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Abstract

We introduce a new approach to non-linear
regression called function factorization, that
is suitable for problems where an output vari-
able can reasonably be modeled by a num-
ber of multiplicative interaction terms be-
tween non-linear functions of the inputs. The
idea is to approximate a complicated func-
tion on a high-dimensional space by the sum
of products of simpler functions on lower-
dimensional subspaces. Function factoriza-
tion can be seen as a generalization of matrix
and tensor factorization methods, in which
the data are approximated by the sum of
outer products of vectors. We present a non-
parametric Bayesian approach to function
factorization where the priors over the fac-
torizing functions are warped Gaussian pro-
cesses, and we do inference using Hamilto-
nian Markov chain Monte Carlo. We demon-
strate the superior predictive performance of
the method on a food science data set com-
pared to Gaussian process regression and ten-
sor factorization using PARAFAC and GE-
MANOVA models.

1. Introduction

In many regression problems, the output variable can
only be reasonably explained by interactions between
the input variables. An example, which we shall return
to in our experiments, is measurements of the color of
meat under different storage conditions. Color is an
important quality that affects the consumers choice,
and it is thus important to understand and model how
the color is influenced by different explanatory factors
such as storage time, temperature, oxygen content in
the atmosphere, and exposure to light. It is reasonable
to assume, that the color of meat does not vary lin-
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early with each of the explanatory variables, but that
it depends on interactions of the explanatory variables
in a non-linear fashion.

In this paper we present a new approach to non-linear
regression that is suitable for problems where the out-
put variable can be reasonably explained by non-linear
interactions of the inputs. The goal in regression anal-
ysis is to infer a mapping function, y : X → R, based
on N observed input-output pairs, D = {(xn, yn)}N

n=1
,

where xn ∈ X are inputs and yn ∈ R are outputs. The
Bayesian approach to the regression problem is to for-
mulate a prior distribution over mapping functions and
combine this with the data using a suitable observa-
tion model to infer the posterior distribution over the
mapping function. The posterior can then, for exam-
ple, be used to make inference about the value of the
output, y∗, at a previously unseen position in input
space, x∗, by computing the predictive distribution
which involves integrating over the posterior.

The main idea in function factorization is to ap-
proximate a complicated function, y(x), on a high-
dimensional space, X , by the sum of products of a
number of simpler functions, f i,k(xi), on lower dimen-
sional subspaces, X i,

y(x) ≈
K
∑

k=1

I
∏

i=1

f i,k(xi). (1)

We refer to this as a K-component I-factor function
factorization model.

In the model, we assume that the inputs, xn ∈ X , can
naturally be divided into I inputs that lie in subspaces
of X , x

1

n ∈ X 1, . . . ,xI
n ∈ X I , and that the output

is reasonably modeled by a number of multiplicative
interaction terms between non-linear functions of the
inputs. The subspaces need not be chosen to be dis-
joint; for example, two subspaces could be identical
which makes it possible for the model to capture non-
stationary modulation effects.

Bayesian inference in function factorization models re-
quires the specification of a likelihood function as well
as priors over the factorizing functions. These priors
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could for example be chosen by selecting a suitably
flexible parameterized family of functions and assume
prior distributions over the parameters. Another ap-
proach, which we will pursue in this paper, is to as-
sume a non-parametric distribution over the functions.
Specifically, we choose warped Gaussian process pri-
ors.

2. Relation to other methods

Function factorization with warped Gaussian process
priors (FF-WGP) generalizes a number of other well
known machine learning techniques including matrix
and tensor factorization, linear regression, and warped
Gaussian process regression. In the following, we give
an overview of the relation to these methods.

2.1. Relation to matrix and tensor

factorization

Function factorization generalizes matrix and tensor
factorization models, as illustrated in Figure 1. In ma-
trix factorization, a data matrix, Y , is approximated
by the product of two matrices, F 1 and F 2,

Y ≈ F
⊤
1

F 2. (2)

To make the relation to function factorization explicit,
we can rewrite this as

yn1,n2
≈

K
∑

k=1

2
∏

i=1

f i,k
ni

, (3)

where yn1,n2
is element (n1, n2) of Y and f i,k

n is ele-
ment (k, n) of F i. Comparing this with Eq. (1), we
note that the main difference between matrix factor-
ization and function factorization is that in the former
the goal is to learn a set of parameters, f i,k

ni
, whereas

in the latter a set of functions, f i,k(xi), are learned.

