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Non-parametric Bayesian modeling of complex
networks

Mikkel N. Schmidt and Morten Mørup

Abstract—Modeling structure in complex networks using
Bayesian non-parametrics makes it possible to specify flexible
model structures and infer the adequate model complexity from
the observed data. This paper provides a gentle introduction to
non-parametric Bayesian modeling of complex networks: Using
an infinite mixture model as running example we go through
the steps of deriving the model as an infinite limit of a finite
parametric model, inferring the model parameters by Markov
chain Monte Carlo, and checking the model’s fit and predictive
performance. We explain how advanced non-parametric models
for complex networks can be derived and point out relevant
literature.

I. INTRODUCTION

We are surrounded by complex networks. From the net-
works of cell interaction in our immune system to the complex
network of neurons communicating in our brain, our cells
interplay to coordinate the functions of our body. We live
in cities with complex energy supply networks and these
cities are linked by advanced transportation systems. We
interact within social circles and our computers are connected
through the World Wide Web. To understand the structure of
these large systems of biological, physical, social, and virtual
networks, there is a great need to be able to model them
mathematically [6].

Complex networks are studied in several different fields
from computer science and engineering to physics, biology,
sociology, and psychology. “Network science is an emerging,
highly interdisciplinary research area that aims to develop
theoretical and practical approaches and techniques to increase
our understanding of natural and manmade networks” [6].
Network science can be considered “the study of network
representations of physical, biological, and social phenomena
leading to predictive models of these phenomena” [8].

In order to understand the many large-scale complex net-
works we sample and store nowadays there is a growing
demand for advanced mathematical and statistical models that
can account for the structure in these systems. The modeling
aims are twofold; to provide a comprehensible description
(i.e., descriptive modeling) and to infer unobserved properties
(i.e., predictive modeling). In particular, a statistical analysis
is useful when the focus lies beyond single node properties
and local interactions but on the characteristics and behaviors
of the entire system [6], [30], [54].

A complex network can be represented as a graph G(V,E)
with vertices (nodes) V and edges (links) E where an edge
defines a connection between two of the vertices. In the
following we denote the number of nodes in the graph by N
and the number of links by L. Graphs are often represented

in terms of their corresponding adjacency matrix X defined
such that xi,j = 1 if there exists a link between node i and
j and xi,j = 0 otherwise. Common types of graphs include
undirected, directed, and bipartite graphs, and these can in turn
be weighted such that each link has an associated strength
(see Figure 1). Complex networks are commonly stored in a
sparse representation as an “edge list”; a set of L 3-tuples
(i, j, w) where w is the weight of the link from node i to
node j. Using this representation, the storage requirements
for a network grows linearly in the number of edges of the
graph.

A. Network characteristics

An important regimen in network science is to examine
different characteristics or metrics computed from an observed
network. The characteristics that have been examined include
the distribution of the number of edges for each vertex (the
degree distribution), the tendency of vertices to cluster together
in tightly knit groups (the clustering coefficient), the average
number of links required to move from one vertex to another
(the characteristic path length), and many more (see Figure 2,
and for a detailed list of studied network characteristics see
[49].)

To assess the importance of these characteristics they can be
contrasted with the properties of some class of random graphs:
To discover significant properties which cannot be explained
by pure chance. The most simple class of random graphs used
for comparison is the socalled Erdős-Rényi graphs in which
pairs of nodes connect independently at random with a given
connection probability φ,

xi,j ∼ Bernoulli(φ), φ ∈ [0; 1]. (1)

Amongst the findings is that many real networks exhibit
“scale free” and “small-world” properties. A network is said
to be scale free if its degree distribution follows a power
law [4] in contrast to Erdős-Rényi random graphs which
have a binomial degree distribution. The power law degree
distribution indicates that many nodes have very few links
whereas a few nodes (hubs) have a large number of links. A
network is said to be small-world if it has local connectivity
and global reach such that any node can be reached from
any other node in a small number of steps along the edges.
This associates with having a large clustering coefficient and
small characteristic path length [57] and suggests that generic
organizing principles and growth mechanisms may give rise to
the structure of many existing networks [57], [4], [54], [10],
[6], [30]. Using analytic tools from network science, studies
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Undirected graph Directed graph Weighted graph Bipartite graph

Fig. 1. Illustration of undirected, directed, weighted, and bipartite graphs. An undirected graph consists of a set of nodes and a set of edges. In directed
graphs, edges point from one node to another. Edges in a weighed graph have an associated value e.g. representing the strength of the relation. A bipartite
graph represents a set of relations between two disjoint sets of nodes. Non-parametric Bayesian models can be formulated for all of these types of network
structures.

Degree mean

Degree std.

Clustering coef.

Char. path length

Erdős-Rényi graph

1.8 1.1 0.0 2.9

Heavy tailed degree distribution

1.9 1.9 0.0 3.1

High clustering coefficient

3.1 1.2 0.5 3.4

Long characteristic path length

1.9 0.3 0.0 6.3

Fig. 2. Illustration of three important network characteristics: the degree
distribution, clustering coefficient, and characteristic path length. The degree
of a vertex is the number of edges that links it to the rest of the network.
The clustering coefficient, defined as the average fraction of triangles relative
to the total number of potential triangles given the vertex degree, quantifies
the degree to which the vertices in a graph tend to cluster together. The
characteristic path length is defined as the average shortest path between the
vertices of the network.

have demonstrated that many complex networks behave far
from random [57], [4], [54], [10].

B. Exponential random graphs

To understand the processes that govern the formation of
links in complex networks, statistical models consider some
class of probability distributions over networks. A prominent
and very rich, general class of models for networks is the
exponential random graph family [12], [46], [56], also denoted
the p∗ model. In the exponential random graph model the
probability of an observed network takes the form of an
exponential family distribution,

p(X|θ) =
1

κ(θ)
exp

{
θ>s(X)

}
, (2)

where θ is a vector of parameters, s(X) is a vector of sufficient
statistics, and κ(θ) is the normalizing constant that ensures that

the distribution sums to unity. In general, the sufficient statistic
can depend on three different types of quantities:
Exogenous predictors: In addition to the network, side infor-

mation is often available which can aid in modeling the
network structure. Including such observed covariates on
the node or dyad level allows the analysis of networks
and side information in a single model.

Network statistics: Statistics computed on the network itself,
such as counts of different network motifs can be in-
cluded. This could be quantities such as the number of
edges, triangles, two-stars, etc. Since these terms depend
on the graph, they introduce a self-dependency in the
model, significantly complicating the inference proce-
dure. There is virtually no limit to which terms could
potentially be included, and how to choose a suitable set
terms for a specific network domain is an open problem.

Latent variables: The network can be endowed with a latent
structure that characterizes the network generating pro-
cess. The latent variables could for example be continu-
ous or categorical variables on the node level or a latent
hierarchical structure. The latent variables are most often
jointly inferred with the model parameters. One reason for
including latent variables is to aid in the understaning of
the model: For example, if each network node is given a
categorical latent variable, this corresponds to a clustering
of the network nodes.

The parameters in exponential random graphs are usually
estimated using maximum likelihood which can be non-trivial
since the normalizing constant usually can not be explicitly
evaluated. While exponential random graph models are very
flexible and work well for predicting links, they have the
following important shortcomings:
Model complexity: It can be difficult to determine the suitable

model complexity: Which network statistics to include,
how many latent dimensions or categories to include
etc. To address this issue different approaches have been
taken, including imposing sparsity on the parameters and
using model order selection tools such as BIC and AIC.

Computational complexity: In general, the computational
complexity of inference in exponential random graph
models grows with the size of the network, O(N2), rather
than with the number of edges, O(L), making exact
large scale analysis infeasible. There are, however, certain
special cases for which the complexity of inference scales
linearly in the number of edges, which we will discuss
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further in the sequel.
Inferential complexity: When only exogenous predictors and

latent variables are included in the model, inference is
fairly straightforward; however, when network statistics
are included inference can be challenging, involving
either heuristics such as pseudo likelihood estimation or
complicated Markov chain Monte Carlo methods [46],
[45].

