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ABSTRACT

This paper introduces a novel framework for Archetypal
Analysis (AA) tailored to ordinal data, particularly from ques-
tionnaires. Unlike existing methods, the proposed method,
Ordinal Archetypal Analysis (OAA), bypasses the two-step
process of transforming ordinal data into continuous scales
and operates directly on the ordinal data. We extend tra-
ditional AA methods to handle the subjective nature of
questionnaire-based data, acknowledging individual differ-
ences in scale perception. We introduce the Response Bias
Ordinal Archetypal Analysis (RBOAA), which learns indi-
vidualized scales for each subject during optimization. The
effectiveness of these methods is demonstrated on synthetic
data and the European Social Survey dataset, highlighting
their potential to provide deeper insights into human behav-
ior and perception. The study underscores the importance
of considering response bias in cross-national research and
offers a principled approach to analyzing ordinal data through
Archetypal Analysis.

Index Terms— Archetypal Analysis, Ordinal data, re-
sponse bias, questionnaires

1. INTRODUCTION

Archetypal Analysis (AA) seeks to uncover distinct aspects
in data defined as convex combinations of the observations
within a given dataset such that the data can be recon-
structed as convex combinations of these unique features.
Thereby, AA forms a latent polytope with corners defined
by the extracted distinct aspects, commonly referred to as
“archetypes”. They play a pivotal role in understanding the
intrinsic structure of the data [1], providing a continuous
spectrum in terms of how each observation is characterized
by the extracted features [1–3].

AA has traditionally been applied to continuous data
types, yet recent advancements have facilitated its application
to a broader spectrum of data distributions. Notably, AA has
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been extended into a probabilistic framework that optimizes
pseudo-likelihoods (i.e., likelihood functions in which the ob-
servations depend on the observations themselves), allowing
for the analysis of discrete data [4]. Recent expansions have
been particularly significant in the realm of questionnaire
data, where frameworks have been developed for both nomi-
nal [5] and ordinal data [6]. The latter method will be used as
a benchmark for our results. It involves a two-step approach:
initially, ordinal data is transformed into a continuous scale
via an Expectation-Maximization (EM) clustering algorithm.
This preliminary step necessitates the determination of an
optimal cluster count, which can be a meticulous process.
Subsequent to this transformation, conventional least squares
AA is applied to the transformed continuous data.

Techniques such as Principal Component Analysis (PCA)
and Nonnegative Matrix Factorization (NMF) have been re-
fined to explicitly incorporate ordinal datasets [7, 8]. Like-
wise, adaptations have been made to Gaussian Process mod-
els to support ordinal data [9]. However, these approaches
do not consider the individual variances in scale interpreta-
tion when applied to questionnaire data that captures subjec-
tive self-assessments. Furthermore, they lack the natural in-
terpretability characteristic of Archetypal Analysis.

We propose a direct optimization framework for AA for
ordinal data, circumventing the two step procedure explored
previously [6]. Our method is further distinguished by its
recognition of the subjective nature of questionnaire data, ac-
knowledging that different individuals may perceive ordinal
scales differently. This perspective is particularly pertinent in
the context of self-reported data, where subjects are prompted
to express their opinions on a Likert-type scale. Traditional
methodologies have often treated such data as if it were con-
tinuous, presupposing uniform intervals between scale points.
This assumption is a simplification that overlooks the ordinal
nature of the data, potentially leading to suboptimal analysis.
To explore this further we will contrast our results against a
conventional Archetypal Analysis model.

Given the inherent subjectivity of human experience, each
individual’s unique perspective can significantly color their
interpretation of question items and (Likert) scale points used
in the questionnaire, introducing a distinct form of response
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bias. Response bias presents a significant challenge in cross-
national research, as it can distort the validity of survey results
and lead to incorrect conclusions [10]. This phenomenon
varies not only across cultures but also across social cate-
gories within the same group, reflecting the complexity of
human behavior and perception [11].

