a corpus of documents summarized by a term-by-
document occurrence matrix, and show that the factors found by NMF cor-
respond to semantic features (topics). Novak and Mammone [149, 150] use
NMF to construct a language model for automated speech recognition. They
show that this leads to better results in terms of perplexity, in comparison with
latent semantic analysis (LSA). Tsuge et al. [216] show that the precision in
a document query task is significantly improved when the dimensionality of a
term-by-document matrix is reduced using NMF, and distances between queries
and documents are measured in the reduced-dimensional space.

For the problem of clustering a corpus of documents in groups of semantically
related documents, Xu et al. [235] show that NMF outperforms LSA and spectral
clustering. Shahnaz et al. [202] propose a regularized NMF method [167] that
further improve results. Berry and Brown [21] apply this method to the Enron
email data set, and suggest that the method could be used for automatic email
surveillance.

3.1.4 Audio processing

NMF has a multitude of applications in audio processing, including feature ex-
traction, music transcription, sound classification, and source separation. Most
NMF decompositions of audio data are computed in a time-by-frequency repre-
sentation as illustrated in Figure 3.4.
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Figure 3.4: Illustration of NMF decomposition of audio. Data is typically a
time-by-frequency matrix, such as the magnitude short time Fourier transform.
The decomposition finds a set of time-varying sources with constant spectrum.

Sha and Saul [201] use NMF to estimate multiple fundamental frequencies of
simultaneous acoustic sources, based on an instantaneous frequency estima-
tion [2, 27, 71] preprocessing step. They report that the method successfully
estimates the fundamental frequency of two overlapping speech sources. On
a similar problem, Raczyński et al. [174] propose a harmonically constrained
NMF method that is reported to give improved results on a note detection task
compared with traditional NMF.

Smaragdis and Brown [204] use a sparse NMF approach for transcription of
polyphonic music, by learning spectral profiles for each note. A similar system is
proposed by Abdallah and Plumbley [1] who also provide a rigorous probabilistic
foundation.

Cho et al. [39, 40] use NMF for learning spectral features for an audio classifi-
cation task and demonstrate an improvement in recognition accuracy compared
with features based on independent component analysis.

Several authors propose to use NMF for audio source separation. Wang and
Plumbley [225] use NMF to decompose an audio signal into components, that
are manually grouped to form individual audio sources. Similarly, Helén and
Virtanen [90] use NMF to separate polyphonic music into components, and for
each component they extract a set of features and use a support vector machine
(SVM) to classify the component as either harmonic or drum.

Smaragdis [208] and Virtanen [222] independently introduce convolutive ex-
tensions of NMF, in which each component is allowed to have a time-varying
spectrum. This enables the NMF basis functions to capture transients. Schmidt
and Mørup [A] propose a 2-D convolutive NMF method for blind separation of
music instruments, that extends the convolutive NMF by introducing an invari-
ance to shifts on a logarithmic frequency axis, corresponding to a change of
pitch.
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For the problem of separating multiple simultaneous speakers, Raj et al. [183,
184] introduce a probabilistically motivated NMF model-based on a mixture of
multinomial distributions over frequency bins. Schmidt and Olsson [B] propose
a method where an over-complete basis is computed for a set of speakers using
sparse NMF. In later work [D] they improve results using linear regression in
the sparse NMF feature space.

3.1.5 Bioinformatics

Bioinformatics is another large application area for NMF. Several authors use
NMF to analyze micro-array gene-expression data, in many papers with the
purpose of distinguishing between different types of cancer [30, 69, 70, 72, 113,
187]. Wang et al. [227] present an NMF method that utilizes the uncertainty
estimates for each data point that are often available in micro-array data.

NMF is applied to electroencephalogram (EEG) signal classification by several
authors [130, 236]. Chen et al. [38] introduce a constrained NMF method with
temporal smoothness and spatial decorrelation for detection of Alzheimer’s dis-
ease using EEG recordings. A tensor extension to NMF, that directly model
multichannel EEG recordings, is proposed by Lee et al. [131].

Sajda et al. [199, 200] analyze chemical shift imaging data of the human brain,
and use NMF to distinguish between brain and muscle tissue. For the same
data set, Schmidt and Laurberg [E] introduce an NMF method Gaussian process
priors and show that this leads to better separation.

Lee et al. [132, 133] apply NMF to myocardial positron emission tomography
(PET) images and find a basis that corresponds to major cardiac components.
They report that results are similar to those obtained using factor analysis. On
a similar data set, Ahn et al. [3] use a multilayer NMF method to obtain a
hierarchical decomposition.

Hoyer [98] suggests modeling the processing in the the early visual system (V1)
using a sparse NMF method. He shows that an analysis of a database of natural
images results in features that resemble the simple cell receptive fields in V1.

3.1.6 Other applications

NMF has also been used in a number of other applications, a few of which are
mentioned here. Several authors use NMF for analyzing astronometric data,
including molecular emission spectra [108] and spectral reflectance [166, 168].
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Buchsbaum and Bloch [31] analyze color spectra and observe that the com-
ponents in the NMF correspond to established color naming categories. Ra-
manath et al. [186] compare perceptual color spaces with color spaced obtained
using dimensionality reduction techniques such as PCA, ICA, and NMF. Young
et al. [237] use NMF to find characteristic flavor profiles in Scotch single malt
whiskeys. Hu et al. [99] propose to use NMF to find ratio rules, i.e., events that
occur at characteristic fixed ratios, in a basketball statistics data set.

3.2 Generalizations and extensions of NMF

Many different generalizations and extensions to NMF have been proposed in
the literature. Some generalizations fit directly in the NMF framework, and
deal with finding non-negative factorization with specific properties. This in-
cludes different NMF cost functions, some of which arise from assumptions of
the distribution of the data, and different methods for finding factors with de-
sired characteristics such as sparsity, orthogonality, smoothness, symmetries,
and invariances. Other methods extend the NMF framework, for example non-
negative factorization of tensors (multidimensional arrays); convolutive models,
hierarchical/multilayer models, and models which relax the non-negativity con-
straints. In this section, a selection of generalizations and extensions of NMF
are reviewed.

3.2.1 Divergence measures

A wide range of different cost functions have been proposed for NMF in the lit-
erature, most often expressed in terms of a divergence measure, L(X,AB). In
general, these divergences are not symmetric, and for some of these asymmetric
divergence measures there also exists a useful dual divergence, L(AB,X). Com-
puting the NMF by minimizing a divergence measure in many cases corresponds
to computing the maximum likelihood estimate under certain assumptions on
the distribution of the data.

The arguably most simple and most widely used cost function for the NMF
problem is the least squares (LS) cost

LLS =
∑

i,j

(X −AB)2i,j , (3.8)

that corresponds to the assumption that the residual is i.i.d. Gaussian dis-
tributed.
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Lee and Seung [126] introduce a cost function

LP =
∑

i,j

(AB)i,j −Xi,j log(AB)i,j , (3.9)

that can be derived on the assumption that Xi,j follows a Poisson distribution
with mean (AB)i,j .

The Poisson cost function can also be seen as a special case of the generalized
Kullback-Leibler (KL) divergence

LKL =
∑

i,j

Xi,j log
Xi,j

(AB)i,j
−Xi,j + (AB)i,j , (3.10)

that measures the relative entropy between the data and the approximate fac-
torization, if X can be considered as an unnormalized discrete probability dis-
tribution.