C. Non-parametric Bayesian network models
In the following we present a number of recent network

modeling approaches [26], [58], [1], [25], [34], [37], [38],
[36] based on Bayesian non-parametrics which can all be
seen as extensions or special cases of the exponential random
graph model. In non-parametric modeling, the structure of
the model is not fixed, and thus the model complexity can
adapt as needed according to the complexity of the data.
This forms a principled framework for addressing the first
issue (model complexity) mentioned above. With respect to
the second issue (computational complexity), it turns out
that many of these non-parametric Bayesian models can be
constructed such that their computational complexity is linear
in the number of links, allowing these methods to scale
to large networks. While it certainly is possible to include
network statistics in non-parametric Bayesian network models,
Bayesian non-parametrics does not address the third issue
(inferential complextiy) which is an open area of research.

The focus of the remainder of this paper is twofold: i) To
provide a comprehensible tutorial on the most simple non-
parametric Bayesian network model: The infinite relational
model [26], [58]. ii) To give a brief overview of current
advances in non-parametric Bayesian network models.

II. TUTORIAL ON THE INFINITE RELATIONAL MODEL

In the following we give a tutorial introduction to the
infinite relational model [26], [58] which is perhaps the
most simple non-parametric Bayesian network model. We
will derive the necessary Bayesian non-parametric machinery
from first principles by taking limits of a parametric Bayesian
model. Understanding the details of involved in deriving this
simple model later serves as a foundation for understanding
other more complicated non-parametric constructions. Further,
we go though the details involved in inference by Markov
chain Monte Carlo, and show how a Gibbs sampler can be
implemented in a few lines of computer code. Finally, we
demonstrate the model on three network datasets and compare
with other models from the exponential random graph model
family.

A. The infinite relational model
The infinite relational model is a latent variable model

where each node is assigned to a category, corresponding to
a clustering of the network nodes. The number of clusters
is learned from data as part of the statistical inference. As
a starting point, we introduce a Bayesian parametric version
of the model, which we later extend to the non-parametric
setting. For readers unaccustomed with Bayesian modeling,
we provide a short introduction, see Figure 3.

1) A parametric Bayesian stochastic blockmodel: A sim-
ple and very powerful approach to modeling structure in a
complex network is to use a mixture model, leading to a
Bayesian version of the socalled stochastic blockmodel [42].
In a mixture model, the observations are assumed to be
distributed according to a mixture of K components belonging
to some parametric family. Conditioned on knowing which
mixture components generated each datum, the observations
are assumed independent. In a mixture model for network
data, each node belongs to a single mixture component, and
since each edge is associated with two nodes, its likelihood
will depend on two components. Thus, the likelihood of the
network will take the following form,

p(X|θ) =
∏
(i,j)

p(xi,j |zi, zj , φ) (8)

where the product ranges over all node pairs, and the param-
eters are given by θ =

{
{zi}Ni=1, φ

}
where zi indicates which

mixture component the ith node belongs to and φ denotes any
further parameters. In the most simple setting, each term in
the likelihood could be a Bernoulli distribution (a biased coin
flip),

p(xi,j |zi, zj , φ) = Bernoulli(φzi,zj ) (9)

= (φzi,zj )xi,j (1− φzi,zj )1−xi,j , (10)

such that φk,` denotes the probability of an edge between
two nodes in group k and `. To finish the specification of
the model, we must define prior distributions for the mixture
component indicators z as well as the link probabilities φ.
Starting with φ, a natural choice would be independent Beta
distributions for each pair of components,

p(φk,`) = Beta(a, b) (11)

=
1

B(a, b)
(φk,`)

a−1(1− φk,`)b−1, (12)

where the parameters for example can be set to a = b = 1 to
yield a uniform distribution. A natural choice for z would be
a K-dimensional categorical distribution,

p(zi = k|π) = πk (13)

parameterized by π = {πk}Kk=1 where
∑K
k=1 πk = 1. How,

then, should π be chosen? We could for example set each
of these parameters to a fixed value, e.g. πk = 1

K , but this
would be a strong prior assumption specifying that the mixture
components have the same number of members on average. A
more flexible option would be to define a hierarchical prior,
where π is generated from a Dirichlet distribution,

p(π) = Dirichlet(α) (14)

=
1

B(α)

K∏
k=1

παk−1
k . (15)

where B(α) is the multinomial beta function, which can be
expressed using the gamma function,

B(α) =

∏K
k=1 Γ(αk)

Γ(
∑K
k=1 αk)

. (16)
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Bayesian modeling

In traditional frequentist statistical mod-
eling, probabilities describe relative fre-
quencies of random variables in the limit
of infinitely many trials. Model param-
eters are considered unknown but fixed
quantities. A statistical model is charac-
terized by a set of distributions,

p(X|θ), (likelihood) (3)

where the unknown parameter θ takes
values in parameter space Θ. When con-
sidered as a function of θ, the distribu-
tion p(X|θ) is known as the likelihood.
A non-parametric model is, contrary to
what one might expect from its name,
not a model without parameters, but a
model which can not be parameterized
by a finite dimensional parameter space.
In other words, we can think of a non-
parametric model as one having an in-
finite number of parameters—a notion
that will be made explicit later.
In Bayesian modeling, in addition to de-
scribing random variables, probabilities
are used to describe inferences, i.e., to
quantify degree of belief about the pa-
rameters. Although parameters are still
thought of as unknown, fixed quantities,
they are modeled as random variables
where the randomness reflects our lack
of knowledge about them. To this end,
they are assigned a socalled prior prob-
ability distribution,

p(θ), (prior) (4)

representing the degree of belief about
the model parameters prior to observing

any data. Often, it is convenient to spec-
ify the prior using some parameterized
family of distributions. The parameters
of the prior distribution are often re-
ferred to as hyper parameters and can
either be fixed or assigned hyper pri-
ors which themselves might have hyper-
hyper parameters, etc. A model defined
in this manner is referred to as a hierar-
chical Bayesian model.
Once the prior and the likelihood have
been decided upon, the model is com-
pletely specified. Inference entails using
the rules of probability to compute the
conditional distribution of the parame-
ters given the observations, also known
as the posterior,

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

, (5)

posterior =
likelihood× prior

evidence
. (6)

Thus, we are not merely interested in
a single parameter estimate, but aim at
estimating a distribution over parameters
quantifying our state of knowledge about
the parameters after observing the data.
Often, only a subset of the parameters is
of intereset—the others are simply used
as a means to specifying a reasonable
probabilistic model, but are not of in-
terest themselves. Such parameters are
often referred to as nuisance parame-
ters. Assume for instance the parameters
θ = {ι, ν} can be divided into inter-
esting (ι) and nuisance (ν) parameters.
In that case, we compute the posterior

distribution of the parameters of interest,

p(ι|x) =

∫
p(θ|x)dν, (7)

which can be found by marginalizing
(integrating over) the nuisance parame-
ters.
Although conceptually simple, inference
might be computationally unwieldy be-
cause of high dimensional and analyt-
ically intractable integrals (or summa-
tions, in the case of discrete parameters).
In practice one must therefore use some
method of approximation, which we will
discuss later.
Bayesian data modeling can be divided
into three tasks [13]:
a) Joint distribution:: The first step
involves formulating the probabilistic
model, i.e. a joint distribution over data
and parameters, by specifying the likeli-
hood and priors.
b) Inference:: Next, the posterior dis-
tribution of the parameters is inferred,
often using some method of numeri-
cal approximation such as Monte Carlo
sampling.
c) Checking implications:: Finally we
check how well the model describe the
data and evaluate the implications of
the posterior distribution by computing
quantities of interest and making deci-
sions.

In this paper we go through the details
of these three steps in the context of the
infinite relational model [26], [58].

Fig. 3. A brief introduction to Bayesian modeling introducing the concepts needed in this paper.

Since each component a priori is equally likely, we select the
concentration parameters to be equal to each other, α1 = · · · =
αK = A

K such that the scale of the distribution is
∑K
k=1 αk =

A. This results in a joint prior over z and π given by

p(z, π) =

[
N∏
i=1

p(zi|π)

]
× p(π|α) (17)

=
1

B(α)

K∏
k=1

πnk+αk−1
k , (18)

where nk denotes the number of zi’s with the value k.
2) Nuisance parameters: As we are not particularly inter-

ested in the mixture component probabilities π (they can be
considered nuisance parameters) we can compute the effective
prior over z by marginalizing over π which has a closed form
expression due to the conjugacy between the Dirichlet and

Categorical distributions (i.e., the posterior distribution of π
has the same functional form as the prior),

p(z) =

∫
p(z, π)dπ =

B(α+ n)

B(α)
(19)

=
Γ(A)

Γ(A+N)

K∏
k=1

Γ(αk + nk)

Γ(αk)
. (20)

This resulting effective prior distribution is known as a mul-
tivariate Pólya distribution.