The term response bias has many connotations, two of
which we address in this paper. The first instance of response
bias is the issue of taking an often qualitative scale and assum-
ing a uniform distance between the possible answers. This is
addressed in the proposed Ordinal Archetypal Analysis model
(OAA) where the scale during the optimization is optimally
changed to a continuous scale which no longer assumes the
answers to be equidistant, similar to the first step of [6]. The
second instance is that each subject has its own unique in-
terpretation of scale, reflecting their inherent tendencies. We
further introduce the Response Bias Ordinal Archetypal Anal-
ysis (RBOAA), which instead of a universal scale, learns in-
dividualized scales for each subject during optimization.

Specifically, we derive a direct ordinal AA optimization
approach capable of addressing human response biases. Our
novel approach extends beyond traditional matrix decompo-
sition methods, offering insights into the intricate fabric of
human responses, not only providing new insight into ordi-
nal data but also considering the inherent response bias found
in self-reported questionnaire-based data. We highlight the
procedure on both synthetic as well as a large open source
data set, the eight round of the European Social Survey data
set from 2016 (ESS8) [12], about personal values across the
European Union and Great Britain (GB), where we extract
distinct prominent profiles and identify characteristics of dif-
ferent population groups.

2. METHODS

Archetypal Analysis was originally proposed by [1] in the
context of least squares minimization defined by

minC,S L(X,R) s.t. R = XCS
cj,k ≥ 0, sk,j ≥ 0∑

j cj,k = 1,
∑

k sk,j = 1,
(1)

in which L(X,R) = ∥X − R∥2, and where C ∈ RN×K

and S ∈ RK×N are column stochastic matrices. The ma-
trix, R, represents the reconstruction of X within the imposed
constraints. The AA problem is non-convex in the joint opti-
mization of C and S, typically solved by alternatingly solv-
ing until convergence for S and C that respectively form two
convex sub-problems [1, 3]. Whereas the AA framework has
been generalized to a variety of other likelihood specifications
including binary (Bernoulli) and integer weighted (Poisson)
likelihood functions [4] no principled likelihood based frame-
work has been derived for ordinal variables. Consequently,
the existing ordinal AA relies on a two step procedure con-

verting the ordinal scale and subsequently applying conven-
tional least squares AA [6].

2.1. Ordinal Archetypal Analysis

Given a dataset of N samples, with ordinal input xm,n ∈ Z
corresponding to an answer on a Likert scale with p levels,
we assume an unobservable latent function f(xm,n) ∈ R,
which maps an answer to a given question from an ordinal
scale to a continuous scale. This is based on defining ordinal
boundaries

−∞ < β0 < β1 < . . . < βp < ∞. (2)

In the first model, we disregard response bias, thereby
necessitating the computation of an array of boundaries of
size p + 1. Consequently, the model operates under the as-
sumption of uniform response patterns across different re-
spondents. The ordinal likelihood function, initially intro-
duced in [9] in the context of Gaussian Process regression,
is defined as the probability of observing a specific response
given the latent functions. In the absence of noise, this likeli-
hood corresponds to

Pideal(xm,n|f(rm,n)) =

{
1 if βxm,n−1 ≤ f(rm,n) ≤ βxm,n

0 otherwise.
(3)

Upon transforming data from an ordinal to a continuous
scale, the value of f(rm,n) may fall between any two adja-
cent boundary values. We assume a uniform distribution for
the probability of an observation residing within these bound-
aries. The expected value is thereby given by αj , positioned
at the midpoint between its corresponding boundary values,
i.e.,

αj =
βj + βj−1

2
, j ∈ [1, p], (4)

The ordinal data matrix X is then mapped to a continuous
domain X̃ through (4). This transformation replaces all ele-
ments of X with their corresponding α-values, as determined
by the likelihood function. Subsequently, archetypal analysis
is applied to X̃, resulting in