In matrix factorization data points lie on a regular grid
in the joint space of column and row indices, (n1, n2),
and are approximated by the sum of outer products of
two factors, which are vectors defined on the column
and row indices respectively. In function factorization,
data points lie in the space X and are approximated by
the sum of products of functions defined on subspaces
of X .

In function factorization the priors can be chosen, for
example, to have support over the non-negative num-
bers or to have a sub- or super-Gaussian density, which
will lead to generalizations of certain Bayesian for-
mulations of non-negative matrix factorization (NMF)
and independent component analysis (ICA). Similar
analogies exists between function factorization and

≈

≈ +

+

n1

n2

X1

X2

Matrix factorization

Function factorization

Figure 1. Illustration of the relation between matrix fac-
torization and function factorization. In matrix factoriza-
tion, data lie on a regular grid and is approximated by a
product-sum of vectors. In function factorization, data lie
in X and are approximated by a product-sum of functions
over subspaces of X .

higher-order decompositions of tensors such as the par-
allel factor analysis (PARAFAC) model.

Schmidt and Laurberg’s (2008) method for non-
negative matrix factorization with Gaussian process
priors can be seen as a K-component two-factor func-
tion factorization model, where the data is required to
be in the form of a matrix, and inference is done by
computing a maximum a posteriori estimate.

2.2. Relation to linear regression

Function factorization can also be seen as a generaliza-
tion of linear regression. To show this, we start from
the basic linear regression equation, where the outputs
are modeled by a linear combination of the inputs,

yn ≈
K
∑

i=k

xk
nβk, (4)

where xk
n denotes the kth element of xn and βk are

regression coefficients. Since this model is linear and
additive in the inputs, it does not model non-linear
effects and interactions between the inputs. To over-
come these issues, linear regression can be performed
on non-linear interactive terms,

yn ≈
K
∑

k=1

fk(xi
n)βk, (5)

where fk are non-linear functions of all the input vari-
ables. To show the relation to function factorization,
we choose fk as a product of non-linear transforma-
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tions of the inputs,

yn ≈
K
∑

k=1

(

I
∏

i=1

f i,k(xi
n)

)

βk. (6)

This expression is very similar to Eq. (1); however, in
linear regression the objective is to learn the regression
coefficients, βk, for fixed non-linear transformations of
the inputs, whereas in function factorization the aim is
to learn the non-linear functions themselves. Function
factorization generalizes this formulation of linear re-
gression, since the regression coefficients without loss
of generality can be incorporated into the non-linear
functions.

2.3. Relation to warped Gaussian processes

Function factorization generalizes warped Gaussian
process (WGP) regression, when WGP priors are as-
sumed over the factorizing functions. Obviously, when
K = I = 1, FF-WGP collapses to WGP regression;
however, in models with multiple factors the two meth-
ods differ in the assumptions that are made about the
data.

A simple illustration is given in Figure 2 for a two-
dimensional toy data problem generated as the prod-
uct of two cosine functions. Fifteen data points were
chosen from the function and regression analysis was
performed using a GP and a one-component two-factor
function factorization with GP priors. In regions of the
function that are far away from any of the observed in-
put points, the GP tends to its zero mean prior. The
function factorization method on the other hand as-
sumes that the data has a multi-linear structure, and
since that assumption in this case is correct, the data
is modeled accurately even in regions with no obser-
vations. In many data sets, the assumption that the
outputs are well modeled by multiplicative interactive
terms is reasonable, and when the assumptions holds,
function factorization can provide better results than
Gaussian process regression based methods.

Adams and Stegle’s (2008) Gaussian process prod-
uct model, in which a function is modeled as the
point-wise product of two Gaussian processes for the
purpose of capturing non-stationarities, can be seen
as a one-component two-factor function factorization
model with Gaussian process priors, where the two
factorizing functions are both defined over the entire
space, X .
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Figure 2. A simple toy example that illustrates important
differences between Gaussian process regression and func-
tion factorization. Left: A two-dimensional toy data set
is constructed as the multiplication of two cosines and 15
data points are chosen at the indicated positions. Mid-
dle: Gaussian process regression on the data points fits
the data well in the region close to the observation, and
far away from the observations it tends to its zero mean
prior. Right: A one-component function factorization on
the same data fits the data well in the entire region, due to
the correct assumption that the data comes from a product
of two functions.

