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Abstract

Latent Profile Analysis (LPA) is a method to extract homogeneous clusters
characterized by a common response profile. Previous works employing LPA to
human value segmentation tend to select a small number of moderately homoge-
neous clusters based on model selection criteria such as AIC, BIC and Entropy.
The question is whether a small number of clusters is all that can be gleaned from
the data. While some studies have carefully compared different statistical model
selection criteria, there is currently no established criteria to assess if an increased
number of clusters generates meaningful theoretical insights. This article exam-
ines the content and meaningfulness of the clusters extracted using two algorithms:
Variational Bayesian LPA and Maximum Likelihood LPA. For both methods, our
results point towards eight as the optimal number of clusters for characterizing
distinctive Schwartz value typologies that generate meaningful insights and predict
several external variables.

1 Introduction

Latent Class Analysis (LCA) (McCutcheon, 1987) is a method to classify respondents
into latent types based on their response patterns on a set of variables. In contrast to
conventional heuristic techniques such as k-means (Bock, 2007) and hierarchical clus-
tering (Ward, 1963), LCA is based on a finite latent variable mixture model (Berlin,
Williams, & Parra, 2014; Eid, Langeheine, & Diener, 2003; Lanza, Flaherty, & Collins,
2003; G. J. McLachlan, Lee, & Rathnayake, 2019; Petersen, Qualter, & Humphrey, 2019).
In the case where the observed variables are continuous, LCA is referred to as Latent
Profile Analysis (LPA). A general rule in latent variable mixture modelling is that the
larger the number of clusters, the more homogeneous the respective clusters will be. How-
ever, many of the works employing LCA (Davidov, Yang-Hansen, Gustafsson, Schmidt,
& Bamberg, 2006; Eid et al., 2003; Moors & Vermunt, 2007; Reinecke & Seddig, 2011;
Rudnev, Magun, & Schmidt, 2014) determined that the appropriate number of clusters
is in the range of three to five on average, based on model selection criterion such as
the Akaike information criterion (AIC), the Bayesian information criterion (BIC), and
Entropy. Although these criteria are generally considered as reliable, they do not always
agree, and researchers tend to settle on a small number of moderately homogeneous clus-
ters. A question that remains to be answered is whether this small number of clusters
is the only solution that can be gleaned from the data, or whether a larger number of
theoretically and empirically meaningful clusters is concealed within the data that may
advance our understanding of the pattern of clusters in populations.
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The purpose of LPA is to reduce the data to a reasonable number of classes, meaning-
ful both in terms of statistical saliency and theoretical interpretability, and in our work we
define the term “optimal number of clusters” as a number that is both statistically justifi-
able and substantively meaningful. Nylund, Asparouhov, and Muthén (2007) conducted
a thorough study to compare existing model selection criteria for LCA and demonstrated
that the Bootstrap Likelihood Ratio Test (BLRT) (G. McLachlan & Peel, 2000) was
the best performing criterion to determine an optimal number of clusters of the mixture
models including the Maximum Likelihood (ML) LCA. However, Nylund et al. (2007)
also pointed out that BLRT is not commonly implemented in mixture modeling software,
generally requires substantial computation time and sometimes leads incorrect p-value
estimation. Nylund-Gibson and Choi (2018) further demonstrated that the BLRT and
the Vuong-Lo-Mendell-Rubin (VLMR) likelihood ratio test (Lo, Mendell, & Rubin, 2001)
perform well in determining an optimal number of clusters. In addition, Spurk, Hirschi,
Wang, Valero, and Kauffeld (2020) reviewed the best practice for selecting an optimal
number of clusters extracted by LPA. Spurk et al. (2020) also highlighted the importance
of assessing whether increasing the number of clusters lead to new typological profiles
that generate meaningful insights (Berlin et al., 2014; Vermunt & Magidson, 2002). Fi-
nally, Albers, Mørup, Schmidt, and Glückstad (2020, p.4) recently demonstrated that
“the Bayesian LCA can be used in a predictive approach to model order selection, in
which an appropriate number of clusters is identified by optimizing the predictive per-
formance on held-out data.” These previous works indicate that the determination of an
optimal number of clusters is still a challenging issue, and that approaches suitable for
determining a number of cluster of the mixture models are underexplored.