R = X̃CS. (5)

In the typical scenarios where noise is present in the ordi-
nal observations of X, the latent functions f(rm,n) are accom-
panied by Gaussian noise δm,n ∼ N (0, σ2). This introduces
a modified likelihood function [9]

P (xm,n|f(rm,n)) =

∫
Pideal(xm,n|f(rm,n) + δm,n)

· N (δm,n; 0, σ
2) dδm,n

= Φ(zm,n
xm,n

)− Φ(zm,n
xm,n−1),

(6)



(a) (b) (c)

(d) (e) (f)

Fig. 1: Top panel: Results of the models on synthetic data without response bias. Bottom panel: Results of the models on
synthetic data with response bias. The leftmost column represents the loss in terms of cross-entropy and least-squares across
different numbers of archetypes. The middle plots provide the NMI, which in the case of the synthetic data are used as an
indication of how well the model reconstructs the ground truth structure in terms of how observations are expressed by the
archetypes. The left column is the RMSE between the original data and a corrupted reconstruction, Rcor of the original data.

where zm,n
xm,n

and zm,n
xm,n−1 represent the standardized distances

from an observation to the upper and lower boundaries, re-
spectively, and Φ(z) denotes the cumulative distribution func-
tion of the standard normal distribution obtained from the
convolution of a uniform interval with the Gaussian noise-
kernel, such that

zm,n
j =

βj − rm,n

σ
, zm,n

j−1 =
βj−1 − rm,n

σ
,

Φ(z) =

∫ z

−∞
N (z; 0, 1) dz,

(7)

thereby, the likelihood function can be conceptualized as fit-
ting a Gaussian kernel over the boundaries, with the parame-
ter σ accounting for the potential leakage of an observation in
R to adjacent boundaries.

2.2. Response Bias Ordinal Archetypal Analysis

The OAA model assumes consistent perceptions of scale
across individuals, which is not always a valid assumption.
The ordinal AA method can be advanced to account for in-
dividual perceptions of the ordinal scale by defining subject
specific boundaries that for the nth subject is given by βn.
This yields N sets of boundary vectors β1, . . . ,βN each with
p+ 1 elements.

−∞ < βn,0 < βn,1 < . . . < βn,p < ∞, (8)

Consequently, the sets of α-values are computed from the in-
dividualized boundaries. Hence, there is correspondingly a
total of N × p values in α given by:

αn,j =
βn,j + βn,j−1

2
, (9)

furthermore, the sigma parameter is similarly computed for
each individual i.e. σ ∈ RN defining different subject specific
noise levels in the response patterns. As a result, the uncer-
tainty wrt. an individual’s response is considered rather than
accounting only for the overall uncertainty across all respon-
dents.

2.3. Model Optimization

The implementation of our method is conducted in Python,
utilizing the robust modeling framework provided by Py-
Torch. We optimize the likelihood function, as delineated
in (6), employing the AMSGrad variant of the Adam opti-
mizer. This optimization is conducted with a learning rate
of 0.1 for AA and 0.01 for OAA and RBOAA, respectively,
complemented by an early stopping mechanism. The OAA
and RBOAA models are initialized with a few iterations of
conventional AA to reduce local minima. We implement the
AA sum to one and non-negativity constraints on C and S
using the softmax function thereby reparameterising the op-
timization of C and S in terms of unconstrained variables C̃
and S̃ such that ck = softmax(c̃k) and sn = softmax(̃sn).

For the OAA and RBOAA we repameterize σ using the
softplus function σ = log(1 + exp(σ̃)). Furthermore, the
boundary values β are optimized by reparameterizing

β = log(1 + exp(c1)) · b+ c2, (10)

such that

0 = b0 < b1 < . . . < bp−1 < bp = 1, (11)

Using this reparametierization we enforce the monotonic-
ity constraints on the values of b using a softmax function in



combination with a cumulative sum, i.e.

b0 = 0, bl =

l∑
j=1

eb̃j∑p
i=1 e

b̃i
, (12)

thereby enforcing the constraints given in (2). For the
RBOAA model we similarly specify subject specific pa-
rameters bn, cn,1 and cn,2 for the optimization of βn.