3. Function factorization using warped

Gaussian processes

In the following, we describe a non-parametric
Bayesian approach to function factorization using
warped Gaussian process (WGP) priors over the fac-
torizing functions. First, we give a summary of the
WGP, and then we describe function factorization us-
ing WGP priors. Finally, we present an inference
procedure based on Hamiltonian Markov chain Monte
Carlo (HMCMC).

3.1. Warped Gaussian processes

A Gaussian process1 (GP) is a flexible and practical
method for specifying a non-parametric distribution
over a function, g(x). It is fully characterized by its
mean function, m(x) = E

[

g(x)
]

, and its covariance

function, c(x,x′) = E
[(

g(x)−m(x)
)(

g(x′)−m(x′)
)]

.

We use the notation g(x) ∼ GP
(

m(x), c(x,x′)
)

to de-
note a random function drawn from a GP.

The GP is limited in the sense that it assumes that
any finite subset of values of the function g(x) follow
a joint multivariate Gaussian distribution. The idea
behind the warped Gaussian process (WGP) (Snelson
et al., 2004) is to overcome this limitation by map-
ping the GP through a non-linear warp function, h(g),
parameterized by θh,

y(x) = h
(

g(x)
)

, g(x) ∼ GP
(

m(x), c(x,x′)
)

, (7)

1See Rasmussen and Williams (2006) for a comprehen-
sive introduction to Gaussian processes in machine learn-
ing.
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x1 x2 x3 xN

y1 y2 y3 yN

µ1 µ2 µ3 µN

g1 g2 g3 gNθh θc

θy

i
k

Figure 3. Graphical model for the function factorization
model with warped Gaussian process priors. Squares repre-
sent observed variable and circles denote unobserved vari-
ables and parameters. The bold line indicates that the
nodes g

i,k
1

, . . . , g
i,k

N are fully connected.

and jointly learn the parameters of the GP and the
warp function. Snelson et al. (2004) learn the param-
eters of the WGP by maximum likelihood, but they
note that priors can be included to learn maximum a
posteriori estimates or Markov chain Monte Carlo can
be used to integrate out the parameters.

3.2. The FF-WGP model

Let µ(x) denote a function factorization model,

µ(x) =

K
∑

k=1

I
∏

i=1

f i,k(x), (8)

where f i,k(x) are modeled by zero mean WGPs. In the
most general formulation, each factor in each compo-
nent has distinct warp and covariance functions,

f i,k(x) = hi,k
(

gi,k(x)
)

, (9)

gi,k(x) ∼ GP
(

0, ci,k(x,x′)
)

. (10)

We then model the outputs, yn, as independent and
identically distributed given µn = µ(xn), using some
likelihood function, p(yn|µn), parameterized by θy.

A graphical model of the FF-WGP is shown in Fig-
ure 3. The unknowns in the model are the parameters
of the likelihood function, θy, the warp functions, θh,
and the covariance functions, θc, as well as the latent
variables, gi,k

n = gi,k(xn).

3.3. Change of parameters

The latent variables, gi,k
n , have a multivariate Gaussian

distribution a priori, and are thus highly correlated.

We have found empirically that MCMC inference in
the model is more efficient when we perform a change
of variables, such that the latent variables are uncor-
related a priori. We do this by defining a new latent
variable, z

i,k
n′ , related to gi,k

n by

gi,k
n =

N
∑

n′=1

C
i,k
n′,nz

i,k
n′ , (11)

where C
i,k
n,n′ holds the Cholesky decomposition of the

covariance matrix of the (i, k)th Gaussian process,

N
∑

n′′=1

C
i,k
n,n′′C

i,k
n′,n′′ = c

i,k
n,n′ = ci,k(xn,xn′). (12)

With this change of variables, the model can be written
as

µn =

K
∑

k=1

I
∏

i=1

hi,k

(

N
∑

n′=1

C
i,k
n′,nz

i,k
n′

)

, (13)

and the prior over the new latent variables are i.i.d.
standard Gaussian, z

i,k
n′ ∼ N (0, 1). We emphasize that

this change of variables does not change the model—
only its parameterization.