Dhillon and Sra [54] propose to use the Bregman divergence for NMF. The
Bregman divergence generalizes the least squares and the generalized Kullback-
Leibler divergences. For any continuously-differentiable strictly convex function,
ψ, there exists a Bregman divergence defined as

LB =
∑

i,j

ψ(X i,j)− ψ((AB)i,j)−∇ψ ((AB)i,j) (X −AB)i,j , (3.11)

which corresponds to (3.8) for ψ(x) = 1
2x

2 and to (3.10) for ψ(x) = x log x− x.
It can be shown [15] that there exists a bijection between Bregman divergences
and exponential family distributions. This means that if we assume the residual
follows some specific exponential family distribution, there is a corresponding
Bregman divergence that can be used to compute the maximum likelihood NMF.

Another divergence measure that generalizes the least squares and the Kullback-
Leibler divergences is proposed by Kompass [120]

LK =
∑

i,j

Xi,j

Xα
i,j − (AB)α

i,j

α
− (AB)α

i,j(AB −X)i,j , (3.12)

and corresponds to least squares for α = 1 and generalized KL in the limit
α→ 0.

Cichocki et al. [49] discuss the use of the Csiszár divergence in NMF

LC =
∑

i,j

Xi,j ϕ

(
(AB)i,j

Xi,j

)

, (3.13)
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where ϕ is a strictly convex function with ϕ(1) = 0. This family of divergences
generalizes a large number of other known divergences, including the KL, ϕ(x) =
log x+ 1

x −1; the dual KL divergence, ϕ(x) = x log x−x+1; and Amari’s alpha

divergence, ϕ(x) = xβ−1−1
β(β−1) + x−1

β .

Weighted NMF

NMF was initially introduced [162] as a weighted least squares estimate, i.e.,
with the cost function

LWLS =
∑

i,j

W i,j(X −AB)2i,j , (3.14)

where W is a matrix of weights. When the standard deviations, σi,j , of the
data points are known, the weights can be selected as W i,j = 1/σ2

i,j . This
corresponds to the assumption that the elements of the residual are independent
Gaussian distributed with zero mean and variance σ2

i,j .

Guillamet et al. [81, 82] introduce a column-wise weighted version of the Poisson
cost function in (3.9)

LWP =
∑

i,j

wj(AB)i,j −wjXi,j log (wj(AB)i,j) , (3.15)

where w is a vector of weights. When columns of X are considered as training
vectors, the authors suggest giving more weight to vector that have a low prob-
ability of appearing in the training set, but a high probability of occurring in
the assumed underlying distribution, to counter sample selection bias.

3.2.2 Distribution of the factors

In standard NMF methods, the only assumptions made about the factors in the
model is that they are non-negative. In probabilistic terms, we can think of
this as an non-informative improper prior over the non-negative real numbers.
In the literature, several methods have been proposed for finding NMF decom-
positions where the factors have other properties of interest, such as sparseness
or smoothness. Often, the decompositions are computed by minimizing a cost
function augmented by penalty or regularization terms that account for these
constraints on the factors. Many of these methods can also be interpreted as
maximum a posteriori estimates of the factorization with specific prior distri-
butions over the factors.

Sparsity

Arguably the most important extension of NMF in terms of alternative distribu-
tions of the factors is sparse NMF, where the objective is to find a factorization,
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X ≈ AB, where B is sparse, i.e., most of its elements are zero. Denoted
non-negative sparse coding (NNSC), a method for sparse NMF is introduced
by Hoyer [96] based on minimizing a penalized least squares cost function. The
proposed penalty term is

PNNSC = β
∑

n,j

f(Bn,j), (3.16)

where β is a parameter that controls the trade-off between sparseness and recon-
struction error and f is a function that measures sparseness. A typical choice
[96] is f(x) = |x|, which is also known as an L1 norm regularization. This
corresponds to the assumption that the elements in B are i.i.d. one-sided ex-
ponential. Hoyer [96] points out an important problem with this cost function
when f is an increasing function: because of the scale ambiguity inherent to
the NMF problem, the second term in the cost function can be trivially min-
imized by letting A increase and B decrease correspondingly. This is easily
remedied, however, by imposing a hard constraint on the scale of either A or
B, for example by forcing the norm of the columns of A to unity.

In a later paper [97], Hoyer introduces another sparsity measure, defined for a
vector x,

s(x) =

√
n−

∑

i
|xi|√∑

i
x2

i√
n− 1

, (3.17)

where n is the dimensionality of x. Based on the relation between the L1 and
L2 norm, the measure is equal to zero when all elements of x are equal and it
is equal to one when only a single element of x is non-zero. Hoyer proposes
to minimize the least squares cost function under the constraints, s(An) = SA,
∀n, and s(Bn) = SB, ∀n, where An is the nth column of A, Bn is the nth row
of B, and SA, SB are the desired sparsity of the factors.

Stadlthanner et al. [213] extend the sparse NMF to allow different sparsity
constraints for each feature (columns of A and rows of B), which is non-trivial
because of the permutation ambiguity in the NMF problem. The authors present
an algorithm in which the factors are adaptively permuted according to their
sparsity measure.

A different approach, denoted non-smooth NMF, is taken by Pascual-Montano
et al. [165], who propose to solve a modified NMF problem

X ≈ ASB, (3.18)

where S ∈ R
n×n
+ is a smoothing matrix

S = (1− θ)I + θ1 . (3.19)
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Here, I is the identity matrix, 1 is a matrix with all elements equal to one,
and θ ∈ [0, 1] is used to control the degree of sparsity. Since the introduction
of S smooths the factorization, the resulting factors will be more sparse or
non-smooth to oppose the smoothing.

Orthogonality

Ding et al. [58] discuss NMF with orthogonality constraints

X ≈ AB, s.t. A,B ≥ 0 , BB⊤ = I, (3.20)

and show that it is equivalent to k-means clustering. Intuitively, since B is non-
negative, the orthogonality constraint implies that only one element in each
column of B can be non-zero and this leads to a clustering of the data. The
authors further discuss a bi-orthogonal tri-factorization

X ≈ ASB, s.t. A,S,B ≥ 0 , A⊤A = BB⊤ = I, (3.21)

and show its relation to kernel k-means clustering for a specific kernel function.

As a part of their local NMF method, Li et al. [65, 138] propose a method for
finding factors that are not strictly orthogonal but are optimized for maximum
orthogonality. In addition to orthogonality, the local NMF method also maxi-
mizes sparseness and expressiveness; however, here we only discuss the proposed
approach to orthogonalization. The authors propose a cost function penalized
by

PO = α
∑

i6=n

(A⊤A)i,n, (3.22)

where α is a parameter that makes a trade-off between orthogonality and re-
construction error. Similar to the non-negative sparse coding penalty term in
(3.16), this can be trivially minimized by decreasing A and increasing B corre-
spondingly, so a constraint on the scale of either A or B must be enforced.

Because of the permutation ambiguity, the factors computed by most NMF
methods occur in arbitrary order. Li et al. [137] propose a NMF method where
an orthogonality constraint is enforced between A and a fixed reference. This
approach does not lead to factors that are orthogonal to each other, but it
provides a means for steering the solution of the NMF problem away from a
specified reference.

