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ABSTRACT

Index Terms— Hierarchical clustering is a widely used tool for
structuring and visualizing complex data using similarity. Tradition-
ally, hierarchical clustering is based on local heuristics that do not
explicitly provide assessment of the statistical saliency of the ex-
tracted hierarchy. We propose a non-parametric generative model for
hierarchical clustering of similarity based on multifurcating Gibbs
fragmentation trees. This allows us to infer and display the posterior
distribution of hierarchical structures that comply with the data. We
demonstrate the utility of our method on synthetic data and data of
functional brain connectivity.

1. INTRODUCTION

Clustering is the task of organizing a set of data objects into groups,
such that objects within a group are similar in some sense. This unsu-
pervised learning method is often used for explorative data analysis.
There is not one single approach to clustering that is best in all cir-
cumstances: How objects should be clustered depends on the objec-
tive of the cluster analysis. Thus, when performing cluster analysis
it is of great importance to choose appropriate clustering criteria, i.e.
an algorithm, a similarity measure, or a statistical model.

Some of the most popular clustering methods are k-means clus-
tering, hierarchical clustering, and mixture models. In k-means clus-
tering a centroid is computed for each cluster by computing the mean
of all data objects belonging to the cluster. Data objects are then re-
assigned to the closest centroid, and the centroids are recomputed.
This is iterated until convergence [1]. The k-means algorithm thus
relies on a similarity measure and the ability to compute a mean
value in the data space. A mixture model can be seen as a statistical
extension of the k-means algorithm. Here, each cluster is endowed
with a probability distribution instead of a centroid (for example a
Gaussian distribution characterized by its mean and covariance), and
the “similarity measure” is the probability of belonging to each clus-
ter. When using a statistical model, in addition to discovering the
best clustering it is also possible to infer the uncertainty related to
the clustering, for example in form of a Bayesian posterior distribu-
tion over clusterings. In both k-means and mixture modeling, the
number of clusters is usually specified beforehand, but extensions of
both methods exist in which the number of clusters is learned from
data [2].

In (agglomerative) hierarchical clustering each data object is ini-
tially in its own cluster. The two most similar clusters are merged
and this process is repeated until all data objects are in the same
cluster. The dissimilarity between two clusters is computed using a
linkage function such as the smallest (single linkage), average (av-
erage linkage), or largest (complete linkage) dissimilarity between

two data objects in the two clusters. The hierarchical clustering al-
gorithm thus depends only on the choice of linkage function and
similarity/dissimilarity measure. The output of the algorithm is a
hierarchy (i.e., a binary tree), often represented graphically as a den-
drogram in which the height denotes the dissimilarity value at which
two clusters were merged. In one sense, the hierarchical cluster-
ing approach gives more information about the structure in the data
compared with approaches which result in (a posterior distribution
over) a single clustering: The dendrogram represents a large number
of different clusterings compatible with the data at different scales
or resolutions. On the other hand, the dendrogram does not say at
which resolution the clustering is most salient. This problem can be
solved by taking a statistical approach to hierarchical clustering [3]:
The ad hoc similarity measure can be replaced by a suitable prob-
ability distribution, and clusters can be merged based on how well
they fit together according to the statistical model. The statistical
merge criteria can then be used to assess the saliency of each level
of the hierarchy.

All of the methods mentioned above aim at grouping data ob-
jects together that are directly similar as measured by a similarity
measure or as plausibly being generated from the same probability
distribution. A different approach consists of grouping data objects
which are structurally similar, in the sense that they have similar
relations to all other objects. This is the idea behind the socalled
stochastic blockmodel [4, 5]. Consider an example where we com-
pute a correlation coefficient to compare each data object. In the
former approach, data objects which are highly correlated would be
grouped together whereas in the latter approach, data objects which
exhibit similar correlation patterns to all other data objects would be
grouped together.

In this paper we develop a probabilistic method for hierarchi-
cal cluster analysis based on structural similarity. Our method is not
restricted to inferring a binary hierarchy but allows the hierarchical
structure to multifurcate, i.e., split into an arbitrary number of groups
at each level of the tree. The output of our method is thus a posterior
distribution over multifurcating hierarchies. We propose a method to
graphically visualize the most likely hierarchical clustering as well
as its credibility. We demonstrate the method on two toy data exam-
ples as well as a data set of correlations between brain regions.