3.4. Posterior and predictive distribution

The joint posterior distribution of the latent variables
and the parameters conditioned on the data is given
by

p(z,θ|D) ∝ p(θ)

N
∏

n=1

(

p(yn|µn)

I
∏

i=1

K
∏

k=1

p(zi,k
n )

)

, (14)

where z = {zi,k
n } denotes all latent variables, θ =

{θy,θh,θc} denotes all parameters, and µn is defined
in Eq. (13).

To infer the value of the output y∗ at a previously
unseen point x∗ we must evaluate the predictive dis-
tribution, which requires integrating the posterior dis-
tribution over the latent variables and parameters,

p(y∗|x∗,D) =

∫∫

p(y∗|x∗,z,θ)p(z,θ|D)dzdθ. (15)

Since this integral is analytically intractable, we ap-
proximate it by Monte Carlo sampling, i.e., we draw
M samples, {zm,θm}M

m=1
, from the posterior distri-

bution in Eq. (14) and approximate Eq. (15) by the
sum

p(y∗|x∗,D) ≈
M
∑

m=1

p(y∗|x∗,z
m,θm). (16)

This expression can be directly evaluated, if the input
point, x∗, coincides with at least one data point, xn,
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on all subspaces, X i, because then all required latent
variables are instantiated in the posterior sample. In
the toy example in Figure 2, for example, this means
that Eq. 16 can be directly evaluated on the 8-by-8
grid formed by the 15 input points. To evaluate the
predictive distribution outside these points we instead
draw samples from the predictive distribution.

3.5. Inference using Hamiltonian Markov

chain Monte Carlo

Since we can not directly draw samples from the
posterior distribution in Eq. (14), we use a Markov
chain Monte Carlo sampling procedure. Hamilto-
nian Markov chain Monte Carlo (HMCMC) (Duane
et al., 1987) is an attractive method for this prob-
lem, because it improves on the sometimes slow con-
vergence rates due to the random walk behavior of
other MCMC methods such as Gibbs sampling and
Metropolis-Hastings. HMCMC requires the computa-
tion of derivatives of the logarithm of the posterior
distribution with respect to all variables and parame-
ters, which can be done as we show in the following.

We define L which is proportional to the negative log
posterior up to an additive constant

L = − log p(θ) −
N
∑

n=1

(

log p(yn|µn)

−
I
∑

i=1

K
∑

k=1

(

zi,k
n

)2

2

)

.

(17)

We now need to compute the derivatives of L with
respect to the latent variables and all parameters of
the model. The derivative with respect to the latent
variables requires the computation of the derivate of
the log likelihood and of the warp functions,

∂L
∂z

i,k
n′

= −
N
∑

n=1

∂ log p(yn|µn)

∂µn

(

∏

i′ 6=i

hi′,k
n

)

×

∂hi,k
n

∂g
i,k
n

C
i,k
n′,n + z

i,k
n′ .

(18)

The derivative with respect to the parameters of the
likelihood function is straightforward, and has two
terms: the derivative of the prior and the derivative
of the log likelihood,

∂L
∂θy

= −∂ log p(θ)

∂θy

−
N
∑

n=1

∂ log p(yn|µn)

∂θy

. (19)

Similarly, the derivate with respect to the parameters
of the warp functions has two terms: the derivative

of the prior and the derivative of the log likelihood,
where we use the chain rule,

∂L
∂θh

= − ∂ log p(θ)

∂θh

−
N
∑

n=1

∂ log p(yn|µn)

∂µn

×

K
∑

k=1

I
∑

i=1

(

∏

i′ 6=i

hi′,k
n

)

∂hi,k
n

∂θh

.

(20)

The derivative with respect to the parameters of the
covariance function is a bit more involved, since it re-
quires the computation of the derivative of a Cholesky
decomposition. We begin with the derivative of the log
posterior with respect to the Cholesky decomposition
itself

∂L
∂C

i,k
n′,n

=
∂ log p(yn|µn)

∂µn

(

∏

i′ 6=i

hi′,k
n

)

∂hi,k
n

∂g
i,k
n

z
i,k
n′ . (21)

Using this, we can compute the backward derivative
(Smith, 1995) of the Cholesky decomposition, F

i,k
n,n′ ,

and finally the desired derivative can be evaluated as

∂L
∂θc

=

N
∑

n=1

N
∑

n′=1

F
i,k
n,n′

∂c
i,k
n,n′

∂θc

. (22)

The computation of the derivative of the Cholesky
decomposition is approximately as computationally
expensive as computing a Cholesky decomposition
which is the most expensive computation in the WGP
method. For that reason, the use of the backwards
derivative is attractive when we need to compute the
derivative with respect to several parameters of a co-
variance function, since the backward derivate needs
only be computed once.