Smoothness

In many applications the data matrix, X, consists of consecutive samples from
some slowly varying process and thus X is smooth in one or possibly both direc-
tions. When this is the case, it is natural to enforce a continuity or smoothness
constraint in the NMF decomposition.
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For this aim, Virtanen [220] proposes to minimize the absolute value of the
difference between the elements in the rows of B

PS1 = α
∑

n,j

|Bn,j−1 −Bn,j|. (3.23)

Again, this penalty term requires a constraint on the scale of A or B to avoid
trivial minimization. In later work [221], Virtanen proposes a penalty based on
the squared difference

PS2 = α
∑

n,j

(Bn,j−1 −Bn,j)
2

1
N

∑

n

B2
n,j

, (3.24)

where the penalty for each row of B is normalized by its mean square, which
makes the expression invariant to the scale of B. Virtanen argues [220] that
measuring smoothness using the absolute value of differences preserves rapid
changes better than using the squared differences. For example, for a change
from zero to a constant level any sequence of non-decreasing steps will have an
equal sum of absolute value differences, whereas the squared difference penalty
favors many small steps of equal size. Both PS1 and PS2 reach a (trivial) global
minimum when the rows of B are constant, and the parameter α is used to
make a trade-off between smoothness and data fit.

Chen and Cichocki [37] propose a different measure of smoothness based on the
squared difference between B and a matrix B̄, in which each row is a low-pass
filtered version of the corresponding row of B

PLP = α
∑

n,j

(B − B̄)2n,j . (3.25)

For the low-pass filter, the authors use an exponentially weighted moving aver-
age, and show that this can be implemented efficiently.

Discriminative factors

Often, NMF is used to transform a data matrix into a set of features that are
used to perform some desired task. In its basic form, NMF finds the set of
non-negative features that best fit the data, according to some cost function.
When the features are to be used subsequently in a classification task, however,
the objective is to find features that discriminate well between different classes.

For this means, Wang et al. [228] present a supervised discriminative NMF
method that is based on a penalized KL cost function. They propose a penalty
term inspired by Fisher discriminant analysis, that minimize within-class scatter
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while maximizing between-class scatter,

PF =
α

C

∑

c,n




1

|ξc|
∑

j∈ξc

(

Bn,j − b(c)
n

)2

− 1

C − 1

∑

c′

(

b(c)
n − b(c′)

n

)2



 , (3.26)

where C is the number of classes, ξc denotes the set of indices j that belong to
class c, and

b(c)
n =

1

|ξc|
∑

j∈ξc

Bn,j (3.27)

is the mean of the columns of B that belong to class c. Wang et al. demonstrate
that the discriminative NMF improves the performance compared to regular
NMF on a face recognition task.

Another approach to discriminative NMF is taken by Kim and Park [112], who
propose a method where a NMF is computed separately on each class. The
combined set of basis functions is then used to compute features. The authors
demonstrate improved performance on several classification tasks, compared
with a nearest neighbor classifier based on a NMF of data from all classes
combined.

Gaussian process priors

Schmidt and Laurberg [E] present a general method for including prior knowl-
edge in NMF based on Gaussian process priors. In this approach, the non-
negative factors A and B are linked by strictly increasing functions, fA and fB,
to underlying Gaussian processes, a and b,

a = fA [vec(A)] , b = fB [vec(B)] . (3.28)

The Gaussian processes, a and b, are fully specified by their covariance func-
tions, and the link and covariance functions are used to control the properties
of the factors in the NMF, such as sparsity, smoothness, and symmetries.

3.2.3 Structured factors

Convolutive NMF

Smaragdis [208] and Virtanen [222] independently propose an extension of the
NMF model where the matrix product AB is extended to a discrete convolution

Xi,j ≈
∑

n,k

Ai,n,kBn,j−k. (3.29)
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Smaragdis applies [205, 207, 208] the method to decomposition of audio spectro-
grams, where X is a time-by-frequency matrix, and argues that each component
in the NMF corresponds to an auditory object. The convolutive extension allows
these objects to have a temporal structure.

The convolutive NMF can formulated as a matrix product like the usual NMF
problem, X ≈ AB̄, where A ∈ R

I×NK
+ is a general non-negative matrix, and

B̄ ∈ R
NK×J
+ has the following structure

B̄ =










B

BJ

BJ2

...

BJK−1










, (3.30)

where J is a square matrix with ones on the first lower sub-diagonal and ze-
ros elsewhere, such that post-multiplication by J corresponds to “shifting” the
columns of B one position to the left. This formulation makes it clear that the
convolutive NMF model is a specific structured NMF in which some elements
of the B matrix are constrained to be equal, analogous to weight-sharing in
artificial neural networks. Virtanen [222] and O’Grady and Pearlmutter [152]
further extend the convolutive NMF by adding sparsity constraints.

Schmidt and Mørup [A] extend the convolutive NMF model to a two-dimensional
convolution

Xi,j ≈
∑

n,k,l

Ai−l,n,kBn,j−k,l, (3.31)

which can also be formulated as a structured NMF, X ≈ ÃB̃, where both
Ã ∈ R

I×NKL
+ and B̃ ∈ R

NKL×J
+ are structured matrices

Ã =
[

A(1) · · ·A(K) · · ·JL−1⊤A(1) · · ·JL−1⊤A(K)
]

, (3.32)

B̃ =

















B(1)

...

B(1)JK−1

...

B(L)

...

B(L)JK−1

















. (3.33)

All the parameters in the model are compactly represented by the two sets of
matrices {A(1), . . . ,A(K)} ∈ R

I×N
+ and {B(1), . . . ,B(L)} ∈ R

N×J
+ . The authors
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apply the two-dimensional convolutive NMF to single-channel separation of mu-
sical instruments, where X is a time-by-frequency matrix. The convolutions in
time and frequency correspond to models of temporal dynamics and pitch-shift.
Mørup et al. [147] and FitzGerald et al. [66] further extend the 2-D convolutive
NMF to decompositions of tensors, and FitzGerald et al. [67] extend the model
by harmonicity constraints. NMF and its convolutive variants are illustrated in
Figure 3.5.

Transformation invariant NMF

Wersing et al. [62, 231] propose a (sparse) transformation invariant NMF model

Xi,j ≈
∑

n,k

Ai,n,k

[

T (k)(B)
]

n,j
, (3.34)

where T (k), k ∈ {1, . . . ,K}, is a fixed set of transformations. Comparison with
(3.29) shows that convolutive NMF is a special case of (3.34) where the set of

transformations correspond to shifting columns in the B matrix, T (k)(B) =
BJk. The authors apply the transformation invariant NMF to the problem
of finding a translation invariant basis for a set of images, and discuss the
possibility of extending the set of transformations to include scaling, rotation,
and other more advanced transformations.

Similar to the convolutive models, transformation invariant NMF can formu-
lated as a matrix product X ≈ AB̂, where A ∈ R

I×NK
+ is a general non-

negative matrix, and B̂ ∈ R
NK×J
+ has the following structure

B̂ =








T (1)(B)

T (2)(B)
...

