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Abstract

In Bayesian comparison of two proportions, the exact computation of the evidence involves
evaluating a generalized hypergeometric function. Several agreeing, but not identical, ex-
pressions for the evidence have been derived in the literature; however, their practical
computation (by summing the truncated hypergeometric series) can be troubled by slow
convergence or catastrophic cancellation. Using a set of equivalence relations for the gener-
alized hypergeometric function, we derive ten equivalent expressions for the evidence: We
show that one of these formulations, which has not previously been studied, is superior in
terms of its computational properties. We recommend that this be used instead of existing
formulations, and provide an efficient software implementation.
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1. Bayesian comparison of two proportions

Let T denote a 2 x 2 contingency table with fixed column totals n; and ns,

Y1 Y2
ny—yr N2—Y2 |’

In the usual Bayesian analysis of such tables, it is assumed that y; and y, are independent
with Binomial distribution
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Here, 6, and 0 are two hypothetical proportions, and the problem we will address is

inference regarding their relative magnitude; in particular determining the probability that

01 is greater than 0, given the observed data, p(61 > 02|T). With the assumption of separate

Beta priors

(09 = gt
P T Bl )

the independent posterior distributions of #; and 6, are given by
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where o; = y; + a? and 8; =n; —y; + ﬂ? . We can write the joint posterior conditioned on
the event 67 > 605 as

9104171(1 — 91>51_192a271(1 — 92)62_1

p(01,02|T’, 0, > 05) = Z(aq, B, az, B2)

H[01 > 92],

where the normalizing constant is given by
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The posterior probability of the event 61 > 65 is then given by

Z(ala 617 062,62)
B(Oélyﬂl)B(C% 52).

The practical computation of the integral in Eq. (1) is the focus of this paper. It is well
known that it can be evaluated in terms of a generalized hypergeometric function (Altham,
1969; Latorre, 1985; Kawasaki and Miyaoka, 2012). To show this, we can write
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where B(01; a9, f2) is the incomplete Beta function, ,F; is the generalized hypergeometric
function, and where we have used (Bateman, 1954, 20.2.5) in the final step.

Although this provides an analytic expression for Z, this particular formulation is not
optimal in terms of the computational properties of its series. Furthermore, while this
expression is identical to the formulation derived by Kawasaki and Miyaoka (2012, Theo-
rem 1), it does not coincide with other other formulations derived in the literature (Altham,
1969; Latorre, 1985). This leads us to ask which formulation is most favorable from a prac-
tical, computational perspective, and whether there exist other equivalent but superior
formulations.

1.1. Ewvaluating the generalized hypergeometric function
The 3F5 generalized hypergeometric function is defined by the series

3F2{ bi, b2 72]_;—0 (b1)r(b2)r kU (3)

where (z); denotes the Pochhammer rising factorial,
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If the sequence decreases rapidly, the generalized hypergeometric function can be computed
by truncating the summation when sufficient numerical accuracy has been reached, possibly
adding an approximation of the remainder. If the sequence decreases slowly, this approach
might not be practical, and if the sequence contains terms of opposite sign with similar
magnitudes, catastrophic cancellations may lead to loss of numerical precision.

1.2. Equivalence relations

Examining the definition of Z in Eq. (1), we note the two following symmetries in its
four arguments, which leads to a set of equivalence relations.

Proposition 1. Z is invariant to the substitution (a,as) <> (B2, f1) of its arguments,
Z(au, Br, a2, B2) = Z(B2, a2, B1, 1). (4)

Proof. This can be shown by making the above substitution in Eq (1), substituting the
parameters 61 <+ 1 — 05, and changing the order of integration. O

Proposition 2. (Aitchison and Bacon-Shone, 1981). Z can equivalently be written as

Z(an, pr, a2, B2) = B(au, f1)Blag, f2) — Z(ag, B2, a1, f1)-

Proof. This follows directly from p(6; > 63|T) =1 — p(61 < 02|T). O

Applying these two identities to the expression in Eq. (2) leads to four equivalent formula-
tions of Z with different computational properties in terms of their series expansion.

Thomae (1879, Art. 4) shows ten equivalent, but in terms of convergence properties
different, parameter transformations for the 3F5 generalized hypergeometric function eval-
uated at z = 1. Applying Thomae’s relations to the expression for Z in Eq. (2) yields
the ten expressions listed in Table 1, eight of which are convergent. Thomae’s relations
encompass the relation in Proposition 1, and consist of four pairs of expressions related by
the parameter substitution (a7, as) + (82,01) and two expressions that are invariant to
this substitution.

The eight convergent series are illustrated in Fig. 1, which shows for nine examples of
2 x 2 tables the relationship between the number of terms and the relative truncation error
for the partial sums as well as the values of the terms. While all series converge to the
same solution given enough terms, there is a substantial difference in how quickly the series
converge, and the plot of the series terms shows that many of the series are alternating with
terms of large magnitude, which can lead to numerical imprecision when computing their
partial sum.

1.3. Expression of special interest

Obtained through these equivalence relations, one expression (Table 1, series a)

['(a1 + a)l'(B1 + Ba2) P L 1—ai, 1-5 1 (5)
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is especially interesting for several reasons. Examining the generalized hypergeometric term,
in the context of its series expansion in Eq. (3), we make the following remarks:
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Table 1: Ten equivalent expressions for Z defined in Eq. (1) found by applying Thomae’s relations as listed
by Milgram (2010, Appendix A). The expressions are listed in arbitrary order, but grouped in four pairs of
expressions (b,c; e,f; g,h; i,j) which are related by the parameter substitution (a1, 81) <> (82, a2), and two
single expressions (a, d) that are invariant under this substitution. The generalized hypergeometric series
in ¢ and j are not convergent. The expression in Eq. (2) from which we started appears here a series f.



