Linearly constrained Bayesian matrix factorization
for blind source separation

Mikkel N. Schmidt
Department of Engineering
University of Cambridge

ms@ mm dt u. dk

Abstract

We present a general Bayesian approach to probabilisticxifiattorization sub-
ject to linear constraints. The approach is based on a Gausbservation model
and Gaussian priors with bilinear equality and inequaldgstraints. We present
an efficient Markov chain Monte Carlo inference procedurgebson Gibbs sam-
pling. Special cases of the proposed model are Bayesiarufations of non-
negative matrix factorization and factor analysis. Thehudtis evaluated on a
blind source separation problem. We demonstrate that gorigim can be used
to extract meaningful and interpretable features thatewearkably different from
features extracted using existing related matrix facédian techniques.

1 Introduction

Source separation problems arise when a number of sigralsiaed together, and the objective
is to estimate the underlying sources based on the obserivtdren In the supervised, model-
based approach to source separation, examples of isotatecks are used to train source models,
which are then combined in order to separate a mixture. Gghpsn unsupervised, blind source
separation, only very general information about the salicavailable. Instead of estimating mod-
els of the sources, blind source separation is based olivedyatveak criteria such as minimizing
correlations, maximizing statistical independence, tinfitdata subject to constraints.

Under the assumptions of linear mixing and additive noibedtsource separation can be expressed
as a matrix factorization problem,

K
X =AB + N, orequivalently, z;; = Zaikbkj + nij, (1)
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where the subscripts below the matrices denote their dilmesis The columns ofA representx’
unknown sources, and the elementsifare the mixing coefficients. Each of thecolumns of
X contains an observation that is a mixture of the sourcesaildgive noise represented by the
columns of N. The objective is to estimate the sourcds,as well as the mixing coefficient#?,
when only the data matrixX, is observed. In a Bayesian formulation, the aim is not to jpot@ a
single value forA and B, but to infer their posterior distribution under a set of rabalssumptions.
These assumptions are specified in the likelihood functioX;| A, B), which expresses the proba-
bility of the data given the factorizing matrices, and in fi®r, p( A, B), which describes available
knowledge before observing the data. Depending on the fapebbice of likelihood and priors,
matrix factorizations with different characteristics dsndevised.

Non-negative matrix factorization (NMF), which is distinghed from other matrix factorization
techniques by its non-negativity constraints, has beewsstio decompose data into meaningful,
interpretable parts [3]; however, a parts-based decoriposs not necessarily useful, unless it
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Figure 1: Examples of model spaces that can be attained ositigx factorization with different
linear constraints il and B. The red hatched arég; indicates the feasible region for the source
vectors (columns ofd). Dots,0, are examples of specific positions of source vectors, ambldtk
hatched ared), is the corresponding feasible region for the data vec®pecial cases include (a)
factor analysis and (d) non-negative matrix factorization

finds the “correct” parts. The main contribution in this pajsethat specifying relevant constraints
other than non-negativity substantially changes the tjealof the results obtained using matrix
factorization. Some intuition about how the incorporatidmifferent constraints affects the matrix
factorization can be gained by considering their geometrdications. Figure 1 shows how differ-
ent linear constraints oA and B constrain the model space. For example, if the mixing caeffts
are constrained to be non-negative, data is modelled ativex hull of a simplicial cone, and if
the mixing coefficients are further constrained to sum tdyymiata is modelled as the hull of a
convex polytope.

In this paper, we develop a general and flexible frameworkBi@yesian matrix factorization, in
which the unknown sources and the mixing coefficients aegeckas hidden variables. Furthermore,
we allow any number of linear equality or inequality consttsito be specified. On an unsupervised
image separation problem, we demonstrate, that when relevastraints are specified, the method
finds interpretable features that are remarkably diffeiremb features computed using other matrix
factorization techniques.

The proposed method is related to recently proposed Bayeséatrix factorization techniques:
Bayesian matrix factorization based on Gibbs sampling le&s lwemonstrated [7, 8] to scale up
to very large datasets and to avoid the problem of overfiisgpciated with non-Bayesian tech-
nigues. Bayesian methods for non-negative matrix faction have also been proposed, either
based on variational inference [1] or Gibbs sampling [4,@]e latter can be seen as special cases
of the algorithm proposed here.

