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Figure 1: Example of a com-
plex network with N = 8
vertices.

Figure 2: Example of a mul-
tifurcating tree with N = 8
leaf nodes and M = 3 in-
ternal nodes. The leaf nodes
correspond to vertices in the
complex network.

Figure 3: Graphical rep-
resentation of hierarchical
model of complex network.

Networks or graphs of relations (edges) between entities (vertices)
occur in many areas of science, for example in sociology, represent-
ing friendships between people; in economy, representing trade re-
lations; and in biology, representing interactions between proteins.
Many of these real-world networks exhibit hierarchical organization,
in the sense that the complex structure of edges between vertices can
be well described by a latent hierarchical structure underlying the
network.

We discuss generative nonparametric Bayesian approaches to mod-
eling and infering latent hierarchical structure in complex networks.
The models we discuss include existing non-hierarchical networks
models as special cases, and thus makes it possible to infer whether
or not hierarchical structure is present in a given network.

A general generative model

We represent a complex network with N vertices by an N × N ad-
jacency matrix X . In the case of an undirected binary network (see
Fig. 1) X is a symmetric binary matrix where Xij = 1 indicates
that an edge exists between node i and j. The following general
outline of a probabilistic generative process can be used to character-
ize a complex network with a hierarchical cluster structure (see also
Fig. 3). Several existing hierarchical network models [2, 3, 5] are
special cases of this approach.

1. Generate a rooted tree (see Fig. 2) where the leaf nodes cor-
responds to the vertices in the complex network,

T ∼ p(T |τ), (1)

where τ are parameters of the prior distribution of the tree.
Each internal node in the tree corresponds to a cluster of
network vertices.

2. For each internal node r in the tree, generate parameters
that govern the probabilities of edges between each of its
children.

Rr ∼ p(Rr|T, ρ), (2)
where ρ are parameters of the prior distribution of the edge
probabilities.

3. For each pair of vertices i and j in the network, generate an
edge with probability governed by the parameters located at
the common ancestral nodes in the tree

Xij ∼ p(Xij |T,R). (3)

Inference in such models entails finding the posterior distribution of the tree as well as the edge
probability parameters given the observed complex network.
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Relation to previous work

The hierarchical random graph [2] corresponds to using a flat prior over binary trees (dendrograms)
and the the authors “endow each internal node r of the dendrogram with a probability pr and then
connect each pair of vertices for whom r is the lowest common ancestor independently with proba-
bility pr” [2].

The approach of learning annotated hierarchies from relational data [5] again uses a flat prior over
binary trees, and each internal node is assigned a weight variable. A tree-consistent partition is
sampled from the tree with probability governed by the weights. For each combination of clusters
in this partition, a probability is generated from a Beta distribution, and edges within and between
these clusters are generated with these probabilities.

In the tree-like infinite relational model [3], in its most simple formulation the prior over trees is
constructed such that the partitioning of the vertices on the level below the leaf nodes in the tree are
generated from a Chinese restaurant process, and the tree below this level is generated from a flat
prior over multifurcating trees. In this model, the likelihood is identical to that of Clauset et al. [2].

Ideas and extensions

The restriction of hierarchical structure to binary trees is unnatural in many applications, and further-
more the number of internal nodes in a binary tree is greater than or equal to the number of internal
nodes in a multifurcating tree, leading to an increased computational burden. Although efficient in
this sense, the prior in [3] might also not be natural. Another approach is to use an exchangeable
process over nested partitionings, such as the Gibbs fragmentation tree [4] process, which has an
interpretation as a nested Chinese restaurant process.

In existing hierarchical network models, the probability of edges depend only on the parameter
located at the nearest common ancestral node in the tree (in [5] as defined by the tree-consistent
partition). It is useful to introduce some dependency between the parameters in the tree, for example
to force edge probabilities to increase as we move up through the tree, making clusters of nodes
higher in the tree more likely to link to each other. Recent studies [6] suggest that this might lead to
models with both better interpretation and link prediction performance.

Another idea is to allow the edges to depend not only on the nearest common ancestral node in
the tree, but on all common ancestral nodes all the way down to the root. This mechanism also
allows clusters higher in tree the to have higher probability of linking: A simple idea is to allow
each common ancestral node of vertex i and j to independently generate the edge between the two
vertices with probability pr. The total probability of a link is then

p(Xij = 1|T,R) = 1− (1− pn0
)(1− pn1

) · · · (1− pnL
), (4)

where {n0, . . . , nL} are the common ancestral nodes of the two vertices (n0 is the root of the tree).
This mechanism can also be used to specify other interesting likelihoods such as mixture models
over common ancestral nodes in the tree, akin to the Bayesian rose tree model of Blundell et al. [1].
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