We initialize S and C by randomly sampling from a uni-
form Dirichlet distribution. The b̃j are initialized as 1. This
ensures equidistant boundaries when constraints are applied
prior to applying the optimization framework. Furthermore,
σ̃ was initialized using the standard normal distribution. In
the rare instances of numerical issues of the initialization
in which the loss function returns NaN we re-initialized the
model. The code is publicly available on Github.

2.4. Model Evaluation

The RBOAA models were optimized in terms of the cross-
entropy loss between the estimated probability of the true
ordinal category whereas the two-step Archetypal Analysis
(TSAA) procedure where the data is converted to continuous
scale [6] and conventional AA both used least-squares min-
imization, corresponding to optimizing a standard Gaussian
likelihood.

We further evaluated the models in their ability to recon-
struct corrupted data to assess how prone the models were to
overfitting. For this assessment we trained the model on the
corrupted data to predict the entries prior to corruption. To
make the assessment comparable across all the models; AA,
TSAA, OAA, and RBOAA, we used the root-mean-square
error (RMSE) as performance metric. As the TSAA model
converts the scale before performing conventional AA we find
the reconstruction R based on the original data prior to con-
verting the scale, i.e. corresponding to the prediction from a
conventional AA, to ensure comparisons were performed on
the same scale. As the OAA and RBOAA are based on cross-
entropy minimization and returns the probability for each or-
dinal value we converted this to the expected predicted re-
sponse r̂n,m using

E(r̂n,m) =
∑
j

j · P (j|f(rn,m)), (13)

Finally, we also quantify the consistency of the the ob-
servations characterizations in terms of archetypes as defined
through S by quantifying the normalized mutual information
(NMI) as proposed in [13].

3. RESULTS AND DISCUSSION

3.1. Synthetic study

To demonstrate the proposed model frameworks, we eval-
uate them on two synthetic data sets respectively designed

(a) Visualization of the models
response bias for data with no
response bias

(b) Visualization of the models
response bias for data with re-
sponse bias

Fig. 2: Response bias found the the OAA (points) and
RBOAA (boxplot) for the synthetic data without response
bias (a) and with response bias (b) together with the ground
truth. In the case with no response bias the ground truth are
evenly spaced between 0 and 1.a

with and without response bias according to the OAA and
RBOAA model formulations. The data is generated to have
three archetypes, 20 questions and 1000 respondents with an
ordinal scale of 5. We compare the two ordinal models (OAA
and RBOAA) to the two existing models, namely the origi-
nal Archetypal Analysis model (AA) [1], where the ordinal
data is treated as continuous and the TSAA of [6]. Both
optimization problems are solved using conventional least-
squares minimization. In fig. 1, a comparative analysis of
the AA, TSAA, OAA, and RBOAA are given. Whereas OAA
and RBOAA optimize cross-entropy loss, TSAA and AA are
optimized using the least-squares loss, making direct com-
parisons impossible outside of archetype function improve-
ment. Notably, all models showed comparable performance
on data with no response bias, but OAA and RBOAA have a
distinct advantage in identifying the true structure of observa-
tions as expressed by archetypes (i.e., NMI(Sestimated,Strue).
The RBOAA model, in particular, demonstrated superior per-
formance in datasets with response bias, effectively indicating
a three-archetype solution without significant loss improve-
ments beyond this point. This solution also showed a high
Normalized Mutual Information (NMI) correspondence with
the original data’s archetype expression. However, we also
observe that the response bias modeling comes with a price of
overfitting to noisy observations as we see the reconstruction
of the uncorrupted entries when training on corrupted data
performs inferior to the modeling approaches not including
response bias modeling, i.e. OAA, AA and TSAA that per-
form similarly. To examine this further two larger synthetic
datasets were created with 100 questions instead of 20, but

https://github.com/Maplewarrior/OrdinalArchetypalAnalysis?


otherwise initialized with the same hyper-parameters. For the
instance with no response bias, we observe that the denoising
clearly improved upon the RBOAA and OAA models’ per-
formance. For the model with response bias, the RBOAA
model still overfits to the data. We do observe improved per-
formance, but an even larger synthetic data set is needed to
examine this further (fig. 1c and 1f).