T (K)(B)







. (3.35)

Generalized structured factors

The convolutive and transformation invariant NMF models can more generally
be written as

X ≈ A(a)B(b), (3.36)

where the non-negative matrices A ∈ R
I×N
+ and B ∈ R

N×J
+ are determined by

two vectors of parameters, a and b. These parameters, in general, need not
be non-negative; however, A(a) and B(b) must be non-negative for any valid
choice of a and b. The Gaussian process prior framework proposed by Schmidt
and Laurberg [E] can be seen as as a special case of (3.36) where a and b are
modeled as Gaussian processes.
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Non-negative matrix factorization (NMF)
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Non-negative matrix factor deconvolution (NMFD)

j

i

n = 1 n = 2

n = 1

n = 2

Non-negative matrix factor 2-D deconvolution (NMF2D)
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Figure 3.5: Illustration of non-negative matrix factorization (NMF), Non-
negative matrix factor deconvolution (NMFD), and non-negative matrix factor
2-D deconvolution (NMF2D), each with two components. In each figure, X is
shown at the bottom right, the two components of A are to the left, and the
two components of B are at the top.
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Figure 3.6: Illustration of the three-dimensional PARAFAC model.

3.2.4 Tensor extensions

NMF is in its basic formulation a non-negative bilinear decomposition of a
two-dimensional array, but it can be extended to factorization of tensors (mul-
tidimensional arrays) with any number of modes, for example tri-linear decom-
positions of three-dimensional arrays. The idea of factorizing multidimensional
arrays dates back to Hitchcock [91, 92] (for a review, see e.g. Kolda and Bader
[119]), and several approaches to non-negative tensor factorization have been
proposed in the literature. In this section, the discussion is limited to three-way
factorizations, but non-negative factorizations of higher order can be formulated
as well.

PARAFAC model

Paatero [159, 160, 161] extends NMF to a three-way factorization based on the
parallel factor analysis (PARAFAC) [35, 85] model, which is also known as the
canonical decomposition (candecomb) model. For three-dimensional data, the
non-negative PARAFAC model can be written as

Xi,j,k ≈
∑

n

Ai,nBj,nCk,n, (3.37)

where X ∈ R
I×J×K is a three-dimensional tensor. This decomposition can be

seen as a sum of outer products of the columns of the factor matrices, A ∈ R
I×N
+ ,

B ∈ R
J×N
+ , and C ∈ R

K×N
+ , and is as such arguably the most straightforward

tensor extension of NMF. Welling and Weber [230] generalize the model to ten-
sors of arbitrary dimensionality. The non-negative tree-way PARAFAC model
is illustrated in Figure 3.6.

Another non-negative three-way factorization, based on the PARAFAC23 [86]
model, is discussed by Cichocki et al. [50, 51]. The three-way PARAFAC2

3Cichocki et al. denote this non-negative tensor factorization 2 (NTF2)
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Figure 3.7: Illustration of the three-dimensional PARAFAC2 model.

decomposition can be written as

X i,j,k ≈
∑

n

Ai,nBj,k,nCk,n, (3.38)

and differs from the PARAFAC model in that the factor B ∈ R
J×K×N is itself a

three-way tensor. The non-negative three-way PARAFAC2 model is illustrated
in Figure 3.7.

Tucker model

Kim et al. [116, 118] discuss a non-negative tensor decomposition based on the
the Tucker [217] model

Xi,j,k ≈
∑

l,m,n

Ai,lBj,mCk,nGl,m,n. (3.39)

Here, the tensor X ∈ R
I×J×K is decomposed into three non-negative matrices

of different dimensionality, A ∈ R
I×L
+ , B ∈ R

J×M
+ , and C ∈ R

K×N
+ that are

coupled together by a non-negative core matrix, G ∈ R
L×M×N
+ . The non-

negative three-way Tucker model is illustrated in Figure 3.8.

3.2.5 Other extensions and relations

Symmetric NMF and clustering

When the data matrix X is symmetric, the NMF may posses certain interesting
properties. Catral et al. [36] discuss the conditions i) under which the approxi-
mating factors are equal, A = B⊤, and ii) under which the NMF of a symmetric
X yields a symmetric approximation, AB = (AB)⊤.

Ding et al. [55] presents an algorithm for computing a symmetric NMF decom-
position, X ≈ AA⊤, and shows that this corresponds to special cases of both
kernel k-means clustering and spectral clustering.
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Figure 3.8: Illustration of the three-dimensional Tucker model.

Probabilistic latent semantic analysis (PLSA) [93, 94] is an unsupervised learn-
ing method based on a statistical latent variable model for co-occurrence data
that has been applied to text analysis tasks such as document clustering. Xu
et al. [235] presents a least squares NMF clustering method for document clus-
tering, that is closely related to the PLSA method. Gaussier and Goutte [74] and
Ding et al. [57] show that PLSA is equivalent to NMF with the KL-divergence,
in the sense that the two methods minimize the same cost function.

Several matrix factorization methods can be used for clustering. Li and Ding
[139] provide an overview over different matrix factorizations including NMF
and several NMF variants, and compare the methods in a clustering context.

Many unsupervised clustering algorithms, including most methods based on
NMF, are sensitive to initial conditions, and the resulting clusters obtained
on a dataset may vary between runs of the algorithm. Badea [12] presents a
meta-clustering algorithm based on NMF in which a dataset is clustered several
times resulting in a set of clusters that are subsequently clustered to yield meta-
clusters. The authors show that the meta-clustering method is substantially
improved when using a soft NMF clustering method compared with a hard
k-means clustering.

Hierarchical models

Cichocki and Zdunek [43, 44] present a hierarchical approach to NMF where

the data is first modeled by a standard NMF, X ≈ A(1)B(1), where A(1) ∈
R

I×N . In a subsequent step, the matrix B(1) ∈ R
N×J is modeled by NMF

as B(1) ≈ A(2)B(2), where A(2) ∈ R
N×N and the process is continued by

computing B(l) ≈ A(l+1)B(l+1) for L iterations, yielding a hierarchical NMF
model

X ≈ A(1)A(2) · · ·A(L)B(L). (3.40)

Because we may define A = A(1)A(2) · · ·A(L), this hierarchical NMF is equal
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to a standard NMF decomposition, X ≈ AB(L), and the simple hierarchical
approach is thus not a different model but a specific procedure for computing
a standard NMF. Cichocki and Zdunek report that each stage in the hierar-
chical procedure refines the solution, improves performance with respect to ill-
conditioned or badly scaled data, and provides a mechanism for escaping local
minima.

Another hierarchical NMF is presented by Ahn et al. [3] who introduce a transfer

function between each layer of the hierarchical decomposition, such that B(l) ≈
g
(
A(l+1)B(l+1)

)
, where g is an element-wise non-negative non-linear function.

Ahn et al. discuss the similarities of this approach to a multilayer neural network.
Hierarchical extensions to transformation invariant [16] and convolutive [188]
NMF have also been proposed in the literature.

Relaxation of non-negativity

Ding et al. [56] propose a method denoted Semi-NMF in which the non-
negativity constraint on A is relaxed

X ≈ CB, s.t. B ≥ 0. (3.41)

Here C (as well as the data matrix, X, as usual) is allowed to take both positive
and negative values.

Ding et al. [56] further propose an NMF model denoted Convex NMF where
the columns of the C matrix are constrained to be convex combinations of the
columns of the data matrix, X

X ≈XA
︸︷︷︸

C

B, (3.42)

where A ∈ R
J×N
+ . This model can be seen as a structured Semi-NMF method,

where C = XA restricts the columns of C to lie inside the convex cone formed
by the data. The method is closely related to the archetypal analysis algorithm
of Cutler and Breiman [53].

