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Abstract

We present a general Bayesian approach to probabilistic matrix factorization sub-
ject to linear constraints. The approach is based on a Gaussian observation model
and Gaussian priors with bilinear equality and inequality constraints. We present
an efficient Markov chain Monte Carlo inference procedure based on Gibbs sam-
pling. Special cases of the proposed model are Bayesian formulations of non-
negative matrix factorization and factor analysis. The method is evaluated on a
blind source separation problem. We demonstrate that our algorithm can be used
to extract meaningful and interpretable features that are remarkably different from
features extracted using existing related matrix factorization techniques.

1 Introduction

Source separation problems arise when a number of signals are mixed together, and the objective
is to estimate the underlying sources based on the observed mixture. In the supervised, model-
based approach to source separation, examples of isolated sources are used to train source models,
which are then combined in order to separate a mixture. Oppositely, in unsupervised, blind source
separation, only very general information about the sources is available. Instead of estimating mod-
els of the sources, blind source separation is based on relatively weak criteria such as minimizing
correlations, maximizing statistical independence, or fitting data subject to constraints.

Under the assumptions of linear mixing and additive noise, blind source separation can be expressed
as a matrix factorization problem,

X
I×J

= A
I×K

B
K×J

+ N
I×J

, or equivalently, xij =

K∑

k=1

aikbkj + nij , (1)

where the subscripts below the matrices denote their dimensions. The columns ofA representK
unknown sources, and the elements ofB are the mixing coefficients. Each of theJ columns of
X contains an observation that is a mixture of the sources plusadditive noise represented by the
columns ofN . The objective is to estimate the sources,A, as well as the mixing coefficients,B,
when only the data matrix,X, is observed. In a Bayesian formulation, the aim is not to compute a
single value forA andB, but to infer their posterior distribution under a set of model assumptions.
These assumptions are specified in the likelihood function,p(X|A,B), which expresses the proba-
bility of the data given the factorizing matrices, and in theprior,p(A,B), which describes available
knowledge before observing the data. Depending on the specific choice of likelihood and priors,
matrix factorizations with different characteristics canbe devised.

Non-negative matrix factorization (NMF), which is distinguished from other matrix factorization
techniques by its non-negativity constraints, has been shown to decompose data into meaningful,
interpretable parts [3]; however, a parts-based decomposition is not necessarily useful, unless it
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Figure 1: Examples of model spaces that can be attained usingmatrix factorization with different
linear constraints inA andB. The red hatched area indicates the feasible region for the source
vectors (columns ofA). Dots, , are examples of specific positions of source vectors, and the black
hatched area, , is the corresponding feasible region for the data vectors.Special cases include (a)
factor analysis and (d) non-negative matrix factorization.

finds the “correct” parts. The main contribution in this paper is that specifying relevant constraints
other than non-negativity substantially changes the qualities of the results obtained using matrix
factorization. Some intuition about how the incorporationof different constraints affects the matrix
factorization can be gained by considering their geometricimplications. Figure 1 shows how differ-
ent linear constraints onA andB constrain the model space. For example, if the mixing coefficients
are constrained to be non-negative, data is modelled as the convex hull of a simplicial cone, and if
the mixing coefficients are further constrained to sum to unity, data is modelled as the hull of a
convex polytope.

In this paper, we develop a general and flexible framework forBayesian matrix factorization, in
which the unknown sources and the mixing coefficients are treated as hidden variables. Furthermore,
we allow any number of linear equality or inequality constraints to be specified. On an unsupervised
image separation problem, we demonstrate, that when relevant constraints are specified, the method
finds interpretable features that are remarkably differentfrom features computed using other matrix
factorization techniques.

The proposed method is related to recently proposed Bayesian matrix factorization techniques:
Bayesian matrix factorization based on Gibbs sampling has been demonstrated [7, 8] to scale up
to very large datasets and to avoid the problem of overfittingassociated with non-Bayesian tech-
niques. Bayesian methods for non-negative matrix factorization have also been proposed, either
based on variational inference [1] or Gibbs sampling [4, 9].The latter can be seen as special cases
of the algorithm proposed here.

The paper is structured as follows: In section 2, the linearly constrained Bayesian matrix factoriza-
tion model is described. Section 3 presents an inference procedure based on Gibbs sampling. In
Section 4, the method is applied to an unsupervised source separation problem and compared to
other existing matrix factorization methods. We discuss our results and conclude in Section 5.
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2 The linearly constrained Bayesian matrix factorization model

In the following, we describe the linearly constrained Bayesian matrix factorization model. We
make specific choices for the likelihood and priors that keepthe formulation general while allowing
for efficient inference based on Gibbs sampling.