Furthermore, the link probabilities φ can also be considered
nuisance parameters, and can also be marginalized analytically
due to the conjugacy between the Beta and Bernoulli distri-
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butions,

p(X|z) =

∫
p(X|z, φ)p(φ)dφ (21)

=
∏
(k,`)

B(mk,` + a, m̄k,` + b)

B(a, b)
, (22)

where the product ranges over all pairs of components and
mk,` and m̄k,` denote the number of links and non-links
between nodes in component k and ` respectively.

3) An infinite number of components: In the previous
section we specified a parametric Bayesian mixture model
for complex networks. In the following we move to the non-
parametric setting in which the number of mixture components
is allowed to be countably infinite. First, consider what hap-
pens when the number of components is much larger than the
number of nodes in the graph. In that situation, many of the
components will not have any nodes assigned to them; in fact,
no more than N components can be non-empty, corresponding
to the worst case situation where each node has a component
of its own. To handle the situation with an infinite number of
components, we can not explicitly represent the components
but, as we will show in the following, we need only an explicit
representation of the finite number of non-empty components.

As we defined the model so far we have introduced K
labelled mixture components. This means that if we for
example have N = 5 nodes and K = 4 components, we assign
a separate probability to, say, the configurations {1, 2, 1, 4, 2}
and {3, 4, 3, 2, 4} even though they correspond to the same
clustering of the network nodes. A better choice is to specify
the probability distribution directly over the equivalence class
of partitions of the network nodes. Since we have K labels in
total to choose from, there are K possible labellings for the
first component, K− 1 for the second, etc. resulting in a total
of

K!

(K − K̄)!
(23)

labellings corresponding to the same partitioning, where K̄
is the number of non-empty components. Thus, defining a
parameter z̄ that holds the partitioning of the network nodes,
we have

p(z̄) =
K!

(K − K̄)!

Γ(A)

Γ(A+N)

K∏
k=1

Γ(αk + nk)

Γ(αk)
. (24)

Since z̄ represents partitions rather than labels it can be finitely
represented. We can now simply let the number of components
go to infinity by computing the limit of the prior distribution
for z̄,

lim
K→∞

p(z̄) =
Γ(A)AK̄

Γ(A+N)

K̄∏
k=1

Γ(nk). (25)

The details involved in computing this limit can be found in
[15] and [40]. The limiting stochastic process is known as a
Chinese restaurant process (CRP) [2] (for an introduction to
the CRP, see [14]). Compactly, we may write

z̄ ∼ CRP(A). (26)

α = 0.1 α = 1 α = 10

Fig. 4. Example of graphs generated according to the infinite relational model
for different choices of the parameter α of the Chinese Restaurant Process.

4) Summary of the generative model: In summary, the
generative process for the infinite relational model can be
expressed as follows:

z̄ ∼ CRP(A), (27)
φk,` ∼ Beta(a, b), (28)
xi,j ∼ Bernoulli(φzi,zj ). (29)

The network nodes are partitioned according to a Chinese
restaurant process; a probability of linking between each pair
of node clusters is simulated from a Beta distribution; and
each link in the network is generated according to a Bernoulli
distribution depending on which clusters the pair of nodes
belong to.

Identically, in the notation of exponential random graph
models the likelihood in Eq. (29) can be expressed as

p(X|z, φ) =
1

κ(z, φ)
exp

[
θ(φ)>s(X, z)

]
(30)

where the sufficient statistics are the counts of links between
each pair of clusters, s(X, z) = {mk,`}, and the natural
parameter is the log odds of links between each pair of
clusters, θ(φ) =

{
log

φk,`

1−φk,`

}
.

B. Inference

Having specified the model in terms of the joint distribution,
the next step is to examine the posterior distribution which is
given as

p(z̄|X) =
p(X|z̄)p(z̄)∑
z̄

p(X|z̄)p(z̄)
. (31)

Here, the numerator is easy to compute as the product of
Eq. (22) and (24); however, the denominator is difficult to
handle as it involves an elaborate summation over all possible
node partitionings. Consequently, some form of approximate
inference is needed.

There are two major paradigms in approximate inference:
Variational and Monte Carlo inference. The idea in variational
inference is to approximate the posterior distribution with a
simple, tractable distribution which is fitted to the posterior
by minimizing some criterion such as the information diver-
gence [5].

In Monte Carlo approximation the idea is to generate a
number of random samples from the posterior distribution and
approximate intractable integrals and summations by empirical
averages based on the samples.
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In the following, we focus on Monte Carlo inference.
In particular we review the Gibbs sampler for the infinite
relational model.

1) Gibbs sampling: In Gibbs sampling the variables are
iteratively sampled from their conditional distribution, and
repeating this process the samples will eventually approximate
the posterior distribution. We iteratively sample the partition
assignments, z̄n, from their conditional distribution,

p(z̄n = k|z̄\n, X), (32)

where z̄\n denotes all partition assignments except z̄n. An
expression for this conditional distribution can be found by
considering which terms in the likelihood and prior will
change when node n is assigned to a different partition. For
the prior in Eq. (24) we have

p(z̄n = k|z̄\n) ∝
{
n−k k is an existing partition,
A k is a new partition, (33)

where n−k is the number of nodes associated with component
k not counting node n. Adding node n to an existing com-
ponent increases the argument of the corresponding Gamma
function by one, effectively multiplying the prior by n−k ,
whereas adding the node to a new cluster increases K̄ by
one, effectively multiplying the prior by A. For the likelihood
in Eq. (22), adding node n to partition k effectively multiplies
the likelihood by

∏
`

B
(
m
\n
k,`+rn,`+a, m̄

\n
k,`+n`−rn,`+b

)
B
(
m
\n
k,`+a, m̄

\n
k,`+b

) , (34)

where m
\n
k,` and m̄

\n
k,` denote the number of links and non-

links between nodes in component k and `, not counting any
links from node n, and rn,` is the number of links from node
n to any nodes in component `.

In order to perform Gibbs sampling we can now simply
consider each node in turn; for each partition (including a new,
empty partition) compute the product of Eq. (33) and (34);
normalize to yield a categorical distribution over partitions;
and sample a new z̄n according to this distribution. The final
algorithm is summarized in Fig. 5. The result after running
the Gibbs sampler for 2T iterations is a set of samples of z̄,
where usually the first half is discarded for burn in. This yields
a final ensemble {z̄(t) : t ∈ 1, . . . , T} approximately sampled
from the posterior.

2) Computational complexity: In the algorithm outlined in
Figure 5 it can be observed that there are two loops: One over
the T simulated samples and one over the N nodes in the
network. In each run of the inner loop, a node is assigned to
a cluster by the Gibbs sampler. In the following we consider
the number of clusters K a constant (although of course it
will vary depending on the network data), and examine how
the computational complexity of the algorithm depends on the
number of nodes and edges in the network.

In the code in Figure 5 the variables M0, M1 and m,
which hold the counts of nonlinks, links, and nodes, are re-
computed in each iteration. In a more sensible implementation,
these quantities would be precomputed and efficiently updated
during the Gibbs sampling.
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Fig. 6. Experiment demonstrating that the computational complexity grows
linear in both the number of nodes N and edges L for the IRM model.
The graphs used in the experiments are generated with K = 5 communities
of equal size and φ = φc/N where φc is kept constant in the experiments
ensuring that the number of edges L grows linearly with the number of nodes
N in the generated networks. The Gibbs sampler used in the experiment
was implemented to pre-compute M0, M1 and m resulting in a computational
complexity of O(L) for each iteration of the sampler. Given are the mean
CPU-times in seconds for the sampler and standard deviation across T =
10 iterations when varying the number of nodes (N ) and edges (L) in the
generated graphs.

Evaluating the probability of assigning a node to each
cluster then requires the computation of the vector r which
holds the count of links from node n to each of the clusters.
The time complexity of this computation is on the order
of the node degree. Looping over the nodes gives a total
time complexity of O(L) where L is the number of edges
in the graph. To calculate the probabilities of assigning the
nodes to the clusters for all N Gibbs samples requires 2K2N
evaluations of the (logarithm of the) Beta function so the
time complexity of this computation is O(N). As a result,
since in general L > N , the total computational complexity
of the Gibbs sampler for the IRM model is O(L). Figure 6
demonstrates that this linear scaling is observed in practice
when analyzing networks of varying numbers of nodes and
edges.