Nonlinear and kernel NMF

Sra and Dhillon [209] discuss an NMF model where there is a non-linear rela-
tionship between the data X and the non-negative factorization, AB, modeled
by a link function, h, such that

X ≈ h (AB) , (3.43)

where h is an element-wise function of its matrix argument.
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Zhang et al. [242] introduce a kernel NMF method: Let φ(x) denote a non-linear
function that maps a data vector into a high-dimensional (possibly infinite) fea-
ture space, and let k(x,y) = φ(x)⊤φ(y) denote the inner product in the feature
space which is also referred to as the kernel function. Then, the kernelized NMF
method computes the non-negative decomposition in feature space

φ(X) ≈ A(φ)B, (3.44)

where A(φ) is a non-negative possibly infinite-dimensional feature matrix.
Zhang et al. rewrite this expression as

φ(X)⊤φ(X)
︸ ︷︷ ︸

K

≈ φ(X)⊤A(φ)

︸ ︷︷ ︸

Y

B, (3.45)

where Kj,j′ = k(Xj ,Xj′) and Y j,n = φ(Xj)
⊤A(φ)

n where Xj denotes the
jth column of X. The authors proceed by solving K ≈ Y B as a Semi-NMF
problem.

Similarly, Ding et al. [56] kernelize the Convex NMF problem

φ(X) ≈ φ(X)AB, (3.46)

and show that computation of the least squares cost function depends only on
the kernel matrix K.

3.3 Computing the NMF

NMF can be computed as a constrained optimization problem

{A,B} = arg min
A,B≥0

D(X ; A,B), (3.47)

based on the cost function D. In principle, any constrained optimization al-
gorithm can be used to compute A and B. In the literature, many different
algorithms have been proposed for NMF, many of which take advantage of the
special structure of the NMF problem as well as properties of specific cost func-
tions. Albright et al. [4], Berry et al. [22], and Sra and Dhillon [209] review a
broad range of different algorithms.

Uniqueness

In general, NMF is not unique. Since cost functions are not jointly convex in
the parameters A and B, optimization algorithms can only at best guarantee
convergence to a local minimum of the cost function. This means that several



44 Non-negative matrix factorization

runs of an algorithm on an NMF problem with different (random) initializations
can result in different solutions. In practice, it can be useful to run an NMF
algorithm several times and study the different solutions obtained. The unique-
ness of NMF is further discussed by Donoho and Stodden [59] and Laurberg
[123], and Theis et al. [214] discuss the uniqueness of sparse NMF.

Convergence

Iterative optimization algorithms compute a sequence of estimates, {A,B}∞m=1,
and for the algorithm to be convergent it must be guaranteed that the limit of
the sequence is a local minimum of the cost function, i.e., it satisfies the Karush-
Kuhn-Tucker (KKT) conditions.

If we denote the gradient of the cost function with respect to A and B by

∇Ai,n =
∂D(A,B)

∂Ai,n
, ∇Bn,j =

∂D(A,B)

∂Bn,j
, (3.48)

the KKT necessary conditions for a solution to be locally optimal are

∇A,∇B ≥ 0 (3.49)

A,B ≥ 0 (3.50)

∇A ⊗A,∇B ⊗B = 0 , (3.51)

where ⊗ denotes the Hadamard (element-wise) matrix product. The KKT con-
ditions state that at an optimal solution, the gradients as well as A and B are
non-negative, and for each element in A and B either the gradient or the ele-
ment’s value is zero. The KKT conditions for the NMF problem can be written
compactly as

min (A,∇A) = min (B,∇B) = 0 , (3.52)

where the minimum is taken element-wise. Gonzalez and Zhang [77] state that if
a sequence converges to a local minimum, the residual norm of the KKT equation
must go to zero, and propose to use the L1 vector norm of the residual,

CKKT =
1

IN

∑

i,n

∣
∣ min(A,∇A)i,n

∣
∣ +

1

NJ

∑

n,j

∣
∣min(B,∇B)n,j

∣
∣, (3.53)

to monitor the convergence. Another option is to use the maximum deviance
from the KKT conditions which corresponds to the infinity norm. A detailed
discussion of the optimality conditions for the least squares NMF is provided
by Chu et al. [42].
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3.3.1 Optimization strategies

Several optimization algorithms have been proposed in the literature, and these
can be divided into three categories: direct optimization methods, alternating
optimization methods, and alternating descent methods.

Direct optimization methods solve the NMF problem,

{A,B} ← arg min
A,B≥0

D(X ; A,B), (3.54)

directly using some (general-purpose) bound constrained optimization al-
gorithm. In general, this is a non-negativity constrained non-linear op-
timization problem, for which many efficient algorithms exist. Since the
number of parameters, (I+J)N , in the full standard NMF problem can be
very high, it may be infeasible to use optimization methods that require
the explicit computation of a Hessian matrix. An important and very
useful method is the limited-memory Broyden-Fletcher-Goldfarb-Shanno
method for bound constrained problems (L-BFGS-B) introduced by Byrd
et al. [33, 34].

Alternating optimization methods partition the NMF problems into two
subproblems for the matrices A and B, that are solved in alternating
turns until convergence,

repeat
A← arg min

A≥0

D(X ; A,B)

B ← arg min
B≥0

D(X ; A,B)

until convergence.

(3.55)

In each iteration, the NMF problem is solved for A while B is kept fixed
and vice versa, and this is repeated until A and B converge to a solution
of the full NMF problem. Bezdek et al. [25] analyze the convergence
of alternating optimization4 and show that under certain conditions the
method will converge linearly to a local solution.

In general, alternating optimization may have several advantages [24] over
direct optimization: when the parameters can be naturally partitioned
into subsets for which efficient optimization algorithms exist, it can be
faster than direct optimization; furthermore, alternating optimization can
be better at avoiding local minima. Furthermore, if there are important
differences between A and B, such as one is sparse and the other is dense,
or one is small and the other is large, it may be beneficial to solve the two
subproblems with different tailored optimization algorithms.

4The authors refer to the method as grouped variable coordinate descent.
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While the full NMF problem is not jointly convex in A and B, some cost
functions have the desirable property that the subproblems are convex in
their respective parameters, which allows the computation of the globally
optimal solution of each subproblem in each step. Also, for some cost
functions, the rows of A (columns of B) are decoupled when B (A) is fixed
which means that each subproblem consists of I (J) independent problems.
As an example, for the least squares cost function the subproblems are sets
of non-negativity constrained least squares problems that can be solved
efficiently [29, 125].

Alternating descent methods relax the previously described approach by not
computing an optimal solution for each subproblem in each step. Instead,
an approximate solution is computed that reduces, but does not necessar-
ily minimize, the cost function

repeat
A← A∗ where D(X ; A∗,B) < D(X ; A,B)
B ← B∗ where D(X ; A,B∗) < D(X ; A,B)

until convergence.

(3.56)

This approach can be advantageous when an optimal solution of each sub-
problem can be computed by an iterative procedure where each iteration is
fast and guaranteed to reduce the cost function. In this case, the method
proceeds in turns by computing a single iteration on each subproblem. Al-
though algorithms of this type reduce the cost function in each iteration,
there is not in general any guarantee that the algorithm will converge to a
local minimum of the NMF cost function. The multiplicative algorithms
proposed by Lee and Seung [127] are examples of alternating descent NMF
methods.