2. METHOD

The starting point for our method is a relational data set, X , for ex-
ample in form of a matrix of pair-wise similarities for a number of
data objects. To formulate a statistical model for a multifurcating hi-
erarchical clustering we specify a likelihood function that determines
the probability of observing the relational data for a given hierarchi-
cal structure, and a prior distribution over the hierarchy. We denote



the hierarchical structure by T . It is a multifurcating tree which has a
root node, a number of internal nodes, andN leaf nodes correspond-
ing to the data objects. The root and internal nodes all have at least
two child nodes.

2.1. Likelihood

The multifurcating hierarchy determines the dependency structure
of the likelihood. Consider the hierarchy given in Fig 2.A. Each
internal node in the tree T , including the root, determines a division
of data objects into subgroups. At the root level, for example, the 16
data objects are split into three groups, which we will denote sroot ={
g1 = {1, . . . , 4}, g2 = {5, . . . , 8}, g3 = {9, . . . .16}

}
. We model

the relational data between each pair of groups as independent with
the following parametrization:

p(X|T, θ) =∏
s∈T

All internal nodes

∏
{gA,gB}∈s

All pairs of groups

∏
{i∈gA,j∈gB}

All pairs of objects

p(xi,j |θgA,gB , T ), (1)

where we condition on θgA,gB which is some set of parameters that
govern the distribution of the relations between nodes in group gA
and gB .

In the following, we use Normal distributions for the likelihood,
but we note that it is fairly simple to substitute with another distribu-
tion if needed [6, 7, 8]. The Normal distribution has two parameters,
mean and variance, i.e., θgA,gB = {µgA,gB , σ

2
gA,gB}. For these,

we adopt a conjugate Normal-Gamma prior, p(θgA,gB ), with loca-
tion m, precision k, shape a, and scale b. Due to the conjugacy we
can analytically integrate out θgA,gB yielding the following expres-
sion for the likelihood terms:∫ ∏

{i∈gA,j∈gB}

p(xi,j |θgA,gB , T )p(θgA,gB )dθgA,gB =

Γ(an)

Γ(a)

ba

bann

√
k

kn
(2π)−

n
2 , (2)

where

an = a+ n
2
, bn = b+ 1

2

∑
{i∈gA,j∈gB}

(xi,j − x̄)2 +
kn(x̄−m)2

2(k + n)
, (3)

kn = k + n, x̄ =
∑

{i∈gA,j∈gB}

xi,j , n = |gA| · |gB |. (4)

2.2. Prior

As a prior over the hierarchical tree structure we use a multifurcating
Gibbs fragmentation tree (GFT) distribution [9, 10]:

P (T ) =
∏
s∈T

(α+ β)α|s|−2

Γ(Ns+β)
Γ(1+β)

− Γ(Ns−α)
Γ(1−α)

Γ(|s|+ β
α

)

Γ(2 + β
α

)

∏
g∈s

Γ(|g| − α)

Γ(1− α)
,

(5)

where Ns =
∑
g∈s |g|. The GFT has two parameters, α and β

(0 ≤ α < 1 and β > −2α). For the limiting case where α = 0 the
expression reduces to

P (T ) =
∏
s∈T

β|s|−1

Γ(Ns+β)
Γ(1+b)

− Γ(Ns)

∏
g∈s

Γ(|g|). (6)
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Fig. 1. Empirical evaluation of correctness of the MCMC sampler.

2.3. Inference using Markov chain Monte Carlo

It is not tractable to infer the posterior distribution of the hierarchi-
cal tree by summing over all trees, since the number of possible
multifurcating trees is huge even for a relatively small number of
leafs [11]. Thus, we resort to Markov chain Monte Carlo (MCMC)
to infer the posterior distribution over the tree structure.