For comparison, Monte Carlo maximum likelihood infer-
ence in exponential random graph model based on endogenous
network statistics requires the simulation of random networks
from the ERGM distribution, which is inherently an O(N2)
operation. We should note though, that in practice we would
not expect the time complexity of the IRM to scale linearly
in the number of edges, since the number of clusters most
likely would increase with the size of the network and since
the number of required iterations of the Gibbs sampler might
also go up.

C. Checking model fit

Once an approximation of the posterior distribution has been
obtained, we wish to check the implications of the model. This
can include computing the posterior distribution of important
quantities of interest, evaluating how well the model fits the
data, and making predictions about unobserved data.

1) Computing posterior quantities: Say we are interested
in some function f(z̄) that depends on the model. We can now
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function Z = irm(X,T,a,b,A)
N = size(X,1); z = true(N,1); Z = cell(T,1); % Initialization
for t = 1:T % For each Gibbs sweep
for n = 1:N % For each node in the graph
nn = [1:n-1 n+1:N]; % All indices except n
K = size(z,2); % No. of components
m = sum(z(nn,:))'; M = repmat(m,1,K); % No. of nodes in each component
M1 = z(nn,:)'*X(nn,nn)*z(nn,:)- ... % No. of links between components

diag(sum(X(nn,nn)*z(nn,:).*z(nn,:))/2);
M0 = m*m'-diag(m.*(m+1)/2) - M1; % No. of non-links between components
r = z(nn,:)'*X(nn,n); R = repmat(r,1,K); % No. of links from node n
logP = sum([betaln(M1+R+a,M0+M-R+b)-betaln(M1+a,M0+b) ... % Log probability of n belonging

betaln(r+a,m-r+b)-betaln(a,b)],1)' + log([m; A]); % to existing or new component
P = exp(logP-max(logP)); % Convert from log probability
i = find(rand<cumsum(P)/sum(P),1); % Random component according to P
z(n,:) = false; z(n,i) = true; % Update assignment
z(:,sum(z)==0) = []; % Remove any empty components

end
Z{t} = z; % Save result

end

Fig. 5. MATLAB code implementing the infinite relational model. The code illustrates the computations involved in the Gibbs sampler, but is not efficient
since it recomputes all the needed link counts in each iteration.

compute the posterior distribution of this quantity,

p (f(z̄)) =
∑
z̄′

δ(f(z̄) = f(z̄′))p(z̄′|X) (35)

≈ 1

T

T∑
t=1

δ(f(z̄) = f(z̄(t))), (36)

approximated by an empirical average over the posterior
samples. For example, the approach can be used to compute
the posterior distribution over the number of components in
the mixture model or other quantities of interest.

2) Link prediction: Missing data is easily handled in the
Bayesian framework, simply by leaving out the terms in the
likelihood corresponding to unobserved links. If we observe
only a part of the network and are interested in predicting the
presence or absence of an unobserved link between two nodes,
we can simply compute the posterior predictive distribution of
the missing link,

p(xi,j |X) =
∑
z̄

p(xi,j |z̄, X)p(z̄|X) (37)

≈ 1

T

T∑
t=1

p(xi,j |z̄(t), X). (38)

Here X denotes the observed part of the network, and z̄(t)

is simulated from the posterior distribution where only the
observed part of the network is conditioned on. Inserting
p(xi,j |z̄, X) =

∫
p(xi,j |θ, z̄)p(θ|z̄, X)dθ yields

p(xij |X) ≈ Bernoulli(ρi,j), (39)

where

ρi,j =
1

T

∑
t

m
z
(t)
i ,z

(t)
j

+ a

m
z
(t)
i ,z

(t)
j

+ m̄
z
(t)
i ,z

(t)
j

+ a+ b
(40)

Predicting missing links can be used to compare different
models: A number of links can be excluded when fitting the
models which can then be compared by assessing their ability

to predict the held-out links. Since the links in a network
are highly correlated and because many networks exhibit a
highly imbalanced distribution of links and nonlinks, care must
be taken in choosing a hold out test set in an appropriate
way. If the test set is chosen to balance the number of links
and nonlinks, its distribution will not correspond to the full
network which makes the absolute link prediction results
difficult to interpret. Thus, although indicative of a model’s
predictive performance, this approach is perhaps best suited
for the relative comparison of different models. If, on the
other hand, several examples of full networks are available,
a whole network can used as test data making the absolute
link prediction results directly interpretable.

3) Posterior predictive checking: Finally, we might be
interested in examining how well our model describes the data
to assess if the model is appropriate for the data at hand or
if a more suitable model should be constructed. A principled
approach to achieving this is posterior predictive checking.
First, an ensemble of replicated networks from the posterior
predictive distribution is generated from,

p(Xrep|X) =
∑
z̄

p(Xrep|z̄, X)p(z̄|X), (41)

which as before can be approximated using samples of z̄
simulated from the posterior using Eq. (39). Now, the idea is to
compare characteristics of the observed network, such as the
degree distribution, clustering coefficient, and characteristic
path length, with the posterior predictive distribution of these
properties, approximated by the empirical distribution over the
ensemble of replicated networks. If the model fits well, the
observed characteristic of the network should be quite likely
under the posterior predictive distribution, whereas a large
discrepancy indicates model mismatch. Posterior predictive
checking is useful for model critisism, i.e., for exploring lack
of fit as opposed to testing whether the model is correct.
Discovering network characteristics for which the model does
not fit the data well can inspire to the development of more
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sophisticated models; however, even a simple model which
does not fit the data in all respects can be useful.

D. Directed, weighted, bipartite, and multiple networks

The infinite relational model readily extends to other types
of graphs including directed, weighted and bipartite networks
as well as multiple networks on the same set of nodes.
These extensions can be arrived at by modifying the model
parametrization and the observational model (the likelihood
function) as well as making appropriate changes to the priors.
The process of formulating the joint distribution and deriving
a Markov chain Monte Carlo procedure for inference closely
follows the steps we have taken for the basic infinite relational
model described in the previous sections. The extensions
described below can also be combined, for example to model
a set of directed, bipartite networks with edge weights.

1) Directed networks: In a directed network, the links
have an associated direction, so that they point from one
node to another. A directed network can be represented by
an asymmetric adjacency matrix, and the directionality of
links between groups can be modelled through the parameter
φ by the existence of asymmetric interactions between the
groups such that φk,` 6= φ`,k. This double the number of link
probability parameters φ. The rest of the model is unaffected,
except for the likelihood which must now be evaluated not
for each pair of nodes but for each ordered pair of nodes.
This extension of the infinite relational model assigns different
probabilities to links in each direction between each pair of
clusters, but has only a single parameter for the link probability
within each cluster—thus, directionality is not modelled within
clusters.

2) Bipartite networks: A bipartite network is defined as
a set of links between two disjoint sets of nodes, possibly
with different cardinality. The adjacency matrix for a bipartite
network can thus be non-square. We can then use two inde-
pendent Chinese restaurant processes to model the clustering
of the two sets of nodes,

z̄ ∼ CRP(Az), w̄ ∼ CRP(Aw) (42)

and change the likelihood to (cf. Eq. (29)

xi,j ∼ Bernoulli(φzi,wj
). (43)

This latter parameterization is also useful for the modeling of
directed networks when the groupings of the nodes may be
different for the rows and columns of the adjacency matrix.

3) Weighted networks: In a weighted network, each edge
has a (scalar) weight associated with it. Depending on the
type of weights, the Bernoulli likelihood can be changed to
some other suitable distribution: For example, if the weights
are positive integers [36], a Poisson distribution could be
employed,

xi,j ∼ Poisson(λzi,zj ), (44)

where λ is the rate parameter for the edge weights, playing
the role of φ in the Bernoulli model, c.f. Eq. (29). As a prior
over λ, the typical choice is a Gamma distribution, replacing
the Beta priors for φ. If the weights are real numbers [18] an

observational model based on a Normal distribution might be
appropriate,

xi,j ∼ Normal(µzi,zj , σ
2
zi,zj ). (45)

Here, we have two sets of parameters, µ and σ2, denoting the
means and variances of the edge weights between nodes in
groups i and j. Again, appropriate priors for µ and σ2 should
be selected.