LCA and LPA are often used by psychologists and sociologists to classify individuals
into specific personality types (Glückstad, Schmidt, & Mørup, 2017; Magun, Rudnev, &
Schmidt, 2016; Moors & Vermunt, 2007; Petersen et al., 2019; Spurk et al., 2020). Some
of these works (Magun et al., 2016; Rudnev et al., 2014) used the Portrait Values Ques-
tionnaire (PVQ-21) of the Schwartz theory of ten basic human values (Schwartz, 2006,
2012) to conduct a typological analysis. For example, Rudnev et al. (2014) implemented
an extended version of LPA that adds a method factor loaded on the 21 PVQ items
(Schwartz et al., 2012) and investigated the invariance of the Schwartz value typologies
across the 4th-, 5th-, and 6th rounds of the European Social Survey (ESS). Similarly,
Magun et al. (2016) analyzed 29 European countries from the 4th round of the ESS using
a factor mixture model (Muthén, 2008). Both analyses used AIC, BIC, Entropy and
VLMR as model selection criteria and identified five clusters characterized with typolo-
gies representing only part of the abstract value orientations of the Schwartz ten value
factors (Schwartz, 1992; Schwartz et al., 2012).

The majority of these previous works use maximum likelihood LPA (ML-LPA) that
estimates “conditional means and variances of the continuous indicators” (Nylund-Gibson
& Choi, 2018, p.454). In this work we also consider a so-called, variational Bayesian ap-
proach to statistical inference in the LPA model (VB-LPA) that optimizes a criterion
called the Evidence Lower Bound (ELBO), a lower bound on the marginal likelihood.
This is of particular interest because the ELBO itself is a statistically consistent crite-
rion for model order selection. Second, we implement several cluster evaluation metrics
that can be used to assess quality of clusters extracted from a wide range of clustering
algorithms, not only the aforementioned LCA/LPA but also other heuristic models such
as k-means. For comparing qualities of the clusters extracted by VB-LPA and ML-LPA,
we demonstrate how to identify an optimal number of clusters extracted by the two
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Figure 1: Ten basic human values of Schwartz organised in a circular system

approaches. To demonstrate the usability of the VB-LPA and the cluster evaluation met-
rics, we statistically evaluate typologies of the European population based on the 21 PVQ
items (Schwartz, 2012) included in the 8th round of the European Social Survey (ESS8)
dataset (Jowell, Roberts, Fitzgerald, & Eva, 2007). Accordingly, the next section reviews
the Schwartz theory of ten basic human values, followed by the brief description of data,
the methods applied to the current work, the analyses and the results. We finalize with
a discussion of our findings.

1.1 Schwartz theory of ten basic human values

Schwartz (1992, 2006) proposed a theory summarising “ten motivationally distinct value
orientations” organised as a circular structure (see Fig. 1). Each value has a unique moti-
vation underlying it. Closer values in the value circle are expected to share similar moti-
vations, and opposing values are expected to have contradictory motivations. The values
can be summarized into four higher-order dimensions: self-transcendence consisting of
”universalism” and ”benevolence” that opposes self-enhancement consisting of ”power”
and ”achievement”; conservation consisting of ”tradition”, ”conformity” and ”security”
that opposes openness to change consisting of ”stimulation” and ”self-direction”; and
”hedonism” lies between openness to change and self-enhancement. As shown in Fig. 1,
these four higher-order values are further classified into the dimensional dichotomies of
(i) social-focus vs. personal-focus ; and (ii) growth vs. self-protection.

The Schwartz value theory has been widely applied to studies in various disciplines,
not only in psychology and sociology (Beierlein, Kuntz, & Davidov, 2016; Prince-Gibson
& Schwartz, 1998; Sagiv & Schwartz, 1995; Schwartz et al., 2012; Schwartz & Rubel-
Lifschitz, 2009), but also the areas of marketing, tourism, and to assess ethical behaviours
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(Collins, Steg, & Koning, 2007; de groot & Steg, 2008; Fritzsche & Oz, 2007; Hofer,
Chasiotis, & Campos, 2006; Krystallis, Vassallo, & Chryssohoidis, 2012; Lee, Soutar,
Daly, & Louviere, 2011; Leong, 2008; Lönnqvist, Jasinskaja-Lahti, & Verkasalo, 2011;
Schultz et al., 2005).