The paper is structured as follows: In section 2, the lineaohstrained Bayesian matrix factoriza-
tion model is described. Section 3 presents an inferenceedwoe based on Gibbs sampling. In
Section 4, the method is applied to an unsupervised soupaa®n problem and compared to
other existing matrix factorization methods. We discussresults and conclude in Section 5.



2 The linearly constrained Bayesian matrix factorization nodel

In the following, we describe the linearly constrained Bsiga matrix factorization model. We
make specific choices for the likelihood and priors that kbeformulation general while allowing
for efficient inference based on Gibbs sampling.

2.1 Noise model

We choose an iid. zero mean Gaussian noise model,

plnig) = N(nig|0,v35) = ——exp (=52 @)

where, in the most general formulation, each matrix elerhaatits own variancey; ;; however, the

variance parameters can easily be joined, e.g., to havegke sinise variance per row or just one
overall variance, which corresponds to an isotropic noiseeh The noise model gives rise to the
likelihood, i.e., the probability of the observations giwae parameters of the model. The likelihood

is given by
S E b2
p(xz|0) = HHN(.TU exp (_ (z Z};jf-ankbkj) )7 3)
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wheref = {A, B, {vij}} denotes all parameters in the model. For the noise varisaneaneters
we choose conjugate inverse-gamma priors,

p(vij) = ZG(vijla, B) = %U @ exp (;jﬂ) : (4)

27va

2.2 Priors for sources and mixing coefficients

We now define the prior distribution for the factorizing niegs, A and B. To simplify the notation,
we specify the matrices by vectoss = vec(A') = [a11,a12,...,arx]" andb = vec(B) =
[b11,b21,...,brs] . We choose a Gaussian prior oveandb subject to inequality constraint€,
and equality constraintgy,,

p(a,b) o N< m

[ua} [Eg Eab} ) it Q(a,b) <0, R(a,b) =

My |” [Bg, X 5
=p =3
0, otherwise.

In slight abuse of denotation, we referjgoandX as the mean and covariance matrix, although the
actual mean and covariance@findb depends on the constraints.

In the most general formulation, the constrai@s R’ X x RX/—RNe andR :RIEx RE/ S RV= |
are biaffine maps, that definéy inequality andVz equality constraints jointly i@ andb. Specif-
ically, each inequality constraint has the form

Qn(a,b) =gn+a'q +b'q) +a’ Qb <0. (6)
By rearranging terms and combining thi, constraints in matrix notation, we may write
bT ( )

.
[aP+Q"b - ay)+ Q0| a < ; . Qla<e, (O

b
=Q, ~ave—b'ay),

=q,
from which it is clear that the constraints are lineaairLikewise, the constraints can be rearranged
to a linear form inb. The equality constraintdz, are defined analogously.

This general formulation of the priors allows all elementszcandb to have prior dependencies
both through their covariance matri¥;,;, and through the joint constraints; however, in some



Figure 2: Graphical model for linearly constrained Bayesiatrix factorization, wher andB are
independent in the prior. White and grey nodes represearittand observed variables respectively,
and arrows indicate stochastic dependensies. The coltatzbmlenote repeated variables over the
indicated indices.

applications it is not relevant or practical to specify dltlese dependencies in advance. We may
restrict the model such thatandb are independent a priori by settidg,, ngb), andRﬁ,ffb) to zero,

and restrictingqs,‘i) = 0 for all m Whereqﬁfi) # 0 and vice versa. Furthermore, we can decouple
the elements of, or groups of elements such as rows or columns, by chodsing,,, andR,, to
have an appropriate block structure. Similarly we can dploelements oB.

2.3 Posterior distribution

Having specified the model and the prior densities, we canwaote the posterior, which is the
distribution of the parameters conditioned on the obsedatd and hyper-parameters. The posterior
is given by

I J
p(Bl2, ) o< p(a, b)p(x(6) [ | [T w(vis). (®)
i=1j=1
wherey = {«, 5, u, 3, @, R} denotes all hyper-parameters in the model. A graphicaemegta-
tion of the model is given in Figure 2.