4) Multiple networks: Sometimes the data consists of mul-
tiple observations of networks on the same set of nodes (see
[26], [34], [36], [3]). The only required change to the model
is that the likelihood should be evaluated as the product of
the likelihoods for each observed network. It can then either
be assumed that the clustering structure as well as the link
probabilities are equal across the multiple networks, that the
clustering structure is shared but the link probabilities only
shared according to an additional clustering of the multiple
graphs, or that the clustering is shared but each network
has an individual set of link probabilities,φ. When the link
probabilities are analytically marginalized this leads to three
different expressions for the marginal likelihood.

E. Experimental evaluation

In the following we conduct a series of experimental evalu-
ations with the infinite relational model, highlighting some of
its properties and comparing it with other models.

1) Analysis of three example networks: To demonstrate the
non-parametric Bayesian modeling framework in practise, we
analyzed three real networks:
Zachary’s Karate Club: Zachary’s Karate club is an undi-

rected unweighted network of friendships between 34
members of a karate club at a US university in the
1970s [59]. A total of 74 undirected links between the
members of the Karate club are observed. In the analysis
the standard IRM model was used.

Connectome of Caenorhabditis Elegans: The only complete
connectome currently recorded of an organism is the di-
rected integer weighted network of the 8,799 connections
between the 302 neurons of the Caenorhabditis Elegans.
The network has been compiled in [57]. In the analysis
the weighted IRM model with a Poisson likelihood and
Gamma priors was used.

Drugs and side effects: The drugs and side effects network
is a bipartite network on marketed medicines and their
recorded adverse drug reactions extracted from public
documents and package inserts. The network currently
consists of 996 drugs and 4,199 side effects with 100,049
unweighted links between drugs and side effects [29]. In
the analysis the bipartite IRM model was used.

These three networks in turn represent three important com-
plex network application domains within social science, neu-
roscience and bio-informatics.

The parameters of the models were inferred by Markov
chain Monte Carlo sampling such that 250 iterations were
used as burn in for the sampler and 250 iterations for drawing
samples from the posterior. To improve mixing the data was
analyzed based on 5 randomly initialized runs. In addition
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to a Gibbs sampler (as described in Fig. 5) the socalled split-
merge sampler described in [26], [24] was also employed. The
hyper-parameters for the Beta distribution we set to a = b = 1.
The posterior distribution of the number of components was
computed. For assessing model fit by prediction of missing
links, excluded 10% of links and an equivalent number of
non-links in the analysis of the Zachary’s Karate Club data
and 5% of links and an equivalent number of non-links in the
two larger Connectome and Drug-side effects networks. For
posterior predictive checking, we stored every 25th posterior
sample and generated 20 replicated networks for each sample
for each of the five random initializations. From the ensemble
of these networks the distribution over the network character-
istics; degree mean, degree standard deviation, characteristic
path length and clustering coefficient were calculated and
compared to the true values of these quantities for the actual
network.

The results of the modeling is given in Fig. 7. The figure
illustrates the network as well as a permutation of the net-
works adjacency matrix. The nodes are color coded according
to the partition given by the sample with highest posterior
likelihood across the five random initializations. From the
permuted adjacency matrices it can be seen that the nodes
of the networks have been grouped into clusters that share
similar patterns of interactions, defining regions of network
homogeneities. These blocks are color coded according to the
expected value of the corresponding group interactions using a
logarithmic gray scale. On the right, the posterior distribution
of the number of components is shown as well as the models
performance in predicting held-out links. The link prediction
performance is quantified by the area under curve (AUC) of
the receiver operator characteristic (ROC) [34]. In addition,
the results of the posterior predictive checking of the models
ability to account for the mean and standard deviation of the
degree distribution, characteristic path length and clustering
coefficient are given. Since the degree is explicitly modelled
in the IRM model, this posterior predictive check serves only
as a sanity check: The IRM should by definition get this right
except for a small bias due to the prior.

From these results it can be seen that the IRM model
accounts well for all the considered characteristics in the
Zachary Karate Club network but that it poorly accounts for
the degree standard deviation, the clustering coefficient, and
the characteristic path length of the connectome of C. Elegans.
As expected, the average degree falls within the lower tails of
the simulated distributions for all the estimated models, but
they underestimate the standard deviation of the node degree
of both the connectome and drugs and side effect networks.
This highlights a deficiency of the IRM model, namely that it
does not explicitly model the degree distribution.

While the IRM is adept in identifying blocks of homo-
geneous network regions with the φ (nuisance) parameter
specifying the density of each of these blocks, it does not
explicitly account for microscale properties such as triangles
and node degree. Hence, the clustering coefficient, charac-
teristic path length and the standard deviation of the degree
distribution is not well accounted for by the model as is evident
in the posterior predictive checks. Despite these limitations,

the infinite relational model does well account for mesoscale
structure in the networks as quantified by its ability to predict
links: For all the three networks the infinite relational model is
able to predict links significantly better than random guessing.

Apart from being able to predict links the IRM model
has made the structure of the networks substantially more
comprehensible by reducing the complex network of pairwise
interactions to a much smaller number of groups (defined by
z̄) and their interactions (defined by φ). The IRM can therefore
be considered an efficient framework for compressing a large
complex network to a smaller network constituting consis-
tent patterns of interactions between groups of nodes which
can substantially facilitate in the understanding of mesoscale
network patterns. For example, the analysis of the Zachary’s
Karate Club network, the infinite relational model reveals six
groups of club members including two large groups and two
singletons (actually the posterior has support for five to eight
groups, so these other configurations should also be considered
in the interpretation of the results). It is known from the
literature [59] that the karate club later split into two fractions,
corresponding to the two large groups, led by the president and
the instructor which are the two singletons.

2) Comparison with other models: Next, we compare the
IRM model to several other methods on a set of social
networks derived from a study of intra-organizational relations:
Intra-organizational relations: This set of undirected net-

works [9] consists of two types of relations defined
on the same set of nodes corresponding to employees
in a consultancy company. Links in the first network
signifies employees who iteract whereas links in the
second network signifies that either of the employees
thinks that the other has expertise in an area important
to her. The networks were generated by thresholding and
symmetrizing the original directed weighted networks [9].
The two networks are highly correllated since employees
would be expected to interact frequently with colleagues
with important expertise.

We used the first of the two networks for training and
examined the model fit by assessing the posterior predictive
distribution of the node degree distribution. We fit an IRM
model as well as two other non-parametric Bayesian network
models, the infinite multiple membership relational model
(IMRM) and the Bayesian community detection model (BCD)
which are discussed further in the sequel. These models were
fit using MCMC with 10, 000 rounds of Gibbs sampling where
the first half of the samples were discarded for burn-in. Fur-
thermore, we fit an exponential random graph model (ERGM)
using the network statistics sociality and gwdegree [35] as
well as a latent position and cluster model (ERGMM) [28]
using a latent space of dimension four and six latent clusters
(varying these parameters gave similar results). To compare
how well the models fit the data we plotted the posterior
predictive distribution of the degree distribution (see Figure 8).
The results show that the two most flexible models, the ERGM
and the IMRM fit the data very well in terms of reproducing
the degree distribution. The fit of the IRM and BCD models
which are both simple latent cluster models is less good: Both
models appear to underestimate the number of nodes with a
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Fig. 7. Infinite relational model analysis of three networks: Social relations in Zachary’s karate club, neural network of Caenorhabditis Elegans, and relations
between drugs and side effects. Networks are shown as graphs (20 pct. of links shown for C. Elegans and 10 pct. shown for Drugs and side effects) as well
as adjacency matrix. Posterior distribution of the number of components as well as ROC curve indicating performance on predicting missing links is shown
(shaded regions indicate two times the standard deviation on the mean across the separate runs). Posterior predictive distribution of node degree (mean and
standard deviation), clustering coefficient, and characteristic path length is shown with vertical lines indicating values for the observed networks.

high degree, i.e., employees interacting with more than 15
colleagues. The ERGMM model on the other hand appears to
overestimate the number of nodes with degrees around 15–20.

Next, we compared the models’ predictive performance by
evaluating their ability to predict links in the second network
(see Figure 8). Here, all models except the ERGM performed
on par, suggesting that the inclusion of latent variables in the
model is beneficial for this task.