3.3.2 NMF algorithms

In this section a wide range of algorithms for the NMF problem are reviewed.
A simplified vector notation,

min
x≥0

f (x) , (3.57)

is used to describe either the full NMF problem (3.54) or a sub-problem in an
alternating optimization strategy (3.55–3.56).

Projected gradient descent

Lin [141] discusses the use of projected gradient descent methods for NMF,
used for either direct or alternating optimization. Gradient descent is a simple
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optimization strategy that searches for a local minimum of the cost function by
iteratively taking steps in the direction of the negative gradient,

x← x− α∇f (x) , (3.58)

where α is a step size parameter and ∇f (x) is the gradient. Projected gradient
methods extend the basic gradient descent by taking steps that are projected
onto the feasible region (the non-negative orthant),

x← max [x− α∇f (x) ,0 ] . (3.59)

The step size, α can, e.g., be chosen as a constant, by an adaptive procedure,
or by line search. The step size can for example be chosen to yield the smallest
value of the cost function that can be found in the gradient search direction,

α = arg min
α∗≥0

f
(
max [x− α∗

∇f (x) ,0 ]
)
, (3.60)

which is a minimization of function that is piecewise in α∗.

Liu et al. [145] presents a projected gradient descent algorithm for NMF that is
based on the relative (natural) gradient. The algorithms for sparse NMF pre-
sented by Hoyer [96, 97] alternate between a projected gradient descent update
for the sparse factor and a multiplicative update for the dense factor.

As an example, a simple projected gradient descent algorithm with fixed step
size for the least squares NMF problem is given as Algorithm 1, where

R(x) =

{
x, x > 0
0, otherwise,

(3.61)

denotes projection onto the non-negative orthant.

Algorithm 1 Alternating least-squares projected gradient descent

Input: Step-size α, initial A ∈ R
I×N
+ and B ∈ R

N×J
+

1: repeat
2: A← R

(
A− α(ABB⊤ −XB⊤)

)

3: B ← R
(
B − α(A⊤AB −A⊤X)

)

4: until convergence
Output: A, B

Multiplicative updates

Lee and Seung [127] present an iterative NMF algorithm with multiplicative
updates, that can be seen as a rescaled gradient descent algorithm with a spe-
cific choice of step size. When the gradient can be expressed as the subtraction
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of two non-negative terms, ∇f (x) = ∇f (x)
+ −∇f (x)

−
, a step size can be cho-

sen individually for each element of x as αi = xi/∇f (x)
+
i , which leads to a

multiplicative gradient descent update

xi ← xi
∇f (x)

−
i

∇f (x)
+
i

. (3.62)

Since this algorithm is formulated as a multiplication by a non-negative quan-
tity, it is ensured that x remains non-negative, if it is initialized with positive
elements. The initial value of x must be strictly positive, since any elements
that are zero will remain zero in the following iterations. Lee and Seung [127]
prove for the least squares and Kullback-Leibler divergences that the multiplica-
tive updates are guaranteed to reduce the cost function in each step, and that
the update rules are unity only at stationary points of the cost function. This
does not imply, however, that the algorithm will converge to a stationary point
within any reasonable number of iterations, as discussed by Gonzalez and Zhang
[77] and Lin [142].

An accelerated Lee and Seung-type algorithm is proposed by Gonzalez and
Zhang [77], who extend (3.62) by a step size scale parameter, β,

xi ← xiβ
∇f (x)

−
i

∇f (x)
+
i

, (3.63)

that is chosen to minimize the cost function in the rescaled gradient direction
while ensuring that each step does not reduce any variable by more that a fixed
fraction toward zero to avoid locking variables at the boundary of the feasible
region. For the least squares cost function the authors derive a closed form
expression for β, and for other cost functions the authors note that a line search
may be required.

Multiplicative algorithms for sparse least squares NMF are proposed indepen-
dently by Liu et al. [144] and Eggert and Körner [61]. The former algorithm
includes an explicit normalization step, whereas the latter is based on a cost
function that is invariant to normalization. Cichocki et al. [48, 49] present mul-
tiplicative algorithms for NMF with sparseness and smoothness constraints for
a wide range of different cost functions.

As an example, the least squares multiplicative update algorithm is given as
Algorithm 2.

Newton and quasi-Newton methods

Newton-type methods are based on approximating the cost function by a
quadratic function, for which the optimum can be computed in closed form
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Algorithm 2 Alternating least-squares multiplicative updates

Input: Initial A ∈ R
I×N
+ and B ∈ R

N×J
+

1: repeat

2: Ai,n ← Ai,n
(XB⊤)i,n

(ABB⊤)i,n

3: Bn,j ← Bn,j
(A⊤X)n,j

(A⊤AB)n,j

4: until convergence
Output: A, B

using the gradient and the Hessian, and leads to updates of the form

x← x−H−1
f (x)∇f (x) , (3.64)

where Hf (x) is the Hessian. In quasi-Newton methods, the Hessian is not
computed explicitly but approximated, for example, using symmetric rank-1
updates or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

When applying Newton-type methods to the NMF problem, special care must
be taken to handle the non-negativity constraints, for example using a barrier
function approach or an active set procedure: Simply projecting a Newton step
onto the feasible region does not lead to a convergent algorithm, as discussed
by Bertsekas [23] and Kim et al. [110].

Positive matrix factorization (PMF) is a weighted projected least squares al-
gorithm proposed by Paatero and Tapper [159, 162]. The method is based on
projected Newton updates, either in turns or simultaneously on A and B, and
the authors describe how to incorporate intermediate rotation steps to help
eliminate negative elements in A or B. As an alternative to the projection for
handling the non-negativity constraints, the authors also discuss the use of a
barrier function: A penalty term proportional to the squared value of negative
elements. Lu and Wu [146] provide a detailed implementation guide for the
PMF algorithm with a logarithmic barrier function.

Albright et al. [4] and Berry et al. [22] discuss the use of projected least squares,
and argue that although the method is not theoretically well justified in terms of
convergence, it is very useful in practice due to its speed and simplicity. Cichocki
and Zdunek [45] present a weighted and regularized projected least squares al-
gorithm for non-negative tensor factorization, and argue that the regularization
and weighting terms can be utilized to improve the convergence properties of
the algorithm.

As an example, a basic alternating projected least squares NMF algorithm is
given as Algorithm 3.
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Algorithm 3 Alternating projected least-squares Newton-update

Input: Initial B ∈ R
N×J

1: repeat
2: A← R

(
XB⊤(BB⊤)−1

)

3: B ← R
(
(A⊤A)−1A⊤X

)

4: until stop criterion
Output: A, B

Berry et al. [22] suggests that the least squares NMF problem can be solved
in an alternating optimization approach using a least squares algorithm that
properly handles the non-negativity constraints, such as the NNLS algorithm of
Lawson and Hanson [125] or the fast NNLS proposed by Lawson and Hanson
[125]. This approach leads to a convergent algorithm at the expense of a greatly
increased computational cost [22].

Zdunek and Cichocki [239] present a projected quasi-Newton algorithm for NMF
problems based on the Amari alpha family of divergence measures. The algo-
rithm uses a Levenberg-Marquardt damped Newton update, and approximates
the inverse Hessian using the Q-less QR factorization.