2 Methods

2.1 Data

In this study we analyzed the secondary data compiled from the 8th round of the ESS
(Jowell et al., 2007). From the original sample consisting of 44 387 respondents, 3 094
respondents with incomplete responses to the PVQ items were excluded. The PVQ21
consists of 21 questions responded to on a 6-point-Likert scale. To adjust for individual
response styles, previous studies (Rudnev et al., 2014) employed a procedure such as a
centering (Smith & Schwartz, 1997) and a method factor (Magun et al., 2016; Vermunt,
2010). For the demonstration of the VB-LPA and the cluster evaluation metrics, the
current study used the Confirmatory Factor Analysis (CFA) to compute factor scores
representing the Schwartz ten basic values for the respective respondents (N=41 293)
from the raw Likert scores of the 21 PVQ questions, following the instructions given in
Schwartz (2014). The factor scores for the ten values provided the raw input for the LPA
(ML-LPA and VB-LPA). Syntax, fit summary and parameter estimates of the CFA are
found in the Supplemental materials.

2.2 Variational Bayesian Latent Profile Analysis (VB-LPA)

Assuming that the dataset is organized in a way that the observations (i.e. respondents
of the ESS8) are the rows and the indicators (i.e. Schwartz’ value indicators) are the
columns of a matrix containing the CFA scores for each respondent, VB-LPA aims to
group the rows to form homogeneous blocks. VB-LPA is specified according to the
following generative model:

π ∼ Dirichlet(α) Probability of belonging to each cluster. (1)

zn ∼ Categorical(π) Cluster membership for each respondent. (2)

µkm ∼ Normal(0, λ0) Mean value of each cluster profile. (3)

λkm ∼ Gamma(a, b) Precision (inverse variance) of each cluster profile. (4)

Anm ∼ Normal(µznm, λ
−1
znm) Response for each respondent and each indicator. (5)

where n, m, and k refer to each respondent, question, and latent profile respectively.
The model posits that there exists K profiles, each characterized by a mean value

and a precision for each indicator, and that each respondent belongs to one of these
clusters with some prior probability. Bayesian inference in the model involves estimating
the posterior distribution of all the model parameters, conditioned on the observed data
matrix A. Since exact Bayesian inference is intractable in this model, the Bayesian
posterior distributions must be approximated. Let all model parameters be denoted by

θ =
{
{πk|k ∈ 1...K}, {zn|n ∈ 1...N}, {µkm, λkm|k ∈ 1...K,m ∈ 1...M}

}
. (6)
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In the variational Bayesian (VB) approach to approximate Bayesian inference, we assume
that the posterior can be well represented by a factorized probability distribution

q(θ) = q(π)

(
N∏
n=1

q(zn)

)(
K∏
k=1

M∏
m=1

q(µkm)q(λkm)

)
(7)

To fit the model, we optimize the ELBO given by

ELBO = Eq(θ)
[
log

p(A|θ)p(θ)
q(θ)

]
, (8)

where p(A|θ) and p(θ) are the likelihood and prior as defined by the generative model.
This corresponds to minimizing the Kullback-Leibler divergence between the true poste-
rior and the variational approximation. The ELBO is optimized iteratively using closed
form fixed-point updates for each term in the factorization, while keeping all other terms
fixed.

Benefits of VB include the ability to explicitly monitor convergence as well as ease of
interpretation accounting for uncertainty according to the inferred factorized distribution,
although the assumed factorized distribution is only an (optimistic) approximation of the
uncertainty and prone to local minima issues in the optimization.