2.1 Noise model

We choose an iid. zero mean Gaussian noise model,

p(nij) = N (nij |0, vij) = 1√
2πvij

exp
(

− n2

ij

2vij

)

, (2)

where, in the most general formulation, each matrix elementhas its own variance,vij ; however, the
variance parameters can easily be joined, e.g., to have a single noise variance per row or just one
overall variance, which corresponds to an isotropic noise model. The noise model gives rise to the
likelihood, i.e., the probability of the observations given the parameters of the model. The likelihood
is given by

p(x|θ) =

I∏

i=1

J∏

j=1

N
(

xij

∣
∣
∣

K∑

k=1

aikbkj , vij

)

=

I∏

i=1

J∏

j=1

1
√

2πvij

exp

(

−(x −∑K

k=1 aikbkj)
2

2vij

)

, (3)

whereθ =
{
A,B, {vij}

}
denotes all parameters in the model. For the noise variance parameters

we choose conjugate inverse-gamma priors,

p(vij) = IG(vij |α, β) =
βα

Γ(α)
v
−(α+1)
ij exp

(−β

vij

)

. (4)

2.2 Priors for sources and mixing coefficients

We now define the prior distribution for the factorizing matrices,A andB. To simplify the notation,
we specify the matrices by vectorsa = vec(A⊤) = [a11, a12, . . . , aIK ]⊤ andb = vec(B) =
[b11, b21, . . . , bKJ ]⊤. We choose a Gaussian prior overa andb subject to inequality constraints,Q,
and equality constraints,R,

p(a, b) ∝







N
([
a
b

]
∣
∣
∣
∣
∣

[
µa

µb

]

︸ ︷︷ ︸

≡µ

,

[
Σa Σab

Σ
⊤
ab Σb

]

︸ ︷︷ ︸

≡Σ

)

, if Q(a, b) ≤ 0, R(a, b) = 0,

0, otherwise.

(5)

In slight abuse of denotation, we refer toµ andΣ as the mean and covariance matrix, although the
actual mean and covariance ofa andb depends on the constraints.

In the most general formulation, the constraints,Q :RIK×R
KJ→R

NQ andR :RIK×R
KJ→R

NR ,
are biaffine maps, that defineNQ inequality andNR equality constraints jointly ina andb. Specif-
ically, each inequality constraint has the form

Qm(a, b) = qm + a⊤q(a)
m + b⊤q(b)

m + a⊤Q(ab)
m b ≤ 0. (6)

By rearranging terms and combining theNQ constraints in matrix notation, we may write

[

q
(a)
1 +Q

(ab)
1 b · · · q(a)

NQ
+Q

(ab)
NQ
b
]

︸ ︷︷ ︸

≡Qa

⊤
a ≤







−q1−b⊤q(b)
1

...
−qNQ

−b⊤q(b)
NQ







︸ ︷︷ ︸

≡qa

, Q⊤
a a ≤ qa, (7)

from which it is clear that the constraints are linear ina. Likewise, the constraints can be rearranged
to a linear form inb. The equality constraints,R, are defined analogously.

This general formulation of the priors allows all elements of a andb to have prior dependencies
both through their covariance matrix,Σab, and through the joint constraints; however, in some
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Figure 2: Graphical model for linearly constrained Bayesian matrix factorization, whenA andB are
independent in the prior. White and grey nodes represent latent and observed variables respectively,
and arrows indicate stochastic dependensies. The colored plates denote repeated variables over the
indicated indices.

applications it is not relevant or practical to specify all of these dependencies in advance. We may
restrict the model such thata andb are independent a priori by settingΣab,Q(ab)

m , andR(ab)
m to zero,

and restrictingq(a)
m = 0 for all m whereq(b)

m 6= 0 and vice versa. Furthermore, we can decouple
the elements ofA, or groups of elements such as rows or columns, by choosingΣa,Qa, andRa to
have an appropriate block structure. Similarly we can decouple elements ofB.

2.3 Posterior distribution

Having specified the model and the prior densities, we can nowwrite the posterior, which is the
distribution of the parameters conditioned on the observeddata and hyper-parameters. The posterior
is given by

p(θ|x,ψ) ∝ p(a, b)p(x|θ)
I∏

i=1

J∏

j=1

p(vij), (8)

whereψ = {α, β,µ,Σ, Q, R} denotes all hyper-parameters in the model. A graphical representa-
tion of the model is given in Figure 2.