We use a Metropolis-Hastings algorithm with a subtree regraft-
ing proposal: For a given tree a leaf node or internal node (excluding
the root) is chosen uniformly at random. The subtree which has the
chosen node as root is removed from the tree. If the chosen node
had only a single sibling in the original tree, this sibling and its par-
ent are combined into a single node to ensure that no internal node
has less than two child nodes. The removed subtree is then inserted
uniformly at random in the remaining tree. For each internal node,
the subtree can either be inserted as a new child or as a new sib-
ling. For each leaf node, the subtree can be inserted only as a new
sibling (since leaf nodes, corresponding to data objects, can have no
children). The probability of this proposal is found by counting the
number of possible subtrees which could be removed and multiply-
ing by the number of possible places the subtree could be inserted.
The move is then accepted or rejected according to the Metropolis-
Hastings acceptance ratio.

2.4. Validation of MCMC sampler

To validate the MCMC sampler we considered a simple data exam-
ple with 4 data objects with the following relation matrix

X =

 0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0

 . (7)

With only 4 data objects, the total number of possible multifurcating
trees is 26 (see [11]). We computed the exact posterior distribution
over these 26 solutions and compared the result with the output of
the MCMC sampler, where we averaged over 1 million posterior
samples. The result in Fig. 1 shows that the MCMC approximation
is very precise, indicating that the tree regrafting sampler is correct.
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Fig. 2. Analysis of toy example 1 in which the data is split into three
groups, one of which is further split into two subgroups. The output
of the proposed cluster analysis is a hierarchical clustering where
only the structure present in the data is assigned a high credibility.

2.5. Summarizing the posterior distribution

The output of the analysis is a (posterior) distribution over multifur-
cating trees. The distribution is represented as a sample of trees as
generated by the MCMC procedure. If one is interested in comput-
ing quantitative summary statistics, this can be done by computing
the statistic for each realization in the posterior sample and averag-
ing.

If we are interested in understanding the hierarchical structure in
the data, it can be beneficial to construct a graphical summary of the
posterior distribution. One idea could be to plot the most likely tree,
i.e. the tree that maximizes the posterior distribution; we denote this
the MAP tree. Unfortunately, this only illustrates a single realization
and does not provide information about the uncertainty associated
with the hierarchical structure, which is quantified by the posterior
distribution.

A better graphical summary would illustrate both the most prob-
able hierarchical structure as well as the confidence we have in the
structure. To this end, we visualize the tree with the highest poste-
rior credibility and color code the branches according to their cred-
ibility. Starting at the root, we find the most likely split according
to the posterior distribution and color it according to its probability
by computing the proportion of posterior samples which possess this
split. For each split below, we again recursively find the most likely
split, and color it according to the probability of seeing this particu-
lar split and all previous splits. This credibility tree makes it easy to
visually read off the credibility interval for a particular tree structure.
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Fig. 3. Analysis of toy example 2 in which there is no structure in
the data. The output of the proposed cluster analysis is a hierarchical
clustering with very low credibility, indicating that there is no salient
hierarchical structure in the data.

3. EXPERIMENTAL RESULT

In all experiments the hyper-parameters were set to m = 0, k = 1,
a = 1, b = 1, β = 1, α = 0. For each data set we generated
200,000 samples, discarded the first half for burn-in, and thinned the
remaining by a factor of 100 to yield 1,000 posterior samples. Each
MCMC analysis was repeated 10 times and the samples were pooled,
yielding 10,000 posterior samples as the final result.

3.1. Demonstration on toy data

For demonstration, we generated two simple toy data examples both
with 16 data objects. In the first example the objects were divided
into three groups {1, . . . , 4}, {5, . . . , 8}, and {9, . . . , 16}. The re-
lations between these groups were generated from a unit variance
Normal distribution with means 0, 5, and −5. The third group was
further split into two groups {9, . . . , 12}, and {13, . . . , 16} with re-
lations generated with mean 15. Finally, relations within the four
groups were generated with means 20, −10, 5, and 5, yielding no
further structure in the data. The result of the cluster analysis is
given in Fig. 2. The structure in the data is perfectly inferred with
almost 100% credibility assigned to the correct structure.