2.3 Extraction of clusters

2.3.1 ML-LPA

Using the Mplus software implementation (Muthen & Shedden, 1999; Muthén & Muthén,
2017), we carried out the ML-LPA for solutions in the range from K=3 to K=20 with
the default settings of equal variances across classes and zero covariance between the in-
dicators for each class. To mitigate the potential local maxima issues, Mplus recommends
that “the best log-likelihood value should be replicated in at least two final-stage solu-
tions” (Spurk et al., 2020); to ensure this, we used 500 random restarts for 3 ≤ K ≤ 7,
1 500 restarts for 8 ≤ K ≤ 17, and 2 000 restarts for 18 ≤ K ≤ 20. We computed fit
performance scores including AIC, BIC, and Entropy, and we further computed VLMR-
(Lo et al., 2001) and BLRT scores (G. McLachlan & Peel, 2000) that calculate p-values
indicating whether the fit of K classes significantly increases from K − 1 classes. The
syntax for the Mplus analysis is provided in the Supplemental materials.

2.3.2 VB-LPA

Using our own software implementation1 we carried out the VB-LPA for models in the
range from K=3 to K=20 with hyperparameters fixed at α = a = b = λ0 = 1. The
iterative fixed point update of the parameters were run until the relative improvement
of the ELBO of a full cycle of updates of all parameters was less than 10−7 or until
completion of 1 000 full update cycles. To mitigate effects of local sub-optimal solutions,
we repeated the procedure 100 times using different random initializations and selected
the solution with the highest ELBO as optimal. We verified that in all cases, the best
solution was replicated to confirm that 100 repeats was adequate.

1Software implementation of the VB-LPA is available in Python in the supplement.
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2.4 Cluster evaluation metrics

To evaluate the extracted clusters, we consider several generic metrics.

2.4.1 Maximum profile correlation

When the number of clusters is low, we expect the extracted profiles to be clearly distinct,
but as the number of clusters increases, we expect that the extracted profiles will gradually
become more similar. To assess this, we examined the maximum Pearson correlation
coefficient between cluster profiles: The correlation coefficient will be equal to 1 when
two cluster profiles are identical up to scaling and translation.

2.4.2 Within- and between-cluster variance

In general, a clustering solution is good when the observations in each cluster are very
similar while the clusters are very dissimilar. To assess this we examined the average
within-cluster variance

S =
1

K

K∑
k=1

Sk, Sk =

√
1

Nk

∑
n|zn=k

|an − µk|2, (9)

and the variance between the cluster profiles

M =
1

K(K − 1)

K∑
k=1

K∑
`=k+1

Mk`, Mk` =
√
|µk − µ`|2. (10)

2.4.3 Davies-Bouldin score

The Davies-Bouldin (DB) score is a measure of the trade-off between the within and
between cluster variance, defined as the average similarity of each cluster to its closest
neighbor

DB =
1

K

K∑
k=1

max
`6=k

Rk`, (11)

where the similarity measure is defined as the ratio of within and between cluster spread

Rk` =
SkS`
Mk`

. (12)

2.4.4 Entropy

Entropy, as defined in Mplus, is a statistic used to measure the uncertainty of the assign-
ment of observations to cluster. More precisely Entropy is an inverted relative measure
of entropy defined as

Entropy(z) = 1− 1

N

N∑
n=1

H(zn)

logK
, (13)
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where the normalization logK is the maximum entropy obtained for a uniform distribu-
tion, and H(z) is the information entropy of the categorical distribution,

H(z) = −
K∑
k=1

pk log pk. (14)

Here, pk denotes the probability that the observation z is assigned to cluster k. The
Entropy is in the range 0 to 1 and attains its maximum when there is no uncertainty in
the cluster assignment.

2.5 External validation

External variables, that are expected to correlate with the value-based cluster assignment,
can be used to validate the clustering and aid in determining the most appropriate number
of clusters. To measure the degree of statistical relation between the cluster assignment
and external categorical variables we used adjusted normalized mutual information (AMI)
defined as

AMI(X, Y ) =
MI(X, Y )− E[MI(X, Y )]

max(H(X),H(Y ))− E[MI(X, Y )]
. (15)

Here MI and H are the mutual information and information entropy defined as

MI(X, Y ) =
∑
x∈X

∑
y∈Y

pxy log
pxy
pxpy

, H(X) = −
∑
x∈X

px log px, (16)

where px is the fraction of observations that fall in category x in the label X, and pxy is
the fraction of observations that fall in categories x and y in labels X and Y respectively.