3 Inference

In a Bayesian framework, we are interested in computing tstgior distribution over the param-
eters,p(0|x, v). The posterior, given in Eg. (8), is only known up to a multiptive constant, and
direct computation of this normalizing constant involvetegrating over the unnormalized poste-
rior, which is not analytically tractable. Instead, we appmate the posterior distribution using
Markov chain Monte Carlo (MCMC).

3.1 Gibbs sampling

We propose an inference procedure based on Gibbs samplibhs €&ampling is applicable when
the joint density of the parameters is not known, but the patars can be partitioned into groups,
such that their posterior conditional densities are kndwa iteratively sweep through the groups of
parameters and generate a random sample for each, coeditionthe current value of the others.
This procedure forms a homogenous Markov chain and itostaty distribution is exactly the joint
posterior.

In the following, we derive the posterior conditional deies required in the Gibbs sampler. First,
we consider the noise variances;. Due to the choice of conjugate prior, the posterior derisign
inverse-gamma,

p(vij|0\vij) = IG(vis|a, B), ()]
a=a+l, B=p+1(ay - K, anby)’, (10)



from which samples can be generated using standard acceptajection methods.

Next, we consider the factorizing matrices, representethbwectorsa andb. We only discuss
generating samples from, since the sampling procedure fiors identical due to the symmetry of
the model. Conditioned oby, the prior density ot is a constrained Gaussian,

N(ali,, 2a), ifQ a<q,, Rja=r,,

plalb) o | h
0, otherwise,

ij’a = K, + Eabzljl(b - Hb)a ia = Ea - Eabzglz;rb7 (12)

where we have used Eq. (7) and the standard result for a camaliGaussian density. In the special
case whern andb are independent in the prior, we simply hgve = p, andX, = 3,. Further,
conditioning on the data leads to the final expression foptigterior conditional density af,

N _aiaa'fT< aRT:aa
plalz, \a) { (alf,, £.), ifQia<gq, Ria=r 13)

0, otherwise,
S, =&, +BV B, f,=%.(8, A, + BV '), (14)
whereV = diag(v11,v12,...,01) andB = diag(B, ..., B) is a diagonal block matrix withl
repetitions ofB.

The Gibbs sampler proceeds iteratively: First, the noiséwmae is generated from the inverse-
gamma density in Eq. (9); secondis generated from the constrained Gaussian density in Bj. (1
and third,b is generated from a constrained Gaussian analogous to &q. (1

3.2 Sampling from a constrained Gaussian

An essential component in the proposed matrix factoripatieethod is an algorithm for generat-
ing random samples from a multivariate Gaussian densitjestito linear equality and inequality
constraints. With a slight change of notation, we consi@eregatinge € R from the density
T ), if ;—mg 2 Rzm:rz,

0, otherwise.
A similar problem has previously been treated by Geweke\[2lp proposes a Gibbs sampling
procedure, that does not handle equality constraints anghare thanN inequality constraints.
Rodriguez-Yam et al. [6] extends the method in [2] to an aabjtnumber of inequality constraints,
but do not provide an algorithm for handling equality coastts. Here, we present a general Gibbs
sampling procedure that handles any number of equalityraegliality constraints.

The equality constraints restrict the distribution to afinaf subspace of dimensionality — R,
where R is the number of linearly independent constraints. The itimmal distribution on that
subspace is a Gaussian subject to inequality constraintsaiidle the equality constraints, we map
the distribution onto this subspace. Using the singularerdlecomposition (SVD), we can robustly
compute an orthonormal basiE, for the constraints, as well as its orthogonal compleniEnt,

-
_ T_|T St 0|, T
R, =USV = [TJ {0 0} Vv, (16)
whereS = diag(si, ..., sg) holds theR non-zero singular values. We now define a transformed
variable,y, that is related te: by
y=T (x—x), yecRVE (17)

wherex is some vector that satisfies the equality constraints, eognputed using the pseudo-
inverse,xg = RLTrw. This transformation ensures, that for any valugypthe corresponding
satisfies the equality constraints. We can now compute tteitdition of y conditioned on the
equality constraints, which is Gaussian subject to indtyuebnstraints,

N 2 ifQly <
p(y|RIa: _ Tx) ~ (y|l‘l’y y) ny =4, (18)
0 otherwise,
ty = Ap, —m0), T, =A%.T', Q,=TQ, q,=4q,—Ql, (19)



whereA =T, (I - 2, T (T2, T")'T).