Another quasi-Newton approach is presented by Kim et al. [110] for the least
squares NMF based on the BFGS approximation to the Hessian. The algorithm
uses an active set procedure to handle the non-negativity constraints, and the
authors demonstrate its use in an alternating optimization as well as an alter-
nating descent strategy. A similar active set quasi-Newton method is proposed
by Zdunek and Cichocki [238]. This algorithm alternates between a projected
gradient step and a quasi-Newton step on the active set.

As an example of the active set approach, a simple least squares algorithm
that in each iteration takes a Newton step on the active set is presented as
Algorithm 4.

Other NMF algorithms

A simple method for enforcing non-negativity constraints is to re-parameterize
the problem, A = f(Ā), B = f(B̄), using an element-wise function f that
has the real numbers as its domain and the non-negative reals as its range.
Thus, in the new set of parameters, Ā and B̄, the NMF problem is an uncon-
strained optimization problem. Cichocki et al. [47] derive an algorithm based
on multiplicative updates using the exponentiated gradient. They show that
this algorithm corresponds to a gradient descent method in the space of the
logarithm of the parameters A and B.
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Algorithm 4 Alternating least-squares active-set Newton-update

Input: Initial A ∈ R
I×N
+ and B ∈ R

N×J

1: repeat
2: ∇A = ABB⊤ −XB⊤

3: for i = 1 to I do
4: ν = {n : Ai,n 6= 0 or ∇Ai,n > 0}
5: Ai,ν ← R

(

(XB⊤)i,ν

(
(BB⊤)ν,ν

)−1
)

6: end for
7: ∇B = A⊤AB −A⊤X

8: for j = 1 to J do
9: ν = {n : Bn,j 6= 0 or ∇Bn,j > 0}

10: Bν,j ← R
((

(A⊤A)ν,ν

)−1
(A⊤X)i,ν

)

11: end for
12: until convergence
Output: A, B

Heiler and Schnörr [88, 89] present an algorithm for the sparse least squares
NMF problem and its tensor extension. The methods is based on alternating
second order cone programming (SOCP), for which efficient large scale solvers
exist, and the authors demonstrate that enforcing sparsity constraints fits nicely
in this framework.

Chu and Lin [41] take a geometric approach to NMF: They view the problem
as that of approximating the convex hull of a set of data points by a convex
polytope on the probability simplex, and this leads to a geometrically inspired
algorithm.

3.3.3 Initialization methods

Most algorithms for NMF are iterative and require initial values of A and B,
and many authors prescribe initializing A and B with random non-negative
numbers. A suitably chosen initialization, however, can lead to faster conver-
gence, and since the solution of most NMF problems is not unique, different
initializations can lead to different solutions.

Because of the relation between NMF and clustering methods, and because of
the notion that NMF finds a parts-based representation, it has been suggested to
use simple clustering algorithms to compute a starting point for iterative NMF
algorithms. Wild et al. [232] proposes to use the centroids from a spherical
k-means clustering as initial values, and the method is reported to increase
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the rate of convergence in the subsequent NMF. In the same spirit, Kim and
Choi [117] present a greedy hierarchical clustering method based on a simple
similarity measure.

Albright et al. [4] propose and compare several initialization strategies. A sim-
ple yet efficient method consists of computing the average of a random selection
of data vectors. Another approach is based on projecting the N leading sin-
gular vectors onto the non-negative orthant, and the authors describe how fast
initialization algorithms can be obtained using two well known approximations
to the SVD.

Boutsidis and Gallopoulos [28] extends the idea of using the SVD as an ini-
tialization. They compute the first N singular vectors, which corresponds to
approximating the data matrix by a sum of N rank-1 matrices. The authors
proceed by approximating the non-negative elements of these N rank-1 matrices
as N non-negative rank-1 matrices, and use these to initialize the non-negative
matrix factorization. The method is reported to outperform random as well as
spherical k-means initialization on several datasets.
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[107] A. Jourjine, S. Rickard, and Özgür Yilmaz, “Blind separation of dis-
joint orthogonal signals: demixing n sources from 2 mixtures,” in Acous-
tics, Speech, and Signal Processing, IEEE International Conference on
(ICASSP), vol. 5, Jun 2000, pp. 2985–2988.

[108] M. Juvela, K. Lehtinen, and P. Paatero, “The use of positive matrix fac-
torization in the analysis of molecular line spectra,” Royal Astronomical
Society, Monthly Notices of the, vol. 280, no. 2, pp. 616–626, 1996.

[109] W. Kan, Z. Nanning, and L. Weixiang, “Natural image matting with non-
negative matrix factorization,” in Image Processing, IEEE International
Conference on (ICIP), vol. 2, Sep 2005, pp. 1186–1189.

[110] D. Kim, S. Sra, and I. S. Dhillon, “Fast Newton-type methods for the
least squares nonnegative matrix approximation problem,” in Data Min-
ing, Proceedings of SIAM Conference on, 2007.

[111] E. Kim, P. K. Hopke, P. Paatero, and E. S. Edgerton, “Incorporation
of parametric factors into multilinear receptor model studies of atlanta
aerosol,” Atmospheric Environment, vol. 37, no. 36, pp. 5009–5021, 2003.

[112] H. Kim and H. Park, “Discriminant analysis using nonnegative matrix fac-
torization for nonparametric multiclass classification,” in Granular Com-
puter, IEEE International Conference on, May 2006, pp. 182–187.

[113] H. Kim and H. Park, “Sparse non-negative matrix factorization via alter-
nating non-negativity-constrained least squares for microarray data anal-
ysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, 2007.

[114] M. Kim and S. Choi, “Monaural music source separation: Nonnegativity,
sparseness, and shift-invariance,” in Independent Component Analysis and
Blind Signal Separation, International Conference on (ICA), ser. Lecture
Notes in Computer Science (LNCS), vol. 3889. Springer, Apr 2006, pp.
617–624.



BIBLIOGRAPHY 131

[115] M. Kim and S. Choi, “On spectral basis selection for single channel poly-
phonic music separation,” in Artificial Neural Networks, International
Conference on (ICANN), ser. Lecture Notes in Computer Science (LNCS),
vol. 3697. Springer, Sep 2005, pp. 157–162.

[116] Y.-D. Kim and S. Choi, “Nonnegative tucker decomposition,” in Computer
Vision and Pattern Recognition, IEEE Conference on (CVPR), Jun 2007,
pp. 1–8.

[117] Y.-D. Kim and S. Choi, “A method of initialization for nonnegative matrix
factorization,” in Acoustics, Speech, and Signal Processing, IEEE Inter-
national Conference on (ICASSP), vol. 2, Apr 2007, pp. 537–540.

[118] Y.-D. Kim, A. Cichocki, and S. Choi, “Nonnegative tucker decomposition
with alpha-divergence,” in Acoustics, Speech, and Signal Processing, IEEE
International Conference on (ICASSP), Mar 2008, pp. 1829–1832.

[119] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
Sandia National Laboratories,Albuquerque, New Mexico and Livermore,
California, Tech. Rep., Nov 2007.

[120] R. Kompass, “A generalized divergence measure for nonnegative matrix
factorization,” Neural Computation, vol. 19, no. 3, pp. 780–791, 2007.

[121] K. Kreutz-Delgado, B. Rao, and K. Engan, “Novel algorithms for learning
overcomplete dictionaries,” in Signals, Systems, and Computers, Asilomar
Conference on, vol. 2, 1999, pp. 971–975.