Mutual information measures the degree of statistical association between random
variables and quantifies the amount of information (measured in nats) that the variables
have in common. The AMI adjusts the mutual information for association due to chance,
and scales the measure so that AMI=1 corresponds to perfect agreement and AMI=0 is
the expected agreement due to chance when there is no association. Since mutual infor-
mation takes the uncertainty related to the estimated cluster assignments into account,
we find it well suited to measure the statistical relation between cluster assignments and
external variables.

3 Results

3.1 Model fit based on the existing model selection criteria

3.1.1 ML-LPA fit summary

Table 1 shows the fit summary of the best log-likelihood solutions replicated at least twice.
Both AIC and BIC scores continuously decrease, indicating that more than 20 clusters is
appropriate. The entropy scores increase to K=16 where it levels off. According to the
VLMR test, the first non-significant increase in model order is at K=9, indicating that
a model with K = 8 should be examined further. The BLRT test required substantial
computational time, which all resulted in P= 0.0000. In addition, for the range between
K=18 and K=20, some (out of five) bootstrap draws had both a smaller LRT value than
the observed LRT value and not a replicated best log-likelihood value.
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Components AIC BIC Entropy VLMR BLRT

3 671730 672092 0.865 —
4 616549 617006 0.885 0.000 0.000
5 591249 591801 0.885 0.000 0.000
6 563286 563933 0.895 0.000 0.000
7 539388 540130 0.897 0.000 0.000
8 522803 523640 0.898 0.000 0.000
9 508036 508968 0.900 0.628 0.000
10 481011 482133 0.904 0.094 0.000
11 478958 480080 0.904 0.000 0.000
12 467310 468527 0.906 0.032 0.000
13 457601 458913 0.907 0.151 0.000
14 448117 449523 0.908 0.044 0.000
15 438810 440311 0.911 0.047 0.000
16 429312 430908 0.913 0.047 0.000
17 421874 423565 0.914 0.567 0.000
18 414963 416749 0.913 0.287 0.000
19 407574 409455 0.914 0.194 0.000
20 401787 403762 0.913 0.141 0.000

Table 1: Fit summary of the ML-LPA: AIC, BIC, Entropy, VLMR and BLRT.

3.1.2 VB-LPA fit performance

The model fit in terms of the highest attained ELBO is shown in Fig. 2. The ELBO
increases continuously with a higher number of clusters, indicating that there is statistical
support in the data for more than K = 20 clusters.

3.2 Cluster evaluation based on the proposed metrics

3.2.1 Profile correlation

The maximum Pearson correlation between cluster profiles is shown in Fig. 3(a). For
ML-LPA at K=7 and for VB-LPA at K=6, the maximum correlation steeply increases
from less than 0.7 to more than 0.9, indicating that above this threshold the methods
discover two latent profiles which are close to identical up to a scaling and translation,
which is also evident in the plot of the profiles in Fig. 4.

3.2.2 Within- and between-cluster variance

The variance within and between clusters is shown in Fig. 3 (b). As the number of
clusters increases, the clusters become more dispersed (higher between-cluster variance)
and contain fewer, more similar observations (lower within-cluster variance) as could be
expected. The between-cluster variance is significantly lower for the VB-LPA, presumably
because of the regularizing effect of the Bayesian estimation. The curves do not exhibit
any conspicuous notches or plateaus which warrant further examination.

8



Latent profile analysis of human values

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of components

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E
v
id

en
ce

lo
w

er
b

ou
n

d
(E

L
B

O
)

×105

Figure 2: ELBO scores for the VB-LPA.

3.2.3 Davies-Bouldin score

The minima of the DB score shown in Fig. 3 (c) indicate model orders that achieve the
best trade-off between within- and between-cluster variance. For both models, the best
DB score is attained at K=8. For the ML-LPA, model orders K=4,9,20 and 5 are close
contenders, but for the VB-LPA, K=8 is optimal with a large margin to the second-best
solution at K=7.