In fig. 2 the learned response biases are compared to
the ground truth perceptions of scale used for the synthetic
datasets with and without response bias. We generally ob-
serve a high degree of overlap for RBOAA in both settings to
the ground truth values. The OAA model performs slightly
worse on the dataset with response bias. This aligns with the
notion that treating scales as constant across respondents in
the presence of response bias is suboptimal.

3.2. ESS Round 8 (2016) data

The European Social Survey (ESS) is a cross-national survey
conducted biennially across Europe since 2001. It involves
face-to-face interviews with cross-sectional samples, measur-
ing attitudes, beliefs, and behavior patterns in over thirty na-
tions. We consider a subpopulation of the data, namely Great
Britain, to allow for comparison with the TSAA model that
does not scale well to the full data. This subpopulation con-
sists of 1897 responders, answering 21 questions, measuring
ten basic human values [14], in this paper four of these values
have been highlighted.

From fig. 3, it is evident that both the OAA and RBOAA
models encounter significant local minimas, when initialized
with a higher number of components. In contrast, AA and
TSAA models exhibit remarkable stability, even as the num-
ber of components increases. Importantly, the ability of OAA
and RBOAA to learn the ordinal scale directly in a single step
is a significant advantage, offering a streamlined process that
can be extended to ascertain the individual ordinal scales of
each subject by RBOAA. In fig. 3a the response bias across
all subject has been visualized as boxplots for each answer
corresponding to points on a Likert scale and we here observe
that the RBOAA learns substantial variability in terms of the
respondents perception of scale. However, the observed over-
fitting in fig. 1f underscores the need for careful model eval-
uation and possibly the incorporation of regularization tech-
niques in the RBOAA to prevent the model from fitting noise.

Determining the optimal number of archetypes on the
ESS8 data is a more challenging task. There is no clear im-
provement on the loss curve for a given number of archetypes
(fig. 3b). To enhance the information in the model we there-
fore chose the maximum number of components that the
model can have, without suffering from loss of stability
(NMI). From fig. 3c K = 4 is chosen. Based on this we ex-
tract the archetypes from the repetition resulting in the lowest
error, fig. 4a-4d. From these figures, the trajectory of each
archetype through the questions can be seen. It is clear that

(a) Response bias

(b) Error

(c) NMI

(d) Corruption Error

Fig. 3: The loss and NMI across a different number of
archetypes for ESS8 GB data as well as the response bias

we observe similar patterns in the archetypes across the mod-
els, suggesting both an archetype that identifies heavily with
the questions and one that does not. From the questions there
are also indications of a more conservative and a rebellious
archetype.

4. CONCLUSION

We have proposed the ordinal archetypal analysis directly
providing a principled procedure for the modeling of ordinal
data by AA. Notably, we extended the approach to account
for response bias and demonstrated on synthetic data how this
improved recovery of how observations were characterized in
terms of the archetypes in the presence of biased responses.
However, we also observed that the added flexibility when
facing a limited number of questions (i.e., 20 questions pr.
respondent) resulted in overfitting and the inability to well
recover noisy observations when including the response bias
modeling. The proposed approach readily scales to large
datasets and future work should explore how the methodol-
ogy can improve upon the understanding of human responses
by characterizing distinct response patters as enabled by the
proposed ordinal archetypal analysis framework.
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