In the second example the relations between objects were gen-
erated independently from a uniform distribution. This was done
to illustrate what the proposed method would output when there is
no explicit structure in the data. The result of the cluster analysis
is given in Fig. 3. Here, the credibility tree indicates that there is
no salient hierarchical structure in the data, since the most credible
solution has very low posterior probability.
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Fig. 4. Analysis of brain network data (I).
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3.2. Functional Brain Connectivity Data

We applied the proposed method to a data set of correlations be-
tween 36 brain regions [12] which reflects 7 brain networks corre-
sponding to data objects {1, . . . , 9}, {10, . . . , 17}, {18, . . . , 22},
{23, . . . , 29}, {30, 31, 32}, {33, 34}, and {35, 36}. When orga-
nizing the data matrix according to these brain networks, it clearly
reflects a cluster structure (see Fig. 4.B). Marcus E. Raichle states
that “. . . while correlations within networks appear distinctive in
this presentation, relationships among networks (both positive and
negative) are also prominent, emphasizing the integrated nature of
the brain’s functional organization, which is sometimes overlooked
. . . ” [12]. This integrated nature can be exploited by our current
unsupervised modeling approach based on structural similarity.

Fig. 4.C shows the logarithm of the likelihood×prior for the 10
MCMC runs for the first 1,000 and the last 100,000 samples indicat-
ing that the sampler converges. A kernel density estimate of the log
likelihood×prior computed for the second half of the samples indi-
cates that the MCMC sampler mixes since the distribution is roughly
equal for the ten independent chains.

The results in Fig. 4 show that according to our model there are
4 statistically salient clusters roughly equal to the first four brain
networks which are also the largest of the seven and therefore those
which we would expect to have the most statistical support. The two
smallest brain networks are also clustered together in the credibility
tree, but with very low credibility. The cluster consisting of objects
{30, 31, 32} are not close in the credibility tree, but are close in the
MAP tree (see Fig. 5.D).

For comparison we also computed three standard hierarchical
clusterings (see Fig. 5.A–C), where the correlation was used as sim-
ilarity measure. From the single linkage dendrogram in Fig. 5.A it
can be seen that the {33, 34} cluster is very prominent as these two
data objects have high correlation with each other but low correlation
to everything else. This is exactly the type of structure a direct sim-
ilarity based clustering is designed to find. All three standard hier-
archical clustering methods find clusters corresponding to the larger
brain networks, and the complete and average linkage results closely
match the known brain networks. It is, however, difficult to assess
from the dendrogram alone where to make the best cut-off, and no
single cut-off results in a clustering exactly equal to the known brain
networks.

A clear difference between the direct and structural similarity
can be seen in the brain network consisting of nodes {30, 31, 32}. In
the data matrix in Fig. 4.B it is evident that the tree nodes are highly
correlated with each other, but in addition to that, 30 and 31 are cor-
related with the nodes in {10, . . . , 17} whereas 32 is correlated with
nodes in {23, . . . , 29}. This is reflected in the solution shown in the
credibility tree in Fig. 4.A but not in any of the standard hierarchical
clusterings which do not consider structural similarity.

4. DISCUSSION

We have proposed a model for learning hierarchical clustering based
on structural similarity. The utility of the current framework when
compared to traditional agglomerative hierarchical clustering is that
the method is based on a global objective (a generative statistical
model) rather than local merge-heuristics, and that the inferred pos-
terior distribution over trees can be used to assess the credibility
of the hierarchical structures. In the analysis of the synthetic data
our method correctly identified the prominent underlying hierarchy
giving it a high credibility whereas data without explicit structure
also resulted in very low credibility of the inferred hierarchies. For

the functional brain connectivity data the method was able to iden-
tify the largest brain network with high credibility by exploiting the
structural similarity of the data. Furthermore, the proposed method
suffered less from the problem of choosing an appropriate cut-off
level as in agglomerative clustering.

For the considered problem the sampler was able to adequately
mix. However, we expect mixing to be an issue when analyzing
larger systems. Furthermore, a limitation of the proposed method
is that sampling hundreds of thousands of trees is inherently slower
than constructing a single dendrogram. Thus, future work should
focus on constructing efficient inference procedures. In particular, a
key advantage of a hierarchical model is its inherent nested structure
that admits parallel computing [8].
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