3.2.4 Entropy

The certainty with which the observations are assigned to their respective clusters, as
measured by the Entropy, is shown in Fig. 3 (d). The Entropy curves for the two methods
are similar, with Entropy for VB-LPA consistently around a percentage point higher
than ML-LPA. Models with low Entropy should be rejected because the assignment of
observations to clusters should be unequivocal in order to interpret the latent factors. ML-
LPA and VB-LPA reach an Entropy score above 0.9 around K=9 and K=6, respectively.
Both methods yield a large increase in Entropy for K=6.

3.3 Value profiles

The results of cluster evaluation indicate that K=8 seems to be one of the optimal
numbers of clusters for the two LPA techniques, although the Entropy score of K=8
for ML-LPA did not reach the level of 0.9. Fig. 4 illustrates the fitted model profiles
(i.e. value typologies) for K = 3 . . . 8 2. To aid the visualization, the profiles are color
matched by greedy minimization of squared error, which enables us to inspect what type
of clusters emerged when the number of clusters increased from K=3 to K=8. Generally,
the typologies of the clusters shown are substantially similar between ML-LPA and VB-
LPA (see ”Overlap between ML-LPA8 and VB-LPA8” in Supplemental Materials). At
the starting point, K=3 consists of three clusters characterized as (i) positive to all values

2Specific Schwartz typologies are provided in Appendix 2 of supplemental materials
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Figure 3: Cluster evaluation metrics. (a) Maximum correlation coefficient between any
two profiles for different number of clusters. (b) Variance within and between clusters.
(c) Davies-Bouldin score: Average similarity of each cluster with its nearest neighbor
cluster. (d) Entropy (inverted relative entropy) of cluster assignments.

10



Latent profile analysis of human values

but especially positive to achievement ; (ii) positive only to social-focus ; and (iii) negative
to all values but especially negative to openness to change. When the number of clusters
increased to K=5, the pattern of the second cluster was slightly modified to (iii) negative
to all values but especially negative to power, and two additional clusters, (iv) positive
only to personal-focus and (v) positive only to growth were introduced. In the case of ML-
LPA, the members of the two new clusters emerged in the K=5 solution were originated
from the clusters (i) positive to all values and (iii) negative all values (see Supplemental
Materials). When the number of cluster further increased to K=7, the second cluster (ii)
only positive to social-focus split into two: (ii) moderately positive only to social-focus
and (vi) strongly positive only to social-focus. In addition, a new cluster (vii) moderately
positive only to personal-focus was introduced. Finally, when K=8 was reached, the fifth
cluster, (v) positive only to growth split into (v) strongly positive only to growth and
(viii) moderately positive only to growth. Importantly, although K=3 was dominated by
two clusters characterized as (i) positive to all values and (iii) negative to all values, the
increased number of clusters reduced the sizes of these two clusters, and subsequently
revealed additional value typologies meaningfully related to the Schwartz circular value
structure.

Finally, Fig. 5 depicts histograms of the cluster sizes for K = 3 . . . 20. Clusters
obtained using VB-LPA are considerably more uniform in size; for example, for K ≥ 14,
the smallest cluster obtained using ML-LPA covers 1% or less of the observations, whereas
the smallest cluster in VB-LPA never covers less than 2% of the observations.

3.4 External validation

Plots of AMI between cluster assignments and nine external variables are shown in Fig. 6.
In all cases, AMI increases from the K=3 solution and most either peak or level out
around K=5–10. Two variables (b,h) have a global maximum at K=8–9 for both meth-
ods. In the ML-LPA for several variables (a,b,c,e,f,i), AMI exhibits a local peak at K=5,
but this effect is absent in the VB-LPA. In the VB-LPA for several variables (b,c,e,f,g,h,i),
AMI levels off at K=8–9.