4. Experiments

We evaluated the proposed model on a food science
data set (Bro & Jakobsen, 2002) that consists of mea-
surements of the color of fresh beef as it changes during
storage under different conditions. The storage condi-
tions are determined by the values of five independent
variables summarized in Table 1. In a reduced facto-
rial experimental design, measurements were taken at
a subset of the possible combinations of values of the
independent variables, such that the data can be rep-
resented as a five-dimensional tensor with 60% of the
values missing. A detailed description of the experi-
mental design and the data is given by Bro and Jakob-
sen (2002) who analyze the data using generalized mul-
tiplicative analysis of variance (GEMANOVA).

We note, that because of the factorial experimental de-
sign, the input data points lie on a regular grid which
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Figure 4. Warp function that transforms a standard Gaus-
sian distribution into an exponential distribution with log
scale λ.

is a requirement in order to analyze the data using
tensor factorization methods, suitably tailored to han-
dle missing data (Tomasi & Bro, 2002). The function
factorization method does not require the data to lie
on a grid, and its applicability thus extends beyond
multiway array data.

4.1. Model choice

In our experiments we use a Gaussian likelihood,

p(yn|µn) =
1

√

2π exp(v)
exp

(

− (yn − µn)2

2 exp(v)

)

, (23)

parameterized by the log variance, θy = {v}, which
ensures that the variance is always positive. This like-
lihood function allows us to directly compare our re-
sults with those of Bro and Jakobsen (2002) who use
least squares PARAFAC and GEMANOVA models to
analyze the same data.

The purpose of the warp functions is to map the Gaus-
sian outputs of the GPs into another desired distribu-
tion. In the present data we expect the factorizing
functions to be non-negative, because the output vari-
able that measures the red color of the meat is inher-
ently non-negative. We use a particular warp function,
illustrated in Figure 4,

hi,k(g) = − exp(−λi) log

(

1

2
− 1

2
erf
( g√

2

)

)

, (24)

parameterized by log scale parameters θh = {λi}.
This warp function was suggested by Schmidt and Lau-
rberg (2008) and has the property that it transforms
a standard Gaussian variable to an exponentially dis-
tributed variable.

For the first four independent variables, shown in Ta-

ble 1, we choose a Gaussian covariance function,

ci,k(x,x′) = exp
(

− exp(ℓi) ||x − x
′||2
)

, (25)

parameterized by log length-scale parameters θc =
{ℓi}. We choose the covariance function for the fifth
independent variable, the muscle number, as a delta
function,

ci,k(x,x′) = δ(x − x
′), (26)

such that this factor is effectively modeled as an expo-
nentially distributed random variable.

For simplicity, we choose a non-informative flat (im-
proper) prior over all parameters, p(θ) ∝ 1, but we
note that it is straightforward to choose proper priors
over the parameters in a hierarchical fashion, and in-
clude any hyper-parameters in the HMCMC inference
procedure.

4.2. Cross-validation

We divided the data set into ten subsets and performed
ten-fold cross-validation. We included three different
FF-WGP models in our experiments: K = {1, 2, 3}.
In each run, we ran the HMCMC sampler for 5000 it-
erations using 20 leapfrog steps in each iteration and
discarded the first half of the samples to allow the
sampler to burn in. Plots of the samples of the pa-
rameters indicated that the sampling procedure had
stabilized after a few hundred iterations. As an ex-
ample, the log variance parameter, v, as a function of
the iteration number is shown in Figure 5 for one of
the HMCMC runs. We then computed the posterior
mean estimate of the held-out data. For comparison
we fitted K = {1, 2, 3} component PARAFAC mod-
els using the N-way toolbox (Andersson & Bro, 2000).
We also fitted a standard Gaussian process with Gaus-
sian covariance by maximum likelihood and computed
the posterior mean of the held-out data. For all of
the models, we then computed the root mean squared
error of the held out data.

4.3. Results

The results of the experiments are given in Table 2. A
one-component PARAFAC model yielded a relatively
high cross-validation error, whereas a two-component
PARAFAC yields a relatively low error. A three-
component PARAFAC leads to over-fitting, i.e., it fit-
ted the training data better but gave a higher cross-
validation error.

The two-component GEMANOVA model is suggested
by (Bro & Jakobsen, 2002) as a good tradeoff between
model complexity and predictive quality, and corre-
sponds to a restricted PARAFAC model with some of
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Figure 5. Log variance parameter, v, as a function of it-
eration number in one run of the HMCMC sampler for a
two-component FF-WGP model.

Table 1. Independent variables that affect the color of beef
as it changes during storage.

Independent variable Unit Values

Storage time Days 0, 3, 7, 8, 10
Temperature ◦C 2, 5, 8
Oxygen content in head-space % 40, 60, 80
Exposure time to light % 0, 50, 100
Muscle number 1, 2, 3, 4, 5, 6

the factors fixed. In the experiments of Bro and Jakob-
sen (2002), the GEMANOVA model yields a cross-
validation error comparable to our results on a two-
component PARAFAC model, but using fewer param-
eters.

Our result for the one-component FF-WGP model
was similar to the one-component PARAFAC, which
again suggests that one multiplicative component is
not enough to adequately describe the data. Two- and
three-component FF-WGP models yielded better pre-
dictions and had no problems with over-fitting, since
all parameters are integrated out using MCMC. Gaus-
sian process regression performed slightly worse than
the factorization based models, possibly because the
factorial structure of the problem is not exploited.

Figure 6 shows the learned factor pertaining to stor-
age time in the one-component PARAFAC and FF-
WGP model. In the PARAFAC model, the value of
the factor can only be estimated at the five input po-
sitions at which data points were available. The func-
tion factorization approach on the other hand gives a
full posterior distribution over a function, which can
be evaluated anywhere. The two methods agree that

1

0.9

0.8

0.7

0 2 4 6 8 10
Days

FF-WGP

PARAFAC

Figure 6. Relative effect of storage time: The factor per-
taining to storage time in one-factor PARAFAC and FF-
WGP models. The PARAFAC model estimates the value
of the factor at the five points at which data was recorded.
The FF-WGP outputs a posterior distribution over func-
tions. The plot shows the posterior mean and standard
deviation.

storage time negatively influences the color of beef in
a near-linear manner.

5. Conclusions

We have presented a new approach to non-linear re-
gression called function factorization. The method
is based on approximating a function in a high-
dimensional space as the sum of products of functions
on subspaces. Using warped Gaussian processes as
non-parametric priors, we have presented a Bayesian
inference procedure based on Hamiltonian Markov
chain Monte Carlo sampling.

Factorization based methods such as the PARAFAC
model, that model data as a product of factors, can
lead to intuitive and interpretable results when the
factors have a physical meaning. Non-parametric
Bayesian regression methods, such as the warped
Gaussian process, make fewer assumptions on the
structure of the data, but lack the same interpretabil-
ity. The function factorization method presented here
combines the idea of a factorized model with the flex-
ibility of non-parametric Bayesian regression.

On a food science data set we have shown that the
function factorization method using warped Gaussian
process priors leads to superior performance in terms
of cross-validated root mean squared error on a pre-

2Our results differ from Bro and Jakobsen (2002) who
note that the model is degenerate but report a leave-one-
out cross-validation RMSE of 1.50.

3Leave-one-out cross-validation result from (Bro &
Jakobsen, 2002) with one multiplicative component plus
one main component.
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Table 2. Ten-fold cross-validation root mean squared er-
ror results on beef color dataset for parallel factor analy-
sis (PARAFAC), generalized multiplicative analysis of vari-
ance (GEMANOVA), function factorization using warped
Gaussian processes (FF-WGP), and Gaussian process re-
gression (GPR).

Model Components Cross-val. RMSE

PARAFAC
1 2.95
2 1.712

3 2.36

GEMANOVA 2 1.753

FF-WGP
1 2.94
2 1.50
3 1.45

GPR n/a 1.80

diction task compared with tensor factorization and
Gaussian process regression. Also, we have demon-
strated that the function factorization method pro-
vides full posterior distributions over the factorizing
functions, which can improve on the interpretability
of the model.
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