III. REVIEW OF NON-PARAMETRIC BAYESIAN NETWORK
MODELS

In the previous section we have discussed the infinite
relational model, which is the most simple example of a
non-parametric Bayesian latent variable model for complex
network. In that model the latent variable is categorical,
introducing a clustering of the network nodes; however, many
other types of non-parametric Bayesian network models have
been proposed in which the latent variables take other forms.
Most of these can be classified as latent class, latent feature,
or latent hierarchy models. In the following, we review a
number of recent non-parametric Bayesian network models:



11

Infinite relational model (IRM)
C

ou
nt

0 5 10 15 20
0

2

4

6

8

10
Exponential random graph (ERGM)

0 5 10 15 20
0

2

4

6

8

10

Latent pos. and clust. (ERGMM)

C
ou

nt

0 5 10 15 20
0

2

4

6

8

10
Multiple membership (IMRM)

0 5 10 15 20
0

2

4

6

8

10

Bayesian community detection (BCD)

C
ou

nt

Degree

0 5 10 15 20
0

2

4

6

8

10

IR
M

E
R

G
M

E
R

G
M

M

IM
R

M

B
C

D

0.
86

6

0.
80

0

0.
86

8

0.
85

9

0.
87

1
Link prediction

Pc
t.

co
rr

ec
t

0

0.2

0.4

0.6

0.8

1

Observed Predicted

Fig. 8. Comparison of five network models: The plots show the network’s
observed degree distribution as well as the posterior predictive 95% and 50%
intervals (shaded areas) for each of the models. The plot on the lower right
shows the fraction of correctly predicted links/nonlinks when the models are
trained on one network and used to predict links in another related network.

We present their generative model and discuss the underlying
modeling assumptions, but omit the specific details involved
in inference and model checking.

A. Latent class models

In latent class models each node is assumed to belong to
one class and the CRP is used a non-parametric distribution of
these latent classes. The infinite relational model is the most
prominent example of non-parametric latent class models for
complex networks. This can be attributed to the fact that the
model can capture multiple types of network structures. Con-
trary to other network modeling approaches such as spectral
clustering [55] and modularity [41] groups are defined by how
they interact not only internally but also externally. As such,
groups are not only defined in terms of their internal properties
but in particular by how they interact with the remaining parts
of the network. Groups may therefore be defined as having no
links between the nodes within the group as illustrated by the
fourth (light blue) group of the Zachary Karate Club network
in Fig. 7.

Communities in the IRM model can in turn be defined
as clusters with high within-cluster density relative to their
between-cluster density, interactions between groups can be
accounted for by the off-diagonal elements of the φ matrix

while hierarchical structures form a structured system of
interaction between the elements in the φ matrix, see also
Fig. 11.

The IRM model can be considered a compression of a
complex network into a subgraph formed by φ that accounts
for the connectivity between the components. If the number of
components is the same as the number of vertices of the graph
the model will recover the actual graph (when we disregard
potential influences of priors) and nothing is learned in terms
of structure in networks. As such the IRM model can adjust its
complexity, interpolating between the full graph and the Erdős-
Rényi graph that corresponds to an IRM model with only
one component. Bayesian non-parametrics, i.e. the Chinese
Restaurant Process, here admits inference over the hypothesis
space encompassing all models between these two extremes in
order to find plausible accounts of block structure in networks.

1) Restrictions on cluster interactions: Although, the IRM
model is very flexible in terms of the structure it is able to
account for, specialized non-parametric latent class methods
have been proposed that specifically aim at extracting specific
types of network structures. These models can be characterized
by the restrictions which they impose on the between-class
interactions φ.

In [21] the φ matrix is constrained to only include two
parameters, a within-group link probability ρw and a between-
group link probability ρb such that

φk,` =

{
ρw if k = `,
ρb otherwise. (46)

In [36] the within-group link probabilities are individual for
each group but between-group probabilities are shared for all
combinations of groups,

φk,` =

{
ρ` if k = `,
ρb otherwise. (47)

2) Bayesian community detection: Both of the models
mentioned above are inspired by the notion of communities
defined as

“the organization of vertices in clusters, with
many edges joining vertices of the same cluster and
comparatively few edges joining vertices of different
clusters.” [11]

This definition is used explicitly in [36] forming the Bayesian
Community Detection (BCD) method. The BCD is based on
the following non-parametric generative model that strictly
enforces community structure by constraining the diagonal
elements of the φ matrix to be larger than the off-diagonal
elements. The generative model for BCD is given by

z̄ ∼ CRP(A), (48)
γk ∼ Beta(ϕ,ϕ), (49)

φk,` ∼
{

Beta(a, b) if k = `,
BetaInc(a, b, wlm) otherwise, (50)

where wk,` = min[γkφkk, γ`φ``], (51)
xij ∼ Bernoulli(φzizj ). (52)

According to the model the probability of a link between
communities k and ` is strictly smaller than wk,` defined as
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Fig. 9. Examples of existing latent class models. a) The IRM model assumes
arbitrary interactions between clusters. b) The model proposed in [21] has two
parameters specifying the within group link probability and between group
link probability. c) One of the models described in [36] uses an individual
within-cluster link probability and same between cluster link probability. d)
The BCD model of [36] strictly imposes that within group link probability
be larger than between group link probability here given for γk = 0.5 for all
the ten clusters. e) BCD using γk = 0.1 for all the ten clusters. f) The SIRM
model [23] where nodes are divided into relevant (first 8 clusters modelled
by IRM) and irrelevant (last clusters modelled as noise).

the minimum over the two communities of some number γk
times the within-community probability φk. This is enforced
by generating the between-group probabilities according to
an incomplete Beta distribution (BetaInc). The parameters γk
define a relative gap between link probabilities within and
between communities, such that γk = 1 says that there should
be fewer links (on average) between than within, and γk = 0
says that no links can be generated from nodes in community
k to other communities. The gap parameter γk can in turn
be learned from data and used to define the extend to which
networks are community structured.

3) Subset infinite relational model: In [23] the IRM model
was extended to handle irrelevant data entries by letting these
entries constitute a separate noise cluster forming the subset
infinite relational model (SIRM). The generative model for
SIRM can be written as

ri ∼ Bernoulli(λ), (53)
φk,` ∼ Beta(a, b), (54)
ρ ∼ Beta(c, d), (55)
z̄ ∼ CRP(A), (56)

xij ∼ Bernoulli(φrirjzizjρ
1−rirj ). (57)

For each node, the binary variable ri = 0 indicates that the
node belongs to the noise cluster. For all pairs of nodes (i, j)
not in the noise cluster the model is identical to the IRM
model; however, links between pairs of nodes of which at
least one is in the noise cluster are generated with a shared
probability ρ.

All the above extensions can potentially improve on iden-
tification of structure in complex networks by substantially
reducing the parameters space of the within and between group
interaction matrix φ compared to the IRM model. The above
extensions are illustrated in Figure 9.

B. Latent feature models

While latent class models restrict each node to belong to one
and only one class, latent feature models endow each node
with a vector of latent feature values. Exponential random
graph models that embed each node in a latent feature space
of fixed dimension belong to the class of latent feature models.
In contrast, in non-parametric Bayesian latent feature models,
the dimensionality of the latent space is learned from data to
best fit the observed network. Existing non-parametric latent
feature models for networks are based on the Indian Buffet
Process (IBP) [16], [17]. Similarly to the CRP the IBP can
be derived by starting with a finite model and considering the
limit as the number of features goes to infinity. A finite set
of k = (1, . . . ,K) binary features zi,k with entry 1 if node
i possesses feature k and zero otherwise, can be generated
according to

πk ∼ Beta(αk, 1), (58)
zi,k ∼ Bernoulli(πk). (59)

Each zi,k is independent of all other assignments conditioned
on πk while the πk are generated independently [17]. As in
the derivation of the CRP, we define α1 = . . . = αK = A/K
and marginalize over the nuisance parameter πk, yielding the
expression [17]

p(Z̄) =

K∏
k=1

∫
(

N∏
i=1

p(zi,k))p(πk)dπk (60)

=

K∏
k=1

αkΓ(nk + αk)Γ(N − nk + 1)

Γ(N + 1 + αk)
. (61)

Since again, as in the CRP, the labels of the features are
arbitrary, we define an appropriate equivalence class for the
binary matrix Z by ordering the columns of the matrix from
left to right according to their “history” h in decreasing order.
A history h denotes one of the potential 2N specific combi-
nations of nodes a feature can possess enumerated according
to the order of the nodes such that a feature possessed by
the nth node contributes by a factor of 2N−n to its history.
For example in a network with 3 nodes if only node 1 and 3
possess feature q the feature will have the history enumerated
by h = 23−1 + 23−3 = 5 which is greater than a feature
q′ possessed by only node 2 and 3 which has the history
h′ = 23−2 +23−3 = 3. As a result, feature q will be to the left
of feature q′. Features which are not possessed by any nodes
have h = 0 and are ordered last. Since a permutation of the
ordering of the features in Z is inconsequential, we consider
the equivalence class of features ordered by their history. The
number of equivalent feature matrices can be computed as

K!∏2N−1
h=0 Kh!