We introduce a second transformation with the purpose afdied the correlations between the
variables. This may potentially improve the sampling pohee, because Gibbs sampling can suffer
from slow mixing when the distribution is highly correlate€orrelations between the elements
of y are due to both the Gaussian covariance structure and thjedlity constraints; however,
for simplicity we only decorrelate with respect to the cagace of the underlying unconstrained
Gaussian. To this end, we define the transformed variablgiyen by

z=L""(y—p,) (20)

whereL is the Cholesky factorization of the covariance matlif; ' = X,,. The distribution ofz
is then a standard Gaussian subject to inequality contgrain

N(z0,I), ifQlz<gq.,
p(el R = r) o g N FOD T Qe = (21)
0, otherwise,
Q.=LQ, q.=q,-Qu, (22)

We can now sample from using a Gibbs sampling procedure by sweeping over the elsmgn
and generating samples from their conditional distrimgjavhich are univariate truncated standard

Gaussian,
Foo()
- ™ N(Zi|0, 1), 0 <z < Uj,
p(ziz\zi) = ¢ (< ¢ (L & { 0, otherwise. (23)
o (ﬁ) - (ﬁ)

Samples from this density can be generated using standahddsesuch as inverse transform sam-
pling (transforming a uniform random variable by the ineecaimulative density function); the
efficient mixed rejection sampling algorithm proposed byv@ke [2]; or slice sampling [5].

The upper and lower points of truncation can be computed as

Qlz < aq. (24)
d n
Ei:max{—oo,g—: :dy, <0} < z gmin{oo,Z—: s dy, >0} = uy;, (26)

where[Q.];: denotes théth row of Q , [Q.];. denotes all rows except thith, andz; denotes the
vector of all elements of except theth.

Finally, when a sample of has been generated after a number of Gibbs sweeps, it caarse tr
formed into a sample of the original variabe,using

x=T (L z+p,)+x. (27)
The sampling procedure is illustrated in Figure 3.

4 Experiments

We demonstrate the proposed linearly constrained Bayesidrix factorization method on a blind
image separation problem, and compare it to two other migciorization techniques: independent
component analysis (ICA) and non-negative matrix factdion (NMF).

Data We used a subset from the MNIST dataset which consist§ af 28 pixel grayscale images
of handwritten digits (see Figure 4.a). We selected the §iv8timages of each digit)—9, which
gave us3, 000 unique images. From these images we credi®d0 image mixtures by adding the
grayscale intensities of the images two and two, such tleatifferent digits were combined in equal
proportion. We rescaled the mixed images so that their pixehsities were in theé—1 interval, and
arranged the vectorized images as the columns of the matric R’*7, wherel = 784 and

J = 4,000. Examples of the image mixtures are shown in Figure 4.b.
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Figure 3: Gibbs sampling from a multivariate Gaussian dgssibject to linear constraints. a) Two-
dimensional Gaussian subject to three inequality comgrab) The conditional distribution af;
givenz, = x* is a truncated Gaussian. c¢) Gibbs sampling proceeds itelatly sweeping over
the dimensions and sampling from the conditional distiduin each dimension conditioned on the
current value in the other dimensions.

Task The objective is to factorize the data matrix in order to fintuanber of source images that
explain the data. Ideally, the sources should correspomiget@riginal digits. We cannot hope to
find exactly10 sources that each corresponds to a digit, because the@gee/hriations as to how
each digit is written. For that reason, we ud@cidden sources in our experiments, which allowed
4 exemplars on average for each digit.