3 Inference

In a Bayesian framework, we are interested in computing the posterior distribution over the param-
eters,p(θ|x,ψ). The posterior, given in Eq. (8), is only known up to a multiplicative constant, and
direct computation of this normalizing constant involves integrating over the unnormalized poste-
rior, which is not analytically tractable. Instead, we approximate the posterior distribution using
Markov chain Monte Carlo (MCMC).

3.1 Gibbs sampling

We propose an inference procedure based on Gibbs sampling. Gibbs sampling is applicable when
the joint density of the parameters is not known, but the parameters can be partitioned into groups,
such that their posterior conditional densities are known.We iteratively sweep through the groups of
parameters and generate a random sample for each, conditioned on the current value of the others.
This procedure forms a homogenous Markov chain and its stationary distribution is exactly the joint
posterior.

In the following, we derive the posterior conditional densities required in the Gibbs sampler. First,
we consider the noise variances,vij . Due to the choice of conjugate prior, the posterior densityis an
inverse-gamma,

p(vij |θ\vij) = IG(vij |ᾱ, β̄), (9)

ᾱ = α + 1
2 , β̄ = β + 1

2

(
xij −

∑K

k=1 aikbkj

)2
, (10)
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from which samples can be generated using standard acceptance-rejection methods.

Next, we consider the factorizing matrices, represented bythe vectorsa andb. We only discuss
generating samples froma, since the sampling procedure forb is identical due to the symmetry of
the model. Conditioned onb, the prior density ofa is a constrained Gaussian,

p(a|b) ∝
{

N (a|µ̃a, Σ̃a), if Q⊤
a a ≤ qa, R⊤

a a = ra,

0, otherwise,
(11)

µ̃a = µa + ΣabΣ
−1
b (b− µb), Σ̃a = Σa − ΣabΣ

−1
b Σ

⊤
ab, (12)

where we have used Eq. (7) and the standard result for a conditional Gaussian density. In the special
case whena andb are independent in the prior, we simply haveµ̃a = µa andΣ̃a = Σa. Further,
conditioning on the data leads to the final expression for theposterior conditional density ofa,

p(a|x,θ\a) ∝
{

N (a|µ̄a, Σ̄a), if Q⊤
a a ≤ qa, R⊤

a a = ra,

0, otherwise,
(13)

Σ̄a =
(
Σ̃

−1

a + B̃V −1B̃
⊤)−1

, µ̄a = Σ̄a

(
Σ̃

−1

a µ̃a + B̃V −1x
)
, (14)

whereV = diag(v11, v12, . . . , vIJ ) andB̃ = diag(B, . . . ,B) is a diagonal block matrix withI
repetitions ofB.

The Gibbs sampler proceeds iteratively: First, the noise variance is generated from the inverse-
gamma density in Eq. (9); second,a is generated from the constrained Gaussian density in Eq. (13);
and third,b is generated from a constrained Gaussian analogous to Eq. (13).

3.2 Sampling from a constrained Gaussian

An essential component in the proposed matrix factorization method is an algorithm for generat-
ing random samples from a multivariate Gaussian density subject to linear equality and inequality
constraints. With a slight change of notation, we consider generatingx ∈ R

N from the density

p(x) ∝
{

N (x|µx,Σx), if Q⊤
xx ≤ qx, R⊤

xx = rx,

0, otherwise.
(15)

A similar problem has previously been treated by Geweke [2],who proposes a Gibbs sampling
procedure, that does not handle equality constraints and nomore thanN inequality constraints.
Rodriguez-Yam et al. [6] extends the method in [2] to an arbitrary number of inequality constraints,
but do not provide an algorithm for handling equality constraints. Here, we present a general Gibbs
sampling procedure that handles any number of equality and inequality constraints.

The equality constraints restrict the distribution to an affine subspace of dimensionalityN − R,
whereR is the number of linearly independent constraints. The conditional distribution on that
subspace is a Gaussian subject to inequality constraints. To handle the equality constraints, we map
the distribution onto this subspace. Using the singular value decomposition (SVD), we can robustly
compute an orthonormal basis,T , for the constraints, as well as its orthogonal complement,T⊥,

Rx = USV ⊤ =

[
T
T⊥

]⊤ [
ST 0

0 0

]