, (62)

where Kh is the number of features with history h and K0

denotes the number of features that are empty. This equiva-
lence class is used in a similar way as when we considered
the distribution over partitions in the CRP. Taking the limit
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yields

lim
K→∞

p(Z̄) =
AK̄ exp(−AHN )∏2N−1

h=1 Kh!

×
K̄∏
k=1

Γ(N − nk + 1)Γ(nk)

Γ(N + 1)
, (63)

where Z̄ denotes the left ordered equivalence class, K̄ the
number of non-empty features and HN denotes the N th
harmonic number [17]. Since this defines a distribution over
an infinite size feature matrix of which only a finite subset
of the features are used, the construction makes it possible
to infer the number of features best suited to model the data.
Compactly, we write Z̄ ∼ IBP(A).

1) Latent feature relational model: In [34] the binary
matrix factorization model [32] based on an IBP is considered
for network data. The following generative model embodies
the latent feature relational model (LFRM)

Z̄ ∼ IBP(A), (64)

φk,` ∼ Normal(0, σ2
w), (65)

xi,j ∼ Bernoulli

(
σ

[∑
k,`

zi,kzj,`φk,`

])
, (66)

where σ[x] is a sigmoid function such as the the logit or probit.
This model is inspired by the IRM in its parameterization but
the model admits the nodes to belong to multiple groups, i.e.,
for each node to possess multiple features.

2) Infinite latent attribute model: In [43] the infinite latent
attribute model (ILAM) is proposed in which each of the nodes
have a number of associated binary feature, and within each
feature the nodes belong to an individual subcluster. The model
can be summarized by the generative process,

Z̄ ∼ IBP(A), (67)

c(m) ∼ CRP(γ), (68)

φ
(m)
k,` ∼ Normal(0, σ2

w), (69)

xi,j ∼ Bernoulli

(
σ

[
s+

∑
m

zi,mzj,mφ
(m)

c
(m)
i c

(m)
j

])
. (70)

For each feature m, the nodes that possess that feature are
clustered according to a CRP. Here, s is a bias term and c(m)

i

is the cluster assignment of the ith node in the mth latent
feature.

Both the LFRM and ILAM have been demonstrated to
perform better than the IRM on a variety of link-prediction
tasks [34], [43]. An important property of these models is
that they allow for the membership of nodes in one group
to inhibit the probability of linking to nodes in other groups
as φ may include negative (i.e. antagonistic) elements. This
property may indeed be an important reason for the models’
superior link prediction performance over IRM.

3) Infinite multiple-membership relational model: In [37],
[38] the infinite multiple-membership relational model
(IMRM) was proposed. Here the probability of observing a
link between vertex i and j is generated independently given

Z̄ φLFRM

φIMRM

XLFRM

XIMRM

Fig. 10. Illustration of the LFRM and IMRM models. a) The LFRM
model assumes arbitrary interactions between latent features, i.e. both positive
(given by the interaction within the first five features) and negative (given
for the interaction within the last two features)). b) The IMRM model
assumes features act as independent causes of links such that the link densities
monotonically increase by the number of latent features the nodes possess.

the (multiple) groups that vertex i and j belongs to and their
interactions φ. The generative model for the IMRM is given
by

Z̄ ∼ IBP(A), (71)
φk,` ∼ Beta(a, b), (72)

xi,j ∼ Bernoulli

(
1−

∏
k,`

(1− φk,`)zi,kzj,`
)
. (73)

If, for example, node i possesses feature k and node j possess
feature ` the quantity φk,` denotes the probability of a link
being generated between node i and j on account of that pair
of features. The expression 1−

∏
k,`(1− φk,`)zi,kzj,` defines

the probability of observing a links between vertex i and j as
the total probability of one or more of the pairs of features
possessed by the two nodes to independently generate the
link. This construction is referred to as a “noisy or process”.
Notably, the IRM model is recovered when nodes belong to
one and only one group.

Contrary to the LFRM and ILAM, the IMRM scales com-
putationally in the number of observed links in the network
rather than the number of potential links in the network which
admits large scale analysis (see [38] for the details). However,
scalability comes at the price of not being able to model
antagonistic interactions between groups as for LFRM and
ILAM. The LFRM and IMRM are illustrated in Figure 10.

4) Latent factor models: The IBP is useful for defining non-
parametric representations of binary latent variable models and
both the LFRM and ILAM can be considered non-parametric
latent variable models within the exponential random graph
formulation. One approach for model order selection within
framework of exponential random graph models is to im-
pose sparse priors. The IBP can here be considered a non-
parametric sparse prior for latent variable modeling in general
as also proposed for factor analysis in [27]. As such, the IBP
works in a similar manner as a slab-and-spike type prior, where
a feature is either present or not according to the IBP while
its contribution if present can be drawn separately. This can



14

be used to extend existing sparse latent variable models within
the exponential random graph model framework to form non-
parametric models.

For instance, a non-parametric version of a latent factor
model [20] can be defined by the following generative process
using the IBP as a non-parametric sparsity promoting prior.

Z̄ ∼ IBP(A), (74)

ui,k ∼ Normal(0, σ2
u), (75)

xi,j ∼ Bernoulli

(
σ

[∑
k

(zi,kui,k)(zj,kuj,k)

])
. (76)

C. Latent hierarchical models
Many complex networks are believed to be hierarchically

organized such that a latent hierarchy plays an important role
in accounting for the structure of the network connectivity
[53], [44], [47], [50], [7], [48], [33], [19]. Bayesian non-
parametrics can be used to define flexible priors over all
conceivable hierarchical structures and from data infer the
particular hierarchical structure that is supported by the data
in a similar manner as the CRP and IBP is used to infer latent
clusters and features respectively.

1) Hierarchical random graphs: In [7] the perhaps most
simple non-parametric model for hierarchical organization is
proposed. This model imposes a uniform prior over all binary
trees, which in the following we refer to as UBT. The
probability of generating a link between two nodes is defined
by a parameter located at the level of their nearest common
ancestor in the binary tree. A model for network with N
nodes thus has N − 1 such parameters associated with each
of the internal nodes in the tree. The generative model for the
hierarchical random graph is given by

T ∼ UBT(N), (77)
φn ∼ Beta(a, b), (78)
xi,j ∼ Bernoulli(φti,j ), (79)

where ti,j denotes the index the nearest common ancestral
node of vertex i and j. In [47] a related generative model for
binary hierarchies is proposed where each edge in the tree has
an associated weight that defined the propensity in which the
network complies with the given split.

2) The Mondrian process: One way to view the hierarchical
random graph models is by first considering the top level of
the hierarchy. Here the set of nodes is split into two partitions,
and a single parameter is assigned to model the probability of
observing a link between nodes in the two partitions. Next,
the process continues recursively on the two partitions until
each node is in a partition for itself. This framework was
generalized and extended to the Mondrian process [48] which
can be seen as a distribution over a k-dimensional tree. Used
as a prior in a non-parametric Bayesian model of a bipartite
network, at the top level the Mondrian process splits either of
the two sets of nodes (chosen by random) into two partitions
and continues this random bisectioning of the nodes until
a stopping criterion is met. Parameters are then assigned to
model the probability of links between each of the resulting
pairs.

3) Infinite tree-structured model: In [19] the uniform prior
over binary trees of [7] where replaced by a uniform prior
over multifurcating trees and the leafs of the trees rather than
terminating at each vertex of the graph terminate at the levels
of clusters generated from a CRP based on the following
generative model

z̄ ∼ CRP(A), (80)
T ∼ UT(Kz̄), (81)
φn ∼ Beta(a, b), (82)
xi,j ∼ Bernoulli(φtzi,zj ). (83)

Here Kz̄ denotes the number of clusters in z̄ and UT defines a
uniform prior over multifurcating trees. A benefit of this model
is that it can be used to detect the presence of hierarchical
structure as it includes the IRM model in its hypothesis space
defined by a split at the root of the tree directly into all K
clusters (i.e. forming a flat hierarchy). The model of [7] can
on the other hand be considered the special case where the
CRP only generates singleton clusters while the tree structure
is strictly binary. As the leafs terminates in clusters rather
than singletons the complexity of the model is in general
substantially reduced compared to the models of [7], [47],
[48] while the CRP defines the level at which to terminate the
tree.

