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Figure 1: Illustration of birth-death and split-
merge proposals: Components are removed,
and new components are generated and refined
through restricted Gibbs sampling. The final pro-
posed components are generated through one last
restricted Gibbs sweep. The proposal density is
computed by keeping track of all transition prob-
abilities in the final Gibbs sweep.

In non-negtive matrix factorization (NMF),
a data matrix X is modelled as the prod-
uct of two matrices A and B with non-
negative entries. Taking a Bayesian ap-
proach to NMF entails specifying an appro-
priate likelihood and priors for the factoriz-
ing matrices and the number of components
K (colums of A and rows of B.) Related to
Bayesian NMF is also models based on the
Indian buffet process [5, 4, 2]. For a given
value of K, inference can be performed us-
ing standard methods such as Gibbs sam-
pling [7] or variational approximation [1];
however, infering K is more challenging.
Computationally expensive approaches in-
cluding Chib’s method [7], thermodynamic
integration, and reversible jump indepen-
dence MCMC [8] have been proposed.

Inspired by Jain and Neal’s split-merge
procedure [3] for Dirichlet process mixture
models, we have developed a procedure
[6] for generating efficient cross-dimensional
(reversible jump) Metropolis-Hastings pro-
posals in Bayesian NMF, in which we con-
sider two different move types: birth-death
and split-merge moves. To outline the basic
idea, consider for example a merge move:
We first remove the two components that
are to be merged. Then we generate one
new component from the prior and refine it
through a number of Gibbs sampling rounds restricted to the new component. These rounds
of restricted Gibbs sampling serve the purpose of moving the new component into a region
of high posterior probability, and the resulting component constitutes what is referred to as
the launch state. Then, one final round of restricted Gibbs sampling is performed, keeping
track of all transition probabilities. Thus, the proposal is a Gibbs random walk starting
at the launch state. Next, to evaluate the Metropolis-Hastings acceptance probability, we
must compute the reverse transition probability, i.e. the probability of splitting the new
component into the two original ones. This is done by removing the newly added compo-
nent and generating and refining two launch state components. In the final round of “Gibbs
sampling” for the two launched components, they are forced to end up equal to the original
components and the reverse transition probability can thus be computed.

We believe the idea of using random walk proposals from highly probable launch states is
generally applicable in a number of variable-dimension latent feature models. Our future
research includes utilizing numerical optimization algorithms for computing launch states;
considering more general remove-i-add-j moves; and applying the ideas to other latent
feature models.
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