V ⊤, (16)

whereST = diag(s1, . . . , sR) holds theR non-zero singular values. We now define a transformed
variable,y, that is related tox by

y = T⊥(x− x0), y ∈ R
N−R (17)

wherex0 is some vector that satisfies the equality constraints, e.g., computed using the pseudo-
inverse,x0 = R†⊤

x rx. This transformation ensures, that for any value ofy, the correspondingx
satisfies the equality constraints. We can now compute the distribution ofy conditioned on the
equality constraints, which is Gaussian subject to inequality constraints,

p(y|R⊤
xx = rx) ∝

{

N (y|µy,Σy) if Q⊤
yy ≤ qy

0 otherwise,
(18)

µy = Λ(µx − x0), Σy = ΛΣxT
⊤
⊥ , Qy = T⊥Qx, qy = qx −Q⊤

xx0, (19)
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whereΛ = T⊥(I − ΣxT
⊤(TΣxT

⊤)−1T ).

We introduce a second transformation with the purpose of reducing the correlations between the
variables. This may potentially improve the sampling procedure, because Gibbs sampling can suffer
from slow mixing when the distribution is highly correlated. Correlations between the elements
of y are due to both the Gaussian covariance structure and the inequality constraints; however,
for simplicity we only decorrelate with respect to the covariance of the underlying unconstrained
Gaussian. To this end, we define the transformed variable,z, given by

z = L−⊤(y − µy), (20)

whereL is the Cholesky factorization of the covariance matrix,LL⊤ = Σy. The distribution ofz
is then a standard Gaussian subject to inequality constraints,

p(z|R⊤
xx = rx) ∝

{

N (z|0, I), if Q⊤
zz ≤ qz,

0, otherwise,
(21)

Qz = LQy, qz = qy −Q⊤
yµy. (22)

We can now sample fromz using a Gibbs sampling procedure by sweeping over the elements zi

and generating samples from their conditional distributions, which are univariate truncated standard
Gaussian,

p(zi|z\zi) =

√
2
π

exp
(

−z2

i

2

)

erf
(

ui√
2

)

− erf
(

ℓi√
2

) ∝
{

N (zi|0, 1), ℓi ≤ zi ≤ ui,
0, otherwise.

(23)

Samples from this density can be generated using standard methods such as inverse transform sam-
pling (transforming a uniform random variable by the inverse cumulative density function); the
efficient mixed rejection sampling algorithm proposed by Geweke [2]; or slice sampling [5].

The upper and lower points of truncation can be computed as

Q⊤
zz ≤ qz (24)

[Qz ]
⊤
i:

︸ ︷︷ ︸

d

zi ≤ qz − [Qz]
⊤
ĩ:
z ĩ

︸ ︷︷ ︸

n

(25)

ℓi = max
{
−∞, nk

dk
: dk < 0

}
≤ zi ≤ min

{
∞, nk

dk
: dk > 0

}
= ui, (26)

where[Qz]i: denotes theith row ofQz, [Qz ]̃i: denotes all rows except theith, andz ĩ denotes the
vector of all elements ofz except theith.

Finally, when a sample ofz has been generated after a number of Gibbs sweeps, it can be trans-
formed into a sample of the original variable,x, using

x = T⊤
⊥ (L⊤z + µy) + x0. (27)

The sampling procedure is illustrated in Figure 3.

4 Experiments

We demonstrate the proposed linearly constrained Bayesianmatrix factorization method on a blind
image separation problem, and compare it to two other matrixfactorization techniques: independent
component analysis (ICA) and non-negative matrix factorization (NMF).

Data We used a subset from the MNIST dataset which consists of28× 28 pixel grayscale images
of handwritten digits (see Figure 4.a). We selected the first800 images of each digit,0–9, which
gave us8, 000 unique images. From these images we created4, 000 image mixtures by adding the
grayscale intensities of the images two and two, such that the different digits were combined in equal
proportion. We rescaled the mixed images so that their pixelintensities were in the0–1 interval, and
arranged the vectorized images as the columns of the matrixX ∈ R

I×J , whereI = 784 and
J = 4, 000. Examples of the image mixtures are shown in Figure 4.b.
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Figure 3: Gibbs sampling from a multivariate Gaussian density subject to linear constraints. a) Two-
dimensional Gaussian subject to three inequality constraints. b) The conditional distribution ofx1

givenx2 = x∗ is a truncated Gaussian. c) Gibbs sampling proceeds iteratively by sweeping over
the dimensions and sampling from the conditional distribution in each dimension conditioned on the
current value in the other dimensions.