4) Gibbs fragmentation trees: In [52] the Gibbs frag-
mentation tree was used as prior over multifurcating trees
terminating at the vertex level of the network according to
the following generative model

T ∼ GFT(α, β), (84)
φn ∼ Beta(a, b), (85)
xi,j ∼ Bernoulli(φtzi,zj ). (86)

The Gibbs fragmentation tree is closely related to the two
parameter nested Chinese restaurant process [2] differing in
explicitly accounting for the occurrence in the nested CRP
of trivial non-splits. The Gibbs fragmentation tree has several
attractive properties. It is i) exchangeable in that the distribu-
tion does not depend on the labelling of the leaf nodes, ii)
Markovian in that a subtree of the full tree is in turn a Gibbs
fragmentation tree, and iii) consistent in that marginalizing
over all leafs not considered in the subtree has the same
distribution as only considering the Gibbs fragmentation tree
of the subtree, see also [31], [52]. Apart from these attractive
properties, the Gibbs fragmentation tree gives explicit control
of the prior over multifurcating trees by its two parameters α
and β, that makes it possible to bias the model toward deep vs.
flat hierarchies. The probability of a given Gibbs fragmentation
tree can be calculated using a simple recursive formula, see
also [31], [52].

D. Modeling side-information

The Bayesian modeling framework readily extends to the
modeling of side-information, i.e, exogenous predictors. The
side-information can be used either for providing further data
in support of the latent structure or directly for modeling the
network links.
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a b c

Fig. 11. Example of networks with hierarchical structure. a) In the binary
hierarchical relational models [47], [7] link probability parameters are shared
in a binary hierarchy. b) In the multifurcating hierarchical model [19], [52]
the hierarchy at each level can make an arbitrary number of splits. The model
is thereby able to infer whether or not hierarchical structure is present and
includes the infinite relational model and the binary hierarchical model as
special cases. c) In the Mondrian process [48] the link probabilities are shared
in a binary k-dimensional tree, corresponding to a series of axis aligned cuts.

a) Information about latent structure: In [26], [58] mul-
tiple data sources were used in the IRM model to both model
dyadic relationships as well as side information such that the
partitioning of the nodes in the graph and the corresponding
side-information available were identical.

b) Information about the network: Instead of having the
side information inform about the latent variables, it can be
used to directly model the links. This approach was used in the
LFRM model [34] modifying the Bernoulli likelihood function
in the LFRM model according to

xi,j ∼ Bernoulli

(
σ

[∑
k,`

zi,kzj,`φk,` +w>rij

+ (γ>si + ai) + (υ>tj + bj) + c

])
, (87)

where rij denotes a vector of various between node sim-
ilarities, si and ti denotes vectors of features (i.e. side-
information) for node i and j respectively. w, γ, υ are
parameters specifying the effect of the side-information in
predicting links and a, b specify node specific biases whereas
c is a global offset that can be used to define the overall link
density. This formulation is closely related to the way in which
exogenous predictors are included in the exponential random
graph model.

These frameworks readily generalizes to the non-parametric
latent class, feature, and hierarchical models described above
and makes it possible to include all the available information
when modeling complex networks. In particular including side
information may improve the identification of latent structure
[26], [58] as well as the prediction of links [34].

IV. OUTLOOK

The non-parametric models for complex networks use latent
variables to represent structure in networks. As such they can
be considered extensions of the traditional exponential ran-
dom graph models. The non-parametric models here provide
a principled framework for inferring the number of latent
classes, features, or levels of hierarchy using non-parametric
distributions such as the Chinese restaurant process (CRP),

Indian buffet process (IBP) and Gibbs fragmentation trees
(GFT). A benefit of these non-parametric models over tra-
ditional parametric models of networks is that they can adapt
to the complexity of the networks by defining an adaptive
parametrization that can account for the needed level of model
complexity. In addition, the Bayesian modeling approach
admits a principled framework for the statistical modeling
of networks and enables to take parameter uncertainty into
account. In particular, the Bayesian modeling approach defines
a generative process for networks which in turn can be used
to simulate graphs, validate the models ability to account
for network structure and predict links [34], [38], [43] while
Bayesian non-parametrics bring an efficient framework for the
inevitable issue of model order selection. The non-parametric
Bayesian modeling of complex networks have many important
challenges that are yet to be addressed. Below we outline some
of these major challenges to point out some avenues of future
research.

A. Scalability
Many networks are very large and efficient algorithms for

inference in these large systems of millions to billions of
nodes and billions to trillions of links will pose important
challenges for inferring the parameters of the models. Here
it is our firm belief it will be very important to focus on
models that grow in complexity by the number of links rather
than the sizes of the networks as well as inference procedures
that can exploit distributed computing. As such, models will
have to be carefully designed in order to be scalable and
parallelizable. While the latent class models described all scale
by the number of links the LFRM and ILAM models explicitly
have to account for both links and non-links which makes them
scale poorly compared to the more restricted IMRM model.
Thus, flexibility here comes at the price of scalability. In
particular, existing models that are scalable do not include the
modeling of side-information for the direct modeling of links.
Thus, future work should focus on building flexible scalable
models for networks.

B. Structure emerging at multiple levels
Network structure is widely believed to emerge at multiple

scales [53], [44], [47], [50], [7], [48], [33], [19]. A limitation
of latent class models are that they define a given level of
resolution in which structure is inferred. Whereas latent feature
models can generate features defining clusters at multiple
scales [43] this property can be explicitly taken into account by
the latent hierarchical models. An important future challenge
will be to define models that can operate at multiple scales
while efficiently accounting for prominent network structure
by combining ideas from the latent hierarchical models with
existing latent class and feature models. This includes hierar-
chical models that explicitly account for community structure
and models that allow for the nodes to be part of multiple
groups on multiple hierarchical levels.

C. Temporal evolution
Many networks are not static but evolve over time [39],

[22], [51]. Rather than modeling snapshots of graphs as
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independent, taking into account the timing in which links
are generated, when nodes emerge and vanish etc. potentially
brings important information about the structure in these
systems. To formulate non-parametric Bayesian models that
can model networks exhibiting time-varying complexity, such
as clusters that emerge and disappear and hierarchies that
expand and contract, poses an important future challenge for
the modeling of these time evolving networks.

D. Generic modeling tools

As of today non-parametric Bayesian models for complex
networks often have to be implemented more or less from
scratch in order to accommodate the specific structure of
the networks at hand. It will be very useful in the future
to develop generic modeling tools in which general non-
parametric Bayesian models can be specified including how
parameters are tied, various distributions invoked, and side-
information incorporated. Publicly available non-parametric
Bayesian software tools for complex networks that can well
accommodate the needs of researchers modeling complex
networks will be essential for these models to fully meet
their potentials and be adopted by the many different research
communities that today use models and analysis of complex
network as an indispensable tool.

E. Testing efficiently multiple hypotheses

Despite the very different origin of complex networks it is
widely believed generic properties exist across the domains of
these systems. What are the generic properties of networks
and how can they be best modelled is an important open
problem that is in need of being addressed. Non-parametric
Bayesian modeling forms a framework for inferring structure
across multiple hypothesis. For example, the IRM model itself
encompasses the hypotheses of the Erdős-Rényi random graph
(an IRM with a single cluster) as well as the limit of the
network itself (an IRM with a cluster for each node). Bayesian
non-parametrics can here in general be used to infer structure
across multiple hypotheses both including model order as in
latent class models, feature representation as in the latent
feature models, and types of hierarchies as in the latent
hierarchical models.

Non-parametric Bayesian models for complex networks is
emerging as a prominent modeling tool that both provides
a principled framework for model order selection as well
as model validation. As the non-parametric Bayesian models
also can give an interpretable account of otherwise complex
systems it is our firm belief these models will become essential
in order to deepen our understanding of the structure and
function of the many networks that surrounds us. There is no
doubt the future will bring many new non-parametric Baysian
models for complex networks and that these models will find
important new application domains. We hope this paper will
facilitate researchers to tap into the power of Bayesian non-
parametric modeling of complex networks as outlined in this
paper to address the major challenges we face in our effort to
understand and be able to predict the behaviors of the many
complex systems we are an integral part of.
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