[122] T. Kristjansson, J. Hershey, P. Olsen, S. Rennie, and R. Gopinath, “Super-
human multi-talker speech recognition: The IBM 2006 speech separation
challenge system,” in Spoken Language Processing, ISCA International
Conference on (INTERSPEECH), 2006, pp. 97–100.

[123] H. Laurberg, “Uniqueness of non-negative matrix factorization,” in Sta-
tistical Signal Processing, IEEE Workshop on, Aug 2007, pp. 44–48.

[124] H. Laurberg, M. G. Christensen, M. D. Plumblery, L. K. Hansen, and
S. H. Jensen, “Theorems on positive data: On the uniqueness of NMF,”
Computational Intelligence and Neuroscience, 2008.

[125] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. Prentice-
Hall, Englewood Cliffs, NJ, 1974.

[126] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[127] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factor-
ization,” in Neural Information Processing Systems, Advances in (NIPS),
2000, pp. 556–562.



132 BIBLIOGRAPHY

[128] D. D. Lee and S. H. Seung, “Unsupervised learning by convex and conic
coding,” in Neural Information Processing Systems, Advances in (NIPS),
1996, pp. 515–521.

[129] E. Lee, C. K. Chan, and P. Paatero, “Application of positive matrix factor-
ization in source apportionment of particulate pollutants in Hong Kong,”
Atmospheric Environment, vol. 33, no. 19, pp. 3201–3212, 1999.

[130] H. Lee, A. Cichocki, and S. Choi, “Nonnegative matrix factorization for
motor imagery eeg classification,” in Artificial Neural Networks, Interna-
tional Conference on (ICANN), ser. Lecture Notes in Computer Science
(LNCS), vol. 4132. Springer, Sep 2006, pp. 250–259.

[131] H. Lee, Y.-D. Kim, A. Cichocki, and S. Choi, “Nonnegative tensor factor-
ization for continuous eeg classification,” Neural Systems, International
Journal of, 2007.

[132] J. S. Lee, D. D. Lee, S. Choi, and D. S. Lee, “Application of non-negative
matrix factorization to dynamic positron emission tomography,” in Inde-
pendent Component Analysis and Blind Signal Separation, International
Conference on (ICA), Dec 2001, pp. 629–632.

[133] J. S. Lee, D. Lee, S. Choi, K. S. Park, and D. S. Lee, “Non-negative matrix
factorization of dynamic images in nuclear medicine,” in Nuclear Science
Symposium Conference Record, vol. 4, 2001, pp. 2027–2030.

[134] M. S. Lewicki, “Efficient coding of natural sound,” Nature Neuroscience,
vol. 5, no. 4, pp. 356–363, Apr 2002.

[135] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representa-
tions,” Neural Computation, vol. 12, no. 2, pp. 337–365, 2000.

[136] M. S. Lewicki and T. J. Sejnowski, “Learning nonlinear overcomplete rep-
resentations for efficient coding,” in Neural Information Processing Sys-
tems, Advances in (NIPS), 1998, pp. 556–562.

[137] H. Li, T. Adali, W. Wang, D. Emge, and A. Cichocki, “Non-negative
matrix factorization with orthogonality constraints and its application to
raman spectroscopy,” VLSI Signal Processing, Journal of, vol. 48, pp.
83–97, Aug 2007.

[138] S. Z. Li, X. W. Hou, H. J. Zhang, and Q. Cheng, “Learning spatially
localized, parts-based representation,” in Computer Vision and Pattern
Recognition, Proceedings of the IEEE Computer Society Conference on,
vol. 1, Dec 2001, pp. 207–212.

[139] T. Li and C. Ding, “The relationships among various nonnegative matrix
factorization methods for clustering,” in Data Mining, IEEE/WIC/ACM
International Conference on (ICDM), Dec 2006, pp. 362–371.



BIBLIOGRAPHY 133

[140] Y. Li and A. Cichocki, “Non-negative matrix factorization and its appli-
cation in blind sparse source separation with less sensors than sources,” in
Theoretical Electrical Engineering, International Symposium on (ISTET),
2003, pp. 285–288.

[141] C.-J. Lin, “Projected gradient methods for non-negative matrix factoriza-
tion,” Neural Computation, vol. 19, pp. 2756–2779, 2007.

[142] C.-J. Lin, “On the convergence of multiplicative update algorithms for
non-negative matrix factorization,” Neural Networks, IEEE Transactions
on, vol. 18, pp. 1589–1596, 2007.

[143] W. Liu and N. Zheng, “Non-negative matrix factorization based methods
for object recognition,” Pattern Recognition Letters, vol. 25, no. 8, pp.
893–897, Jun 2004.

[144] W. Liu, N. Zheng, and X. Lu, “Non-negative matrix factorization for
visual coding,” in Acoustics, Speech, and Signal Processing, IEEE Inter-
national Conference on (ICASSP), vol. 3, Apr 2003, pp. 293–296.

[145] W. Liu, N. Zheng, and X. Li, “Relative gradient speeding up additive
updates for nonnegative matrix factorization,” in New Aspects in Neu-
rocomputing: European Symposium on Artificial Neural Networks, ser.
Neurocomputing, vol. 57. Elsevier, Mar 2004, pp. 493–499.

[146] J. Lu and L. Wu, “Technical details and programming guide for a general
two-way positive matrix factorization algorithm,” Chemometrics, Journal
of, vol. 18, no. 12, pp. 519–525, May 2005.

[147] M. Mørup, M. N. Schmidt, and L. K. Hansen, “Invariant sparse coding
of image and music data,” Technical University of Denmark, Tech. Rep.,
2006.

[148] R. M. Neal, “Probabilistic inference using markov chain monte carlo meth-
ods,” Dept. of Computer Science, University of Toronto, Tech. Rep., 1993.

[149] M. Novak and R. Mammone, “Improvement of non-negative matrix fac-
torization based language model using exponential models,” in Automatic
Speech Recognition and Understanding (ASRU), Dec 2001, pp. 190–193.

[150] M. Novak and R. Mammone, “Use of non-negative matrix factorization
for language model adaptation in a lecture transcription task,” in Acous-
tics, Speech, and Signal Processing, IEEE International Conference on
(ICASSP), vol. 1, May 2001, pp. 541–544.

[151] M. F. Ochs, R. S. Stoyanova, F. Arias-Mendoza, and T. R. Brown, “A new
method for spectral decomposition using a bilinear bayesian approach,”
Journal of Magnetic Resonance, vol. 137, pp. 161–176, 1999.



134 BIBLIOGRAPHY

[152] P. D. O’Grady and B. A. Pearlmutter, “Discovering convolutive speech
phones using sparseness and non-negativity constraints,” in Independent
Component Analysis and Blind Signal Separation, International Confer-
ence on (ICA), ser. Lecture Notes in Computer Science (LNCS), vol. 4666.
Springer, Sep 2007, pp. 520–527.

[153] E. Oja and M. Plumbley, “Blind separation of positive sources using non-
negative pca,” in Independent Component Analysis and Blind Signal Sep-
aration, International Conference on (ICA), 2003, pp. 11–16.

[154] B. Olshausen and D. Field, “Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images,” Nature, vol. 381, no.
6583, pp. 607–609, 1996.

[155] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Cur-
rent Opinion in Neurobiology, vol. 14, no. 4, pp. 481–487, Aug 2004.
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