4 Discussion and Conclusion

This article presented the VB-LPA algorithm and several statistical criteria inspired by
Spurk et al. (2020) which can be used to evaluate content of the clusters and select an
optimal number of clusters for various clustering techniques. Our work first reviewed
the performance fit of the models obtained from the two LPA techniques. One of the
criteria suggested by Nylund et al. (2007), i.e. the VLMR likelihood ratio test (Lo et al.,
2001), selected K=8 as an optimal number of clusters. On the other hand, widely used
criteria such as the AIC the BIC and the Entropy for the ML-LPA as well as the ELBO
criterion for the VB-LPA were not able to identify a specific optimal number within the
range of K = 3 . . . 20. The criteria evaluating the maximum profile correlation, cluster
variance and entropy indicated that, when the number of clusters is between 3 and 5,
typological structures were not clearly identified. This may be due to the characteristics
of the particular dataset that is rather homogeneous. However, when the number of
clusters reached the level of K = 6 . . . 8, contents of the clusters started to stabilize. The
AMI analysis further suggested that when the number of clusters reached the level of
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Figure 4: Latent profiles estimated using ML-LPA (left) and VB-LPA (right).
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K = 8 . . . 9, the external variables measuring attitudes and subjective opinions started to
level out. On the other hand, the AMI scores for the demographic variables leveled out
when the number of cluster reached at K = 5.

The qualitative evaluation of the value profiles demonstrated that, for instance, the
all positive or the all negative clusters identified in K=3 contain potentially meaningful
clusters such as strong growth, moderate growth, strong personal-focus, moderate personal-
focus that appeared when the number of clusters increased to K=8. The AMI and the
qualitative inspection summarized in Supplemental Materials confirmed that these ad-
ditional profiles identified in K=8 provided additional meaningful insights. Our find-
ings therefore encourage researchers to evaluate if additional profiles obtained from the
increased number of clusters provide meaningful insights in relation with the external
variables researchers intend to investigate, before they decide on an optimal number of
clusters, as Spurk et al. (2020) suggested. The AMI criterion can be especially useful in
this respect for evaluating the abilities of the clustering solutions to predict external vari-
ables when researchers decide on an optimal number of clusters obtained from not only
LPA or LCA but also from other clustering techniques such as k-means and hierarchical
clustering techniques.

As for the comparison between the ML-LPA and the VB-LPA3, our study identified
several differences in the two algorithms. First, the sizes of clusters identified by the ML-
LPA were varied, while the clusters identified by the VB-LPA were regulated. Second, the
ML-LPA achieved higher between-cluster variance scores and lower Davies-Bouldin scores
compared to the VB-LPA. This indicates that the regulated size distribution achieved in
VB-LPA might have influenced the scores of the lower between-cluster variance. Third,
the entropy scores for the VB-LPA were generally higher than those for the ML-LPA.
These differences might be explained by the assumption of equal variances between classes
in the ML-LPA, where the VB-LPA assumes unequal variances. Finally, in terms of the
computational time, the ML-LPA required the random starts up to 2 000 times for the
higher number of clusters, while the VB-LPA required only 100 random starts for the
range of K = 3 . . . 20.

A limitation of our study is that the comparisons of the ML-LPA and VB-LPA were
not based on a simulation study but only on empirical data instead. The comparisons
using the PVQ items based on the cluster evaluation metrics, however, enabled us to
identify an optimal number of clusters that are statistically justifiable and substantively
meaningful for interpreting the Schwartz theory. Another noteworthy point is that the
ML-LPA based on the method factor presented in Magun et al. (2016); Vermunt (2010) as
well as a test run of ML-LPA using the centering (Smith & Schwartz, 1997) scores of the
PVQ items both resulted in a smaller number of clusters. The different optimal numbers
of clusters identified from different data-sets may be due to the fact that the method factor
and the centering techniques are usually used to eliminate the response biases, whereas
the CFA scores inherently distinguished several Schwartz typologies with either positive
or negative response styles. Some recent works (See, Klimstra, van den Bergh, Sijtsema,
& Denissen, 2021) consider a hierarchical tree typology that distinguishes high- and low
response styles of pathological personality traits. Hence, it is debatable whether the re-
sponse styles should be eliminated within the clustering process. This clearly indicates
that there is room for further investigation on various data pre-processing procedures.
Finally, our study did not consider a covariance structure among the indicators, which
can represent the underlying dimensionality of the Schwartz values in addition to classifi-

3A summary can be found in the supplemental materials.
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cation. Thus, future research comparing ML-LPA and VB-LPA may consider the factor
mixture model (Muthén, 2008), which can be implemented in the Variational Bayesian
algorithm and the frequentist ML approach.
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