Remark 1. The parameter a1 = 1 in the numerator cancels with the term k! in the de-
nominator, and thus the series reduces to

3F2[17 @2 ag;l} :iw' ©

Remark 2. The two remaining parameters in the numerator are negative,
ay=1—a;=1—-y —a, az=1- B2 =1 (ny —yz) — b,

except in the atypical case when the table has a zero entry and the corresponding parameter
of the prior is less than one. Therefore, the ratio of consecutive terms in the numerator
will, in the typical case, initially be absolutely decreasing. Since the parameters in the
denominator,

by=pB1+1=n; —y + 5, bo=as+ 1=y +a3,

are always positive, the ratio of consecutive terms in the denominator is increasing. Amongst
the ten expressions in Table 1, series a is the only one with this property, which in part
explains its superior convergence properties.

Remark 3. If ay or B2 is a positive integer, the corresponding rising factorial in the
numerator will eventually reach zero, terminating the series. Thus, in this case the series is
finite and the number of terms is equal to the smaller integer of the two, min({a, B2} NZ7T).
Using Proposition 2 we note that Z(«aq, 81, s, B2) has a finite series if it has at least one
positive integer parameter, and the smallest attainable number of terms is given by the
smallest positive integer parameter, min({ay, f1, oo, B2} NZT).

Proposition 3. If (1 —aq)(1—F2) < (1+a2)(1+ 1) and aq, B2 > 1 the series in Eq. (6)
is initially decreasing in magnitude. The series is positive for k < ka, alternating for kx <
k < ky and positive or negative for k > kv, where kx = min(ay, f2) and ky = max(aq, B2).

Proof. Let z, denote the k’th term of the series given recursively by

L -tk =B+
LT O B+ k) (1 + oz + k)

We have zg = 1, and |z1| < |2¢| follows from the requirement (1 —a1)(1—f2) < (14+a2)(1+
B1). The denominator in the recursive formulation is always positive, and when k < ka,
both parenthesized terms in the numerator are negative, thus the series is initially positive.
When kn < k < ky, the two parenthesized terms in the numerator will have different sign,
so the series is alternating. Finally, when k& > kv both terms in the numerator are positive,
and the series then remains either positive or negative. O

Remark 4. In the case that the requirement (1 — aq)(1 — B2) < (1 4+ a2)(1 + B1) in
Proposition 3 is not satisfied, the identity in Proposition 2 can be invoked to make the
substitution (aq, B1) <> (g, B2) such that the result holds for any table.



Proof. Noting that «; and (; are positive, we have

(1 —a1)(1—=B2) > (1+az)(1+51)
(I+a)(1+ B2) —2(a1 + B2) > (1 —ag)(1 = B1) + 2(az + 1)
(I1+a)(d+52) 2 (1—a)(l—p).

L3

2. Related results

Altham (1969) shows that p(6; > 62|T) corresponds to Fisher’s exact test (FET) for the
table
a1 — 1 (%)

B1 B2 —1

Hence FET coincides with the Bayesian calculation under the very conservative priors 6 ~
Beta(1,0) and 6 ~ Beta(0,1). Thus, the results derived here also apply to the computation
of FET with a generalization to non-integer parameters.

Altham (1969) derives a related result for the exact Bayesian posterior probability of
negative association in comparison of two proportions in the analysis of a 2 x 2 table. In
our notation, Altham’s result (1969, Eq. 2) can be written as

T(aq + a2)T(B1 + B2) JFy 1, 1—aq, as+ B
az(ay + 1 — D1 + 1 +ag + B2 — 1) ar+1, 2—a1 -

;1.

This expression does not coincide with any of the expressions derived in this work, and is
only valid for integer ;.

Aitchison and Bacon-Shone (1981) derive an exact expression for the posterior distribu-
tion of the risk ratio p(ﬁ = %) Latorre (1985) derives an exact expression for the density of

the odds ratio, p(A = 9—1 1992) and the distribution function p(A < t). His expression for
the special case t = 1 (Latorre 1985, Sec. 4. a) corresponding to p(f; < 02|T) is identical
to our series ¢ in Table 1. Nurminen and Mutanen (1987) extend these results to a general
comparative parameter beyond odds ratio, risk difference, and risk ratio. Nadarajah and
Kotz (2007) derive the exact distribution for the difference of two proportions p(62 — 61).
Similarly, Kawasaki and Miyaoka (2010) derive the distribution for the difference of pro-
portions as well as the highest posterior density credible interval. Kawasaki and Miyaoka
(2012) derive an exact result for p(6; < 62|T') for two proportions, and their result (2012,
Theorem 1) coincides with our series f in Table 1.

3. Discussion

In the comparison of two proportions, the exact Bayesian calculations involve the eval-
uation of a particular generalized hypergeometric function. Using Thomae’s equivalence
relations, we have shown that several similar formulations can be arrived at, and that one
particular formulation which has not previously been discussed in the literature has superior
computational properties in terms of convergence of its series expansion.
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Figure 1: Relative absolute truncation error (top three panels) and values of series terms (bottom three
panels) for nine examples of tables: n1, y1 are varied, and ne = 100, y2 = 50, oz? = ZQ = 0.5, for the eight
convergent series a—e in Table 1. In all examples series a converges most quickly.