Task The objective is to factorize the data matrix in order to find anumber of source images that
explain the data. Ideally, the sources should correspond tothe original digits. We cannot hope to
find exactly10 sources that each corresponds to a digit, because there are large variations as to how
each digit is written. For that reason, we used40 hidden sources in our experiments, which allowed
4 exemplars on average for each digit.

Method For comparison we factorized the mixed image data using two standard matrix factor-
ization techniques: ICA, where we used the FastICA algorithm, and NMF, where we used Lee and
Seung’s multiplicative update algorithm [3]. The sources determined using these methods are shown
in Figure 4.c–d.

For the linearly constrained Bayesian matrix factorization, we used an isotropic noise model. We
chose a decoupled prior forA andB with zero mean,µ = 0, and unit diagonal covariance matrix,
Σ = I. The hidden sources were constrained to have the same range of pixel intensities as the
image mixtures,0 ≤ aik ≤ 1. This constraint allows the sources to be interpreted as images since
pixel intensities outside this interval are not meaningful. The mixing coefficients were constrained
to be non-negative,bkj ≥ 0, and sum to unity,

∑K

k=1 bkj = 1; thus, the observed data is modeled
as a convex combination of the sources. The constraints ensure that only additive combinations of
the sources are allowed, and introduces a negative correlation between the mixing coefficients. This
negative correlation implies that if one source contributes more to a mixture the other sources must
correspondingly contribute less. The idea behind this constraint is that it will lead the sources to
compete as opposed tocollaborate to explain the data. A geometric interpretation of the constraints
is illustrated in Figure 1.h: The data vectors are modeled bya convex polytope in the non-negative
unit hypercube, and the hidden sources are the vertices of this polytope. We computed10, 000 Gibbs
samples, which appeared sufficient for the sampler to converge. The result of the matrix factorization
are shown in Figure 4.e, which displays a single sample ofA at the last iteration.

Results In ICA (see Figure 4.c) the sources are not constrained to be non-negative, and therefore
do not have a direct interpretation as images. Most of the computed sources are complex patterns,
that appear to be dominated by a single digit. While ICA certainly does find structure in the data,
the estimated sources lack a clear interpretation.

The sources computed using NMF (see Figure 4.d) have the property which Lee and Seung [3]
refer to as aparts-based representation. Spatially, the sources arelocal as opposed toglobal. The
decomposition has an intuitive interpretation: Each source is a short line segment or a dot, and the
different digits can be constructed by combining these parts.

Linearly constrained Bayesian matrix factorization (see Figure 4.e) computes sources with a very
clear and intuitive interpretation: Almost all of the40 computed sources visually resemble hand-
written digits, and are thus well aligned with the sources that were used to generate the mixtures.
Compared to the original data, the computed sources are a bitbolder and have slightly smeared
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(a) Original dataset: MNIST digits

(b) Training data: Mixture of digits

(c) Independent component analysis

(d) Non-negative matrix factorization

(e) Linearly constrained Bayesian matrix factorization

Figure 4: Data and results of the analyses of an image separation problem. a) The MNIST digits data
(20 examples shown) used to generate the mixture data. b) Themixture data consists of 4000 images
of two mixed digits (20 examples shown). c) Sources computedusing independent component
analysis (color indicate sign). d) Sources computed using non-negative matrix factorization. e)
Sources computed using linearly constrained Bayesian matrix factorization (details explained in the
text).

edges. Two sources stand out: One is a black blob of approximately the same size as the digits, and
another is an all white feature, which are useful for adjusting the brightness.

5 Conclusions

We presented a linearly constrained Bayesian matrix factorization method as well as an inference
procedure for this model. On an unsupervised image separation problem, we have demonstrated that
the method finds sources that have a clear an interpretable meaning. As opposed to ICA and NMF,
our method finds sources that visually resemble handwrittendigits.

We formulated the model in general terms, which allows specific prior information to be incorpo-
rated in the factorization. The Gaussian priors over the sources can be used if knowledge is available
about the covariance structure of the sources, e.g., if the sources are known to be smooth. The con-
straints we used in our experiments were separate forA andB, but the framework allows bilinearly
dependent constraints to be specified, which can be used for example to specify constraints in the
data domain, i.e., on the productAB.

As a general framework for constrained Bayesian matrix factorization, the proposed method has
applications in many other areas than blind source separation. Interesting applications include blind
deconvolution, music transcription, spectral unmixing, and collaborative filtering. The method can
also be used in a supervised source separation setting, where the distributions over sources and
mixing coefficients are learned from a training set of isolated sources. It is an interesting challenge
to develop methods for learning relevant constraints from data.
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