Method For comparison we factorized the mixed image data using tawadard matrix factor-
ization techniques: ICA, where we used the FastICA algorjtand NMF, where we used Lee and
Seung’s multiplicative update algorithm [3]. The sourcetedmined using these methods are shown
in Figure 4.c—d.

For the linearly constrained Bayesian matrix factorizatiwe used an isotropic noise model. We
chose a decoupled prior fot and B with zero meang = 0, and unit diagonal covariance matrix,
3} = I. The hidden sources were constrained to have the same rapgebintensities as the
image mixtures)) < a;; < 1. This constraint allows the sources to be interpreted agésaince
pixel intensities outside this interval are not meaningfithe mixing coefficients were constrained

to be non-negativey,; > 0, and sum to unityz,cK:1 bi; = 1; thus, the observed data is modeled
as a convex combination of the sources. The constraintgesiisat only additive combinations of
the sources are allowed, and introduces a negative coorelaetween the mixing coefficients. This
negative correlation implies that if one source contributere to a mixture the other sources must
correspondingly contribute less. The idea behind this ttaim is that it will lead the sources to
compete as opposed toollaborate to explain the data. A geometric interpretation of the c@ists

is illustrated in Figure 1.h: The data vectors are modeled bgnvex polytope in the non-negative
unit hypercube, and the hidden sources are the verticessgfdlytope. We computetD, 000 Gibbs
samples, which appeared sufficient for the sampler to cgevéihe result of the matrix factorization
are shown in Figure 4.e, which displays a single sampld af the last iteration.

Results In ICA (see Figure 4.c) the sources are not constrained twhenegative, and therefore
do not have a direct interpretation as images. Most of thepeted sources are complex patterns,
that appear to be dominated by a single digit. While ICA delyadoes find structure in the data,
the estimated sources lack a clear interpretation.

The sources computed using NMF (see Figure 4.d) have theepiyophich Lee and Seung [3]
refer to as garts-based representation. Spatially, the sources atecal as opposed tglobal. The
decomposition has an intuitive interpretation: Each seis@ short line segment or a dot, and the
different digits can be constructed by combining thesespart

Linearly constrained Bayesian matrix factorization (segufe 4.e) computes sources with a very
clear and intuitive interpretation: Almost all of th® computed sources visually resemble hand-
written digits, and are thus well aligned with the sources there used to generate the mixtures.
Compared to the original data, the computed sources are l@loier and have slightly smeared
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Figure 4: Data and results of the analyses of an image sépapaibblem. a) The MNIST digits data
(20 examples shown) used to generate the mixture data. bhiXtere data consists of 4000 images
of two mixed digits (20 examples shown). c¢) Sources computidg independent component
analysis (color indicate sign). d) Sources computed usommegative matrix factorization. e)
Sources computed using linearly constrained Bayesiariattorization (details explained in the
text).

edges. Two sources stand out: One is a black blob of approsiytae same size as the digits, and
another is an all white feature, which are useful for adjgsthe brightness.

5 Conclusions

We presented a linearly constrained Bayesian matrix faettion method as well as an inference
procedure for this model. On an unsupervised image sepanatoblem, we have demonstrated that
the method finds sources that have a clear an interpretatalringe As opposed to ICA and NMF,
our method finds sources that visually resemble handwriliggits.

We formulated the model in general terms, which allows dmeprior information to be incorpo-
rated in the factorization. The Gaussian priors over thecgs.can be used if knowledge is available
about the covariance structure of the sources, e.g., ifdheces are known to be smooth. The con-
straints we used in our experiments were separatd fand B, but the framework allows bilinearly
dependent constraints to be specified, which can be useddaonme to specify constraints in the
data domain, i.e., on the produdtB.

As a general framework for constrained Bayesian matrixofézation, the proposed method has
applications in many other areas than blind source separdtiteresting applications include blind

deconvolution, music transcription, spectral unmixingg @ollaborative filtering. The method can

also be used in a supervised source separation settinge virerdistributions over sources and
mixing coefficients are learned from a training set of isediesources. It is an interesting challenge
to develop methods for learning relevant